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Achilles: Before we start, I just was wondering, Mr. Crab-what are all 
these pieces of equipment , which you have in here? 

Crab: Well, mostly they are just odds and ends- bits and pieces of old 
broken phonographs. Only a few souvenirs (nervously tapping the 
buttons), a few souvenirs of-of the TC-battles in which I have 
distinguished myself. Those keyboards attached to television 
screens, however, are my new toys. I have fifteen of them around 
here. They are a new kind of computer, a very small, very flexible 
type of computer-quite an advance over the previous types 
available. Few others seem to be quite as enthusiastic about them 
as I am , but I have faith that they will catch on in time. 

Achilles: Do they have a special name? 
Crab: Yes ; they are called "smart-stupids", since they are so flexible , and 

have the potential to be either smart or stupid, depending on how 
skillfully they are instructed . 

From Godel, Escher, Bach: an Eternal Golden Braid by Doug las R. Hofstadter. 

Copyright© 1979 by Basic Books Inc, publishers. Reprinted by permission of the 

publisher. 
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1 Introduction 

The microprocessor has become commonplace in our technological society. 
Everything from dish washers to astronomical telescopes have chips control­

ling their operation. While the development of applications for computers 
has been in constant flux since their introduction, the principles of computer 
operation and of their use in sensing and control have remained stable. 
Those are the primary subjects of this course. Once a basic understanding of 
the principles has been built, further detailed knowledge can be acquired 
later as the need arises. 

This book is designed to be acompanied by extensive laboratory work. 
Over the years the engineering curriculum has focused more and more on 
the lecture/recitation format. This has led to an ever increasing emphasis on 
theoretical developments and a loss of contact with the physical basis of 
engineering and science. The laboratory provides a vital experience in 
linking theory with physical reality. It also provides the satisfaction of 
building something and making it work. 

Not all computers are suitable for laboratory use. Large mainframe 
computers are fast and can handle large amounts of data but are awkward to 
connect to laboratory equipment. At the other end of the scale, microproces­
sors are included in many laboratory devices but are programmed to 
perform only a restricted set of duties. Mini and microcomputers have 
enough speed and memory for all but the most demanding applications but 
yet are small enough to be dedicated to individual projects and therefore are 
widely used in the laboratory. 

With the technological strides of recent years, microcomputers (or per­
sonal computers) have prodigious capabilities. Since they are also used in 
business, many languages and programs are available; some of which are 
even useful in a laboratory. With a single microcomputer, an engineer or 
scientist can acquire data and control an experiment, analyze the data, 
display the data and analysis as graphs or tables, and write a report or journal 
article. Remember that it can't do the thinking! 

Microcomputers come with many built-in features. Those included 
depend on the designers' decisions as to what will sell the most computers. 
Since the demands of the laboratory are so varied, no computer when taken 
out of the box can hope to fulfill them. Hence to be useful, a computer must 
be able to change its capabilities after manufacture. This is done in two ways. 
One is provide a method of communication (serial or parallel) between the 
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computer and the laboratory devices (analog to digital converters, voltmet­
ers, etc.) and rely on the devices to be intelligent enough to communicate. 
Generally this means that the devices need a microprocessor built in which 

is preprogrammed to communicate with a certain protocol. The other way is 
to have slots (connectors) in the back of the computer so that circuit boards 
can be inserted to perform the desired tasks such as analog to digital 
conversion of serial communication. The computer can then be configured 
exactly as needed for a particular application. Even the video display or 
microprocessor can be changed when desired . Further, 'slot machines ' are 
generally the least expensive way to computerize the laboratory. 

The APPLE lie (upon which this book is based) and the IBM-PC (which 
is the subject of a companion volume) are 'slot machines'. The APPLE lie 
(and predecessors, the APPLE II and APPLE II+) is of an older design but 
has proved its usefulness in innumerable times. Its simple yet versatile 
architecture makes the computer easy to use and understand but limits its 
analysis and data volume capabilities. The IBM-PC is a newer design which 
is faster and has more memory but is slightly more complicated internally. 
They are both quite suitable for laboratory use . Beware of the APPLE lie 
which is a slotless version of the Tie ; it will not be able to accept the circuit 
cards which are necessary for the exercises in this book. IBM-PC clones 
(design copies) can be used instead of the IBM-PC as long as they have slots 
where data acquisition boards can be placed. 

A computer can be treated as a black box which responds in a predictable 
way to an input; however, that type of use requires a complete knowledge of 
the possible inputs and responses . An understanding of how it works inside 

allows the user to figure out how the computer will respond to an input , or 
even if it can respond . The capabilities and limitations become transparent. 
Throughout the book a gradual understanding of what goes on inside a 
computer will be developed. 

Other devices which are used are various sensors, analog to digital 
converters, digital to analog converters, timers, digital input and output 
devices, optical encoders , stepping motors, and analog amplifiers. They 
provide the interface between the computer's digital world and the physical 
phenomena being studied. 

At first , APPLESOFT BASIC is used for programming. This allows 
simple input and output to be done as one's understanding of the computer 
grows. Graphing and curve fitting is also dealt with. Later , when the 
limitations of BASIC become restricting, programs are written in assembly/ 
machine language . The speed difference become evident very quickly. 

A ll of this computer work is done in the context of doing physics 
experiments. These experim'ents cover subjects not usually emphasized in 
introductory courses but which have a wide applicability. They show that , 
with computer control , conceptually sophisticated experiments can be 
performed with simple apparatus. In particular, physics of activation tem­
perature , heat diffusion and motion in fluids are explored. 
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1.1 How to use this book 
In this book much of the programming material will be presented by 

way of example. Programs will be given from which you will be expected to 
deduce the essence of what is going on and thereby proceed to write your 
own programs. After seeing and using programs, the more precise and legal 
description of instructions given in the manuals become easier to com­
prehend . 

This book is written in a tutorial manner in which the exercises and 
experiments are distributed throughout the text. It would be nice to read up 
to an exercise and then sit down at the computer to do it. However, the time 
in the laboratory is short so that this becomes impossible. Before going to the 

laboratory , read through the text you expect to cover and organize your 
thoughts about what you will be doing . Also , jot down flow charts and write 
out programs which you will enter in the computer at the laboratory. Even if 
they do not run the first time they can be easily changed once the program is 
in a file. The essence of learning is going through the struggle of getting 
things to function properly, whether it be in writing programs, building 
experimental apparatus, or understanding theoretical descriptions. 

Many of the details of BASIC programming and machine operation can 
be found in APPLE II User's Guide by L. Poole , M. McNiff and S. Cook or 
a complete set of APPLE manuals. Assembly language programming is not 
covered. A source for that is 6502 Assembly Language Programming by L. 
Leventhal or SY6500 Microcomputer Programming Manual by MOS 
Technology. 

The appendices contain reference material and extended discussions. 
They are separated from the main text to improve the flow but contain 
important information and so should be perused once in a while . 

1.2 Chapter summary 
Chapter 2 begins with an introduction to the operation of the 

APPLE lie computer. The AMPERGRAPH utility and APPLESOFT 
BASIC are used to make some graphs . There is also a brief look inside the 
APPLE at addresses , data and different types of memory. 

Chapter 3 introduces the first Input/Output (I/0) device , the Analog to 
Digital Converter (ADC). It is used to measure the temperature/resistance 
characteristics of a thermistor. Further BASIC programming is used to do a 
least squares fit to the data. The I/0 capabilities of a 6522 Versatile Interface 
Adapter (VIA) are used to control a HEXFET switch on a heater to make a 
temperature controller. 

In Chapter 4, simple BASIC timing loops are used to control a stepping 
motor. The operating speed of BASIC statements is measured. Then the 
more sophisticated counters of the 6522 VIA are used to make an accurate 
interval timer. 

Chapter 5 concerns an experiment in thermal diffusion. A heater at one 
end of a copper rod is turned on for a set interval under program control. The 
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ftow of this heat pulse down the rod is then measured at two locations for 
about 30 s. A theoretical model is fitted to these data to determine the 
thermal conductivity and heat capacity of copper. An analog amplifier is 
used to boost the signal from the thermistor to the ADC. 

Chapter 6 is an introduction to assembly language programming and the 
architecture of the APPLE. The increase in processing speed over BASIC is 
vividly displayed by sending a square wave to the output port. A digital to 
Analog converter (DAC) is used to make an X-Y plotter. 

In chapter 7, an experiment is constructed which measures the viscosity of 
glycerine by measuring the speed of a falling sphere. The physics of 
turbulent as well as smooth fluid flow is discussed. LEDs and photocells are 
used as position sensors to measure the speed of the sphere. The machine 
language portion of the data acquisition program is blasted into an EPROM 
(Erasable Programmable Read Only Memory), which is used to acquire 
velocity data . 

Chapter 8 introduces the concept of interrupt processing . A clock display 
runs as other computer operations are performed. A modification of this 
program rings the bell every two seconds while other programs are run. 

Chapter 9 contains various topics which are important but do not have a 
direct bearing on the experiments done in the previous sections. 
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Fig. 2.1.1nstrumentation 
structures 
Process: eg temperature as 
function oftime, position as 
function of temperature. 
Sensor: eg temperature or 
position converted to voltage. 
Signal condit ioner : eg amplifier, 
filter. 
* Conversion: analog to digital. 
*Storage/playback: eg silicon 
memory, magnetic, papertape. 
* Representation : eg numbers, 
pictures (1000 words of 
memory!). 
*Modeling : mathematical fit to 
data. 
*Control: eg change 
temperature or position . 
The computer has a part in all 
items with a *. 

structures and using 
APPLE 11 computer 

The purpose of an instrument is to make measurements of a particular 
parameter in a physical process. This requires at least a sensor which 
responds to the parameter and a display which lets the user record readings 
which are in some way proportional to the parameter being measured. A 
thermometer is an instrument which indicates the temperature by quantita­
tively showing the expansion of a liquid with a temperature increase. A more 
complete description of the measurement process is shown in Figure 2.1. 
The arrows show possible but not necessary routes for the flow of informa­
tion. The computer is able to do many of the tasks which were formerly done 
by separate units of an instrument. This lets the designer reduce the number 
of components required to a bare minimum as the experiments in this book 
show. Many times all that is needed is a sensor to translate the process into 
an electrical signal. 

Another way to think of the computer is as an interface between the 
experimenter and the experiment (or the user and the measurement). It is 
able to translate the unintelligible signals from the sensor into a form which 
is understandable using human senses . One of the best ways of communi­
cating information is by picture . 'A picture is worth a thousand words .' (In 
fact, it takes roughly a thousand words of computer memory to display a 
video graphics screen.) 

2.1 Making graphs 
Graphing experimental data and mathematical expressions is an 

important aspect of the work you will do in this course; we will go through a 
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few programs which will show how such graphics programs are written . The 
APPLESOFT BASIC interpreter , which you will be using for programming 
the machine has only rudimentary plotting instructions incorporated in it; 
the AMPERGRAPH utility appends to the usual APPLESOFT instructions 
additional graphing instructions which are easy to use. AMPERGRAPH is 
automatically linked to APPLESOFT BASIC at system start up time. Refer 
to your AMPERGRAPH manual for descriptions of AMPERGRAPH 
commands and to the APPLE BASIC programming manual or Poole for 
APPLESOFT commands. 

Exercise 2.1.1 Starting out 
(a) To get started insert the SYSTEM START disk into the DISK 

DRIVE unit and turn the computer power switch on. The machine 
is set up so that it will 'wake up' in APPLESOFT BASIC whose 
prompt is] . The AMPERG RAPH utility and other programs are on 
the SYSTEM START disk. To see what files are on this disk, type 
CATALOG CR (CR means press the key labeled RETURN). On 
the screen , a listing of the programs will appear. Up to 18lines of the 
catalog entries are presented. If this does not include all the files on 
a particular disk , you can see more by pressing the space bar. The 
entries marked with an 'A ' are APPLESOFT programs . 

(b) AMPERGRAPH: you will now type into the computer memory a 
sample APPLESOFT/AMPERGRAPH plotting program. First 
clear out other programs which may be in the machine by typing 
NEW CR . Then type in the Program 2.1.1 in Figure 2.2; each line 
should be followed by CR. Be sure to read the comments in Figure 
2.2 to understand each program step . HIMEM is particularly 
important. 

(c) Listing: the LIST command will make the APPLESOFT program 
which you have entered appear on the screen; check the program 
for errors. The spacing may appear slightly changed but that is 
normal. To correct any errors simply retype the line number and 
statements which are incorrect ; the old line will be erased. To delete 
a line , simply type the line number followed by a CR. As you get 
further along in writing programs, you will find it useful to go 
through the APPLE manual to learn some further editing features 
of the APPLE. Notice that the numbering of the statements is not 
consecutive. This is a good practice in BASIC programs in case you 
want to put additional program lines between existing lines. To 
insert a new line between two lines simply type a line with a number 
between the two line numbers. 

(d) Printing: next, print a listing of the program on the printer: first turn 
the power switch to the printer on . Then to direct output to the 
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Fig. 2.2. An elementary graphing example. 

5 REM PROGRAM 2.1.1 REMark is a way of recording program 

6 REM ELEMENTARY EXAMPLE documentation,itisnotaninstruction 

which is executed. 

8 HIMEM:16383 

10 HGR2 

HIM EM will limit the usage of memory 

for APPLESOFT programs to addresses 

lower than 16383, You must include this 

before any executable (non-REM) 

APPLESOFT statements in programs 

using AM PE RG RAPH statements to 

insure that APPLESO FT doesn't write 

over the AMPERGRAPH program in 

memory. See Appendix C for the location 

of AM PERGRAPH in memory. 

HGR2 erases all 'dots' stored on page 2 

of high resolution graphics and switches 

the screen to display that page. We will 

use HGR2 instead of HGR1 in our 

programs. (Appendix C) 

7 

20 &SCALE,0,10,-1.2,1.2 All instructions beginning with a & are 

AMPERGRAPH instructions, read manual 

for details. 

25 LX$="X" 
27 LY$="COS X" 

30 &LABELAXES,2,.2 

In BASIC all variables ending with a$ are 

string variables which are used to 

manipulate text. These variable names 

(LX$ and L Y$) are special to 

AMPERGRAPH 

An AMPERGRAPH instruction . 

40 for X=O TO 10 STEP 0. 2 An ordinary APPLESOFT BASIC 

instruction. 

50 &DRAW, X, COS(X) AnAMPERGRAPH instruction. 

60 NEXT X An APPLESOFT BASIC instruction. 

LIST CR A DOS Command. 
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printer, type PR#l CR. This will direct subsequent output to the 
printer as well as to the CRT. Now type LIST CR. To turn off output 
to printer, type PR#O. 

(e) Running the program: to run the above program type RUN CR. If 
the program is correct the graph of cos (x) should appear on the 
screen. If not , find the errors and correct them (debug the program). 
At this time memory locations devoted to high resolution graphics 
are being displayed; to get back to displaying text on the screen, 
type TEXT CR (type carefully since you won't see what you are 
entering). To get back to viewing the high resolution graphics 
without wiping out what's there (which the HRG2 instruction will 

do), type POKE -16304,0:POKE -16299,0 CR. 
To print out the graphics display, a control signal must be sent to 

the printer (actually to the circuit card which controls the printer). 
The details of this are discussed in the documentation for the printer 
card you are using. For a MICROBUFFER, to print out the graph 

you have drawn, type TEXT CR (to see what you are typing), 
PR#l CR (to send output to the printer), PRINT CHR$(9) 
"G2" CR (to print the graph). 

(f) Formatting a disk: throughout the course you will need to make use 
of programs and data which you have written or obtained before. 
The disk is the medium by which these are stored. To save APPLE­
SOFT programs, you first need to initialize a blank disk. Initializing 
is like erasing the blackboard and then drawing lines on it where the 
words or numbers will go. The command ' INIT filename CR' does 
this and also places the program presently in memory into the first 
part of the disk with the filename given in the command. Only use 
this command the first time you store a program on a disk since it 
erases all the existing files on the disk. Later programs are saved on 
disk with the APPLESOFT command: 'SAVE filename CR'. Place 
your blank disk into the drive and save this first program on your 
blank disk with the command: INIT PROGRAM 2.1.2 CR. 

Exercise 2.1.2 Simple graphing 
Write and run a program that plots the curve Y = X 2 - 1 from 
X= -2 to +2 with the X and Y axes labeled and a grid super­
imposed on the plot with a grid line for every increment of 1 for X 

and 2 for Y. In addition, plot on your graph the data points X, Y as 
open circles for the points 

X y 
-1.8 3.5 
-1.2 1.0 
-0.5 -1.0 

0.0 -1.3 
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0.5 
1.2 
2.0 

0.3 
0.5 
3.5 

9 

The BASIC statements READ and DATA are useful in this 
program . Save the program as an APPLESOFT program on 
diskette; (SAVE filename) then load (LOAD filename) and RUN 
it again. Print out the program and the graph on the printer. 

For success in writing programs complete small pieces at a time and devise 
methods so that each piece can be tested separately; then incorporate these 
pieces into larger sections of the main program. It is also usually a good idea 
to first write out in words and block diagrams what you are trying to do with 
the program and/or apparatus. Apparatus B contains a description of 
RENUMBER, a useful utility on the SYSTEM START disk for merging 
separate program pieces to facilitate this process . 

One note: if you get an error message which reads 'SYNTAX ERROR IN 
LINE 5xxxxx' where the xs can be any number, the error is in your 
AMPERGRAPH statements. Also certain programs are incompatible with 
AMPERGRAPH. If you have used RENUMBER or INTEGER BASIC/ 
MINI-ASSEMBLER and you want then to use AMPERGRAPH, you will 
need to RUN AMPERGRAPH LOADER on the SYSTEM START disk. 
Be careful to save your program before you do this. 

2.2 Addresses and data, RAM and ROM 
Inside the APPLE there is an integrated circuit microprocessor 

which controls the operation of the computer. Connected to it are 16 address 
wires and 8 data wires which are used to communicate with other parts of the 
computer. The 16 binary bits of the address wires allow the microprocessor 
to specify 65536 unique locations. The information transfer is done on the 
data wires. Eight wires allow 256 unique numbers (or characters) to be 
represented at one time. It is like having a telephone system which has 65536 
telephone numbers and in which the caller can choose from 256 words to 
send a message . All the calls go through the central switchboard (the 
microprocessor). 

The address wires are connected to several different types of memory and 
to devices which allow communication between the computer and the 
outside world. The microprocessor first places the binary representation of 
the location to be accessed on the address wires. Then after waiting for the 
computer circuits to select the unique location to which this refers, it either 
sends or receives a byte of data on the data wires. At the lowest level, this is 
all that a computer does. 

Modern computers usually have several types of memory; early computers 
had only Random Access Memory (RAM). RAM is essential for any 
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computer since the fundamental principles of computer operation require 
the Central Processing Unit (CPU) to repeatedly store and retrieve program 
instructions , data and memory addresses. The term 'Random Access 
Memory' means that it may be written to or read from in any order. A severe 
disadvantage of semiconductor RAM is that it doesn ' t remember anything 
after its power is turned off. Some computers have vital portions of their 
RAM protected by having a battery to provide the power in case of a power 
line failure. 

Read Only Memory (ROM) has data stored in its memory cells at the time 
of manufacture which it retains permanently. It can be randomly accessed 
but that access is restricted to the read operation only. A ROM chip can be 
moved from one place to another without the data being lost as no power is 
needed to maintain data stored. There are several ROMs in the APPLE 
computer. One contains the monitor routines which are activated when the 
computer is turned on. Programs in the monitor initialize the computer and 
load the Disk Operating System (DOS) and INTEGER BASIC into RAM. 
The second ROM contains the APPLESOFT BASIC interpreter program 
which interprets BASIC program instructions. Appendix C contains a 
description of how the APPLE lie memory is organized. 



3 Thermistor experiments 

In the first set of experiments you will make temperature measurements 
using a thermistor and an ADC. A thermistor is a device whose resistance 
varies with temperature. The ADC converts an analog voltage (continuous 
voltage levels) to a digital representation (discrete voltage levels) which can 
be read by the computer under program control. 

3.1 Using the ADC 
The ADC 0817 which is installed on the interface card in the APPLE 

is an eight-bit converter, this means that the range 0- 5 V will be divided into 
28 = 256 parts . It also is able to select one of 16 input lines on which it will do 
the conversion. To use the ADC from BASIC is quite easy: an instruction to 
initiate a voltage conversion is given; a second instruction then reads the 
result of that conversion. Of the 16 analog input lines (channels) of the 
ADC, 8 have been brought out onto the prototyping board. Channels 0-7 
are on pins 1-8 on the Dual Inline Plug (DIP) connector on the prototyping 
board . Appendix D has a description of how the ADC works. 

The 6502, which is the CPU in the APPLE, uses a system called memory 
mapping for input and output. To initiate a conversion of the voltage on 
channel 0 of the ADC you issue the BASIC instruction POKE 49312,0 . This 
instruction would normally mean: store the number 0 ('data') in memory 
location 49312; however, in this case , the ADC ignores the data , and 
initiates the conversion of voltage on channel 0. To initiate a conversion in 
channel 1, the instruction POKE 49313,0 is used; for channel 2, POKE 
49314,0 etc. Shortly after issuing the instruction (in considerably less time 
than the APPLE takes to execute a single BASIC instruction), the result of 
this conversion can be found in memory location 49312 , regardless of which 
channel was converted; thus POKEing and PEEKing access are completely 
different functions for the ADC. To set a variable, eg, A, equal to the 
converted value in the memory location 49312, use the instruction 
A = PEEK(49312) . PEEK will read the contents of memory location 49312 
and will assign an integer in the range 0--255 to the variable A. It is good 
programming practice to use variable names which resemble their meaning. 
In this case, a better name for the variable A is ADC or AD CDA T A. 
However you must be careful ; APPLESOFT BASIC will only look at the 
first two letters and the suffix(% or$) to distinguish between variables . Thus 
ADC1 and ADC2 are the same variable. 
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Fig. 3.1. Potentiometer 
connections and proto board DIP 
plug. 
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Exercise 3.1.1 Using the ADC 
To get the idea of how to use the ADC connect a 5 kD potentiometer 

across the 5 V power supply on your bench (Figure 3.1) and observe 
the voltage of the wiper (the center connection on the potentio­
meter) on the oscilloscope. NOTE : The ground lead of the oscillos­
cope probe should be connected to the ground of the system, ie, the 
green wire of the potentiometer. Never connect the oscilloscope 
probe ground to any point of a circuit which is not ground. Also , it 
is extremely important that the negative output of the power supply 
be connected to ground of the APPLE at all times . 

Before connecting the wiper of the potentiometer to the APPLE 
observe the voltage of the wiper on the osci lloscope: set the scope 
trigger control to AUTO so that a continuous trace appears on the 
screen; be sure the small switch on the probe tip is set to lx; set the 
vertical scale to 1.0 V/DIV and the VARIABLE knob to the 
CALibrated position ; set a 0 V baseline by using the ground switch 
and vertical position knob on the scope . 

Turn the knob of the test potentiometer back and forth, the 
voltage output of the wiper should vary between 0 and 5 V. Now 
connect the wire from the wiper arm of the potentiometer to the 

Red 

Green 

Protoboard 

Notch 

0000 1 16 
0000 2 D 15 ------
0000 3 I 14 
()()CX) 4 p 13 Cable to 
c)(X)() 5 p 12 APPLE computer 
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'X)(X) 7 u 10 --- -- -
l()(X) 8 G 9 

To ground 
'-----• on protoboard 

111111111111111111111111 1111111111111111111111 

111111111111111111111111 1111111111111111111111 

Proto board connection layout 
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channel 2 ADC analog input on the protoboard; this is pin 3 of the 
DIP connector . Clear the program currently in the computer (NEW 
CR) and enter the following BASIC program: 

5 REM PROGRAM 3.1.1 
10 AD=49312 
20 POKE AD+2,0 
30 V=PEEK(AD) 
40 PRINT V 
50 FOR I=O to 100: NEXT I: REM DELAY 

LOOP 
60 GO TO 20 
RUN 
Rotate the potentiometer shaft and note how the voltage on the 
scope and the computer display changes. The program should print 
integers in the range 0-255 on the video screen which are propor­
tional to the voltage on the potentiometer. Your particular ADC 
may not show a count of255 for 5 V. This is a calibration error which 
can be corrected for by determining that the range of your ADC is 
0-xxx rather than 0-255 for a 0-5 V input. The instructions on line 
50 in the program are only there to use up time so that the repetition 
rate between making measurements is sufficiently low to give a 
readable output on the CRT. To stop the program, simultaneously 
push the CONTROL key and C (CTL-C). Release them and press 
RETURN (CR) . 

The potentiometer is an example of a zero-order instrument; that is, it is a 
transducer whose output is in direct proportion to its input : Vout = KVin 
where K is the static sensitivity or calibration factor. A perfect zero-order 
instrument will produce at its output the exact replica of the input signal with 
only a scale or units change. Of course no instrument or transducer can live 
up to the perfect response represented by a mathematical formula; all 
instruments have a range of input values over which tolerable errors occur. 
It is the responsibility of the designer to determine this range and report the 
tolerance in the instrument specifications and the responsibility of the user 
to pay attention to them. 

Exercise 3.1.2 Programming the ADC 
(a) Modify the program and potentiometer connections so that the 

voltage on channel 5 is read and displayed. Determine what the 
ADC reading is for the maximum voltage, and what the maximum 
voltage is . 
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Fig. 3.2. Output of a three bit ADC 
with input range of 0-5 V. 
Dashed line is the ideal, solid line 
the actual response. 
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(b) Modify the program and add a second potentiometer so that the 
program reads the voltage on channel 0 and then , as soon as 

possible , the voltage on channel 5, the two results should be 
displayed on the CRT on a single line with a few spaces between the 
two measurements. Look up the details of the PRINT statement in 
the reference manuals. Make the program also compute the actual 
voltage and print them too. The program should make 25 measure­
ments of this kind and then halt. When you get everything running, 
print out the results on the printer. Also make a printed listing of the 
program you have written and SAVE the program on your disk. 

3.2 ADCs 
ADCs come in many sizes and flavors each with a range of useful­

ness . The following is a description of the most important considerations for 
choosing and using them. 

An ADC has a defined range of input voltages (for example 0-5 V) which 
it can accurately convert. This range is divided into a number of equal sized 
pieces (voltages). The integer number output by the ADC corresponds to 
the number of these which equal the input voltage at the time of the 
conversion . Figure 3.2 shows how a three binary bit converter converts an 
input signal to a digital number. Using an ADC is like using a ruler which is 
graduated in say !" markings. All measurements are then made to the 
nearest !". Also it can only measure lengths which are less than the length of 
the ruler. (You can hop-frog a ruler but you can't do that with an AD C.) 

The goal of digital measurements is to get an accurate representation of 
the input signal. In order to do this the ADC must be able to resolve voltage 
differences which are significant in the measurement being done. That is, the 
input voltage range of the ADC must be divided into enough pieces by the 
digitizer that the voltage change represented by each piece is smaller than 
the accuracy needed . In the laboratory , the 8-bit converter breaks up the 
input analog voltage range into 28 = 256 pieces so that the resolution of the 
converter is 1/256 = 0.4% of the full rangt> or (5- 0)/256 = 0.019 V. Digital 
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audio recording systems use 16-bit converters so that the digitization process 
is not audible on playback . The ear is a very sensitive detector. 

Most of the ADCs on the market are 8, 10, 12 , or 16-bit converters. Those 
above 12-bit require extra care in use since the digitization level is below 1 
mV. Extraneous noise from computers or other circuits can creep into the 
desired signal. Common input voltage ranges are (0 to 5), (-5 to 5) and ( -10 
to 10) . External electronics can be used to shift the voltage from a sensor into 
the proper range. 

Exercise 3.2.1 ADC and sampling 
(a) The resolution in voltage of an ADC is a V/2" where a Vis the total 

input range and n the number of bits of the digital output. What is 
the resolution of a 13-bit ADC with input range of+ 5 to -5 volts? 
Express your answer in millivolts. 

(b) Since the amplitude of an analog signal can be adjusted by an 
amplifier circuit to fill the input range of the ADC, the resolution 
can be better described by the dynamic range ; this is the ratio of the 
maximum to the minimum voltage measurable by the ADC. The 
maximum is the ADC input range and the minimum is the resolution 
calculated above . What is the dynamic range of the 13-bit ADC? 
The 8-bit used in class? The ratio is usually expressed in decibels 
(dB) , eg, DR = 20 log (ratio) in dB . Give your answers in both 
forms; a ratio and in dB . 

_\ nother metnod of conver: ;r "" an analog signal to digital is to input the 
signal to an electronic circuit (a Vcl tage Controlled Oscillator or VCO) 
whose output is a frequency which is proportional to the amplitude of the 
input voltage, ! out = fo + K1 V;n . The computer can then measure the 
frequency of the signal by measuring the time for one cycle of the waveform. 
To work properly the rate at which the analog input voltage varies must be 
much less than the frequency output and so the VCO is used for slowly 
varying signals . The accuracy of this method is also limited. 

In order to measure a signal accurately , the rate at which the measure­
ments are taken (the sampling rate) must also be considered . This must be 
fast enough that all the frequencies contained in the signal can be repro­
duced. As a quick illustration of the problem, the signal peak in Figure 3.3 
will be totally missed ifthe sampling is done at the time marked with crosses . 

As Fourier (1768-1830) showed , any signal can be considered as a 
superposition of sinusoidal signals of various frequencies . These frequencies 
generally range from zero (DC) to some maximum frequency , f max , which 
depends on the physical characteristics of the system generating the signal. 
The fundamental frequencies of piano range from 27 to 4200Hz. But the 
overtones (harmonics) go to much higher frequencies. 
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Fig.3.3. Sampling the signal with 
an ADC at a rate which is too 
slow. The peak is missed. 

Fig. 3.4. The solid curve is the 
input waveform. The dashed 
curve is the waveform 
reconstructed from the sampled 
data ; (a) 1 sample per cycle, (b) 
1.5 samples per cycle, (c) 2 
samples per cycle (the Nyquist 
frequency). 
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In order to accurately reconstruct the original signal from a sampled 
signal, the ADC sample rate should be at least twice the highest frequency 
in the input signal, !max. This result is known as the Sampling Theorem and 
was formulated by Shannon in 1949 building on earlier work by Nyquist 
(1924). Note that it reads ' the highest frequency in the input signal' not 'the 
highest frequency of interest'. Even if you are not interested in higher 
frequencies in the input signal, they must be sampled correctly . If they are 
sampled at a rate which is less than 2fmax (the Nyquist frequency) , they will 
masquerade as lower frequency signals (Figure 3.4) . This is called aliasing . 
A good rule of thumb is use a sample rate of at least 2.5fmax. E lectronic filters 
(like the treble and bass controls on a stereo) can be used io limit the 
frequency range of signals so that the sampling rate can be lowered. 

As an example , in the digital recording of music , the audio frequency 
range of 20-20000 Hz must be faithfully sampled. Since fmax = 20000 Hz, 
the Nyquist frequency is 40 000 samples/second. The actual rate used is 
48 000 Hz . An ADC which converts the signal in at least 20 f.LS is needed . 

(a) 

(b) 

(c) 

/ 
/ 
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ADCs come in a wide variety of speeds. From low-power devices which 
convert in milliseconds to fast (less than 10 J.LS) ones. The first are used in 
battery operated equipment such as digital multimeters. The fast ones are 
used in audio and video digital systems. 

Exercise 3.2.2 Audio digital sampling 
An eight channel digital recording studio wants to faithfully record 
the audio spectrum from 20 to 20 000 Hz . What must be the sample 
rate for each channel? The studio wants to use a single multiplexed 
16-bit ADC to digitize the signals (the ear is a sensitive detector) ; 
what is the maximum conversion time the ADC can have? It is 

found that ADCs this fast are only available to the military (and at 
military prices!), but there are some available which are three times 
slower; how can the system be changed to accommodate slower 
ADCs and still have the full frequency capability? 

There are various ouptut formats for the data coming from ADCs to the 
computer. This is usually not a large concern when buying them since the 
computer can convert any format into the one most suitable for its use . Table 
3.1 shows some standard output codes for an eight-bit converter with an 
input range of -10 to 10 V. One LSB (Least Significant Bit) represents 

20/256 = 0.078 V . 

Table 3.1 Comparison of ADC numbering systems 

Input volts 2s complement Offset binary Sign bit 

+ 10 0111 1111 1111 1111 1111 11 11 
+10- LSB 0111 1110 1111 1110 1111 1110 

+ l LSB 0000 0001 1000 0001 1000 0001 
0 0000 0000 1000 0000 1000 0000 
-1 LSB 1111 1111 0111 1111 0000 0001 

-10 + LSB 1000 0001 0000 0001 0111 1110 
-10 1000 0000 0000 0000 0111 1111 

3.3 Thermistor resistance vs. temperature characteristics 
The first real application to which the ADC will be put is to measure 

the resistance variation of a thermistor with temperature. The electrical 
resistance of conductors (metals) increases with increasing temperature. 
This is a result of the change in the mean free rate between collisions of the 
free electrons in the conductor with the lattice (stationary ions) . As the 
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system heats the increased amplitude of thermally generated lattice vibra­
tions (phonons) results in increased resistance. Yet for a thermistor , R 
decreases with increasing temperature according to the relation 
R = R0 exp(T0/T). (You may want to make a quick plot of y = exp(l/x) to 
see the rough behaviour of this function.) In this expression, R is resistance 
(ohms); R0 is a resistance value corresponding to infinite temperature ; T0 is 
an activation temperature (K); T is the absolute temperature (K) 
(0 oc = 273.16 K). The difference is that the thermistor is made from 
semiconducting materials. In a conductor, every atom donates one or more 
electrons to the conduction electrons and thus the number of conduction 
electrons is fixed at a rather large number ""1022/cm3

. In a semiconductor the 
electrons are more tightly bound to the atoms. The energy required to 
liberate electrons from the atoms is £ 8 = k8 T0 where k8 = Boltzmann's 
constant. The probability of an electron being liberated from any given atom 
by thermal agitation is p = exp(- Egfk 8 T) = exp(- T0/T). Thus the number 
density of free electrons in a semiconductor varies as n = n0 exp(- T0/T). 
Note that for T ~ T0 , n goes to 0 and the semiconductor becomes an 
insulator. Since the resistance of a conductor depends inversely on both the 
number of charge carriers and the mean free path of the carriers the rapid 
variation of n with T dominates the resistance of a semiconductor over-riding 
the temperature effect on the mean free path , which can be ignored to a good 
approximation . 

Exercise 3.3.1 Thermistor mathematical models 

To show that this last statement is true consider two models of 
thermistor behavior 

R 1 = R0 exp(T0/T) 
and 

R2 = AT exp(T0/T) 

where R0 , T0 and A are constants, R2 includes the effects of the 
mean-free-path variation with temperature. Plot log(R 1) vs. 1/Tfor 
T = 3000 K and R0 = 0.02 0 in the temperature range 280-400 K. 
Now plot log R2 for the same T0 and adjust A so that R 2 = R 1 at 300 
K. Show mathematically that R 1 should and R2 should not plot as a 
straight line on this type of plot. Despite this R2 does appear to be a 
straight line in this temperature range and so it can be modeled with 
the equation R2 = R0 exp(T0/T). From the graph, find T0. Where 
does the behavior of R2 start to differ significantly from R 1 , at low 
temperatures or high? 

The thermometer/thermistor protoboard, has the circuit diagramed in 
Figure 3.5. NOTE: when any wiring is done or changed be sure to turn off 



Fig. 3.5. Thermistor and heater 
circuit. 
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the power supply. Even though the wiring is very simple it is still a good idea 
to become accustomed to using wire color codes to help you. Red is used for 
positive power supply connections, green for ground and the standard 
electronic color code (Table 3.2) if there is an easy correspondence to data 
line numbers. Taking the time to do this will make it easier to trace the 
circuit to find errors when something doesn 't function correctly. In addition 
it is much easier to find test points when a scope or other test instruments are 
to be used . The voltage across the thermistor should be read into channel 0 
of the ADC (ADCO). The push button switch makes it possible to turn the 
heater on and off manually. 

Table 3.2 The standard electronic color 
code and resistor identification 

Color code 

0 Black 

1 Brown 
2 Red 
3 Orange 

4 Yellow 
5 Green 
6 Blue 

7 Violet 
8 Grey 
9 White 

5% Gold 
) Tolerance 

10% Silver 
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Exercise 3.3.2 Specific heat and power 
This exercise is a warm up for Chapter 4 and uses the thermistor 

circuit but not the computer. The specific heat of a substance is the 

ratio of the amount of heat added (~Q) to the corresponding 

temperature rise (~T) per unit mass (m): 

C = ~Q!m!::J.T (3.3.1) 

The power P is defined to be the change in heat with a change in 

time, 

p = dQ!dt (3.3 .2) 

so the amount of heat added to the aluminum block by the heater is 
the power times the time: !::J.Q = P!::J.t. Where the power is the 
voltage drop v times the current i, P = iv or by using Ohm's law 
P = v2/R for a resistance R. 

(a) While pushing the button, determine how rapidly the temperature 

rises (degrees/second). By estimating the mass of the aluminum 
block , estimate its specific heat. In the CRC Handbook of Chemistry 
and Physics it lists the specific heat of aluminum as 0 .215 cal/g oc 
and the specific gravity as 2.702 g/cm 3

. Convert the specific heat to 

SI (kg-m-s) units and compare with your rough results. Where does 

error enter this estimate? 

(b) Also measure the rate at which it cools and calculate the heat lost 
per unit time (the power output) due to conduction and convection. 
Is this result significant for the measurement made in part (a) ? 

(c) When you release the button , why doesn't the temperature stop 

rising immediately? 

The thermometer used to measure the temperature of the block has thus 
far been considered a zero-order transduce r (like the potentiometer in 
Section 3.1). In reality it takes a finite amount of time for the mercury in the 

glass bulb to heat up in response to the increase in temperature of the block. 

It is thus a first-order instrument whose response is determined by the 
differential equation: T(dTuu/ dt) + Tout = KTin where Tout is the change in 
the reading on the thermometer (output) , Tin is the change in the block 
temperature (input), Tis the characteristic response time , and K is the static 

sensitivity or calibration factor. The solution of this equation for the case of 

a sudden change in temperature of the block is Tout = KTin[l - exp( -tiT)] 
whose graph is shown in Figure 3 .6. This shows that if changes happen 
quickly enough , the thermometer response does not keep up and the 
readings will be in error. Notice that if t = r, the temperature has risen to 

(1 - exp( - !))or about~ of the step input change (see Figure 3.6). This 

provides a quick way to estimate r 



Fig. 3.6. Graph of the time 
response (dashed line) of a 
thermometer (first-order 
transducer) to a step 
temperature change (solid line) 
in the surroundings. 
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Higher-order instrument response characteristics are also common in 
instrumentation systems. For example, a damped spring used for weighing 
objects or as an accelerometer is usually modeled by a second-order 
differential equation. Three parameters are then needed to predict the 
response to a particular input: the calibration K , the damping constant o, 
and the resonant frequency fo. Each frequency of the input signal is affected 
in a different way as it passes through the system. In systems of order two or 
higher a graph of the gain or calibration factor as a function of frequency is 
useful for designing instruments using a particular transducer. The fre­
quency response characteristics of cassette tape or a stereo phonograph are 
many times displayed in their advertising literature. The frequency and 
phase vs. frequency for a second-order transducer is shown in Figures 3.7(a) 
and (b). Note that at the resonant frequency a large response can occur if the 
damping is weak. 

In the laboratory , both the thermometer and the thermistor are first-order 
transducers and so have finite time reponses to a change in temperature. 
However , the time constant of the thermometer is much larger and so it 
dominates the response of the system. The time constant of the thermometer 
can be estimated to be about 1.5 s by watching the temperature reach 
eq uilibrium after the power input is stopped (the button is released). In the 
following, the purpose is to estimate the temperature lag of the thermometer 
behind the block temperature for a constant power input (ie when the button 
is kept pushed down , how far behind the actual temperature is the measured 
temperature?) 

As before , the differential equation of the response of a first-order 
temperature transducer is 

r d Tj dt + To = T; 
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Fig. 3.7. Frequency response of 
a second order transducer for 
the damping constant i5 = 0.1 
(solid line) and for the damping 
constant i5 = 1.0 (dashed line). 
(a) Amplitude vs. frequency: (b) 
phase vs. frequency. 

Thermistor experiments 

., 
"0 
:::l 

6.00 

5.00 

4.00 

:g_ 3.00 
E 
< 

2.00 

1.00 

o.oo L___l_ _ _L_L-.l:-=--=t::::===:I::~=-_j 
0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 

(a) Frequency Wfo) 

00 

- 30.0 

- 60.0 

iA 
~ - 90 .0 

- 120.0 

---
- 150.0 

- 18o.o L___i _ _l__L__l==r:=::r:==r::=_j 
0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 

(b) Frequency (f/[ 0 ) 

where T0 is the temperature measured minus the initial temperature of the 

system and Ti is the temperature change input to the system. The power 
input to the block is P = .:l V 2

/ R with R the heater resistance . The power is 
also the amount of heat energy per unit time which goes into the block 
P = dQ /dt . Since the heat capacity of the block is Cv = dQ/VdT, then 
Cv = Pdt/VdT or the change in temperature of the block with time is 
dT/dt = p !CvV. Since dT/dt = dT0 /dt , substituting into the differential 
equation above gives 

To - Ti = T PICvV 

Exercise 3.3.3 Temperature lag 
For the experimental apparatus used in the laboratory, estimate the 
lag of the thermometer temperature behind the block temperature 



Fig. 3.8. Flow chart for Exe rcise 
3.3.4. 
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for a constant power input. Assume r = 1.5 s for the thermometer 
and estimate the block volume . Do the same estimate for the 
thermistor using r = 0.4 s for the time constant. What is the 
difference between the thermometer lag and the thermistor lag? 

Exercise 3.3.4 Thermistor resistance measurement 
Write a program which will allow you to enter manually a tempera­
ture reading you observe on the thermometer using an INPUT 
statement and which will then read the thermistor voltage by using 
the ADC. Check the voltage readings printed out on the CRT 
scree n with those which you get with the oscilloscope. Make a 
printout of the program when it works . Once you get this working 
write a few additional statements so that the actual resistance of the 
thermistor is computed and printed. Follow the flow diagram in 
Figure 3.8. This can be calculated from the voltage divider relation­
ship shown on Figure 3.5: 

(3.3.3) 

Make a quick check of the computer code by doing a calculation by 
hand. 

Exercise 3.3.5 Data arrays 
Modify the program in Exercise 3.3.4 so that the computer makes a 
series of measurements and stores them in arrays, ie , T(I) , R(I) . 
These symbols mean that measurement number I had a thermome­
ter reading of T(I) and a resistance measurement of R(I) . Print the 
whole array after the last measurement is made. To get out of the 
input loop use some absurd value of the temperature T (say 0 or 
1000) as a flag that no more input is desired . (Make sure that this last 
val ue is not included in the data.) Shortly, you will add additional 
steps so that these data can be stored on the disk as a data file . 

3.4 Making and retrieving sequential data files 
A subroutine which will produce a data file of temperature and 

resistance data (T(I) and R (I)) is given below. Please read the sections in the 
reference manuals on subroutines and on data files to supplement the 
discussion. 

Exercise 3.4.1 WRITE data file 

E nter the following program and save it on your disk . 

1000 REM WRITE DATA FILE 
1005 REM PROGRAM 2.3.1 
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1010 PRINT CHR$(4) "OPEN"F$ 
1020 PRINT CHR$(4) "WRITE"F$ 
1030 PRINT N : REM NUMBER OF DATA 

POINTS 
1040 FOR I= 1 TO N 
1050 PRINT T( I) 

1060 PRINT R(I) 
1070 NEXT I 
1080 PRINT CHR$(4) "CLOSE"F$ 
1090 RETURN 

CHR$( 4) is a control character which the disk operating system of 
the APPLE will interpret to mean that disk instructions follow. The instruc­
tion "OPEN"F$ means open the file whose title is stored in the variable F$ . 
The print statement following (line 1020) will also be interpreted as an 
instruction by the DOS because of the CHR$(4) ; it says that subsequent 
print statements are to be interpreted as writing data to the disk. 

Each PRINT statement following these two will record a piece of data , eg, 
one number ; multiple pieces of data cannot be incorporated in a single 
PRINT instruction (hence the two lines 1050 and 1060). Since the data will 
be recorded sequentially , it is the programmer's responsibility to know the 
order and amount of the data recorded . In this case the first data value put in 
the file (line 1030) is the number of pairs (T, R) to follow. The program 
reading this data file can then use this value so that it doesn 't read past the 
end of the file and stop with an error message (OUT OF DATA) . 

The final PRINT statement (line 1080) has a CHR$( 4) so that it will be 
interpreted as containing a DOS instruction to CLOSE the file F$. It is vital 
that every OPEN instruction have a CLOSE instruction . The CLOSE 
instruction will also have the effect of restoring the PRINT instruction so 
that it will send data to the screen and/or the printer. 

In APPLES OFT BASIC, the computer can only send or receive data from 
one source at a time. While it is set up to write to or read from the disk do not 
try to input data from the keyboard or output to the screen. Always make the 
disk access a separate part of your program . 

Exercise 3.4.2 Test data WRITE 
Test the subroutine with the following program: 

10 REM RECORD TEMP/RES DATA 
15 REM PROGRAM 3.4.2 
20 INPUT "OUTPUT FILENAME: ";F$ 
30 REM CREATE SOME DUMMY DATA 
40 DIM T(100), R(100) 
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50 N=20 
60 FOR I = 1 TO N 
70 T( I) = I 
80 R(I) = I*I 
90 NEXT I 

100 GOSUB 1000 
110 END 

25 

Remember to merge this program with the subroutine (Program 
3.4.1) before you RUN it. After running the program, type 
CATALOG CR and look for the filename you entered. 

The critical (and useful!) part of making files is being able to read them 
back . The following subroutine will do this for this data file: 

2000 REM READ DATA FILE 
2005 REM PROGRAM 3.4.3 
2010 PRINT CHR$(4) "OPEN"F$ 
2020 PRINT CHR$(4) "READ"F$ 
2030 INPUT N : REM GET NUMBER OF DATA 
2040 FOR I = 1 TO N 
2050 INPUT T(l) 

2060 INPUT R( I) 
2070 NEXT I 
2080 PRINT CHR$(4) "CLOSE"F$ 
2090 RETURN 

As you can see, its form is quite similar to the previous WRITE subroutine. 

Exercise 3.4.3 READ data file 
A program which uses this subroutine follows; use it to test the 
READ subroutine. 

10 REM OBTAIN TEMP/RES DATA FROM DISK 
15 REM PROGRAM 2.3.4 
20 INPUT "INPUT FILENAME: "; F$ 
30 DIM T(1000), R(100) 
40 GOSUB 2000 
50 REM MAYBE PRINT TO THE SCREEN HERE 
60 END 

Exercise 3.4.4 Temperature and thermistor resistance 
data file 
Modify your thermistor program (Exercise 3.3.5) so that tempera­
ture and thermistor resistance arrays are recorded on a diskette . Do 
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enough tests to be confident that the program you have written 
generates a disk file and that you are able to read it back. 

Using the manual on/off switch on the heater, make a series of 
measurements of temperature and resistance (about 10-15) of the 
heater block between room temperature and about 100 a c. Record 

them as a disk file . Read the data back and print them so that you 
know you have them. 

3.5 Plotting the experimental data 

Exercise 3.5.1 Thermistor data plot 
Using your knowledge of the AMPERG RAPH instructions and the 
program examples given in the AMPERGRAPH documentation, 
write a program to get the data from the disk file and plot as open 
circle data points the thermistor resistance on the ordinate (y) and 

the temperature on the abscissa (x). Use degrees Kelvin. Be sure to 

read about the problems in using RENUMBER and AMPER­
GRAPH in Appendix D. 

The value of graphical plots is that they are capable of displaying and 

conveying much information very quickly. One obvious weakness of the 
linearly scaled display of the resistance vs. temperature plot which you have 
made is that it is difficult to get a good display of the lower values of 
resistance. When the numerical value of a parameter to be plotted spans a 
large range , scaling the axis logarithmically is very useful. On a linearly 

scaled axis each increment of length is proportional to an increment of the 
parameter being plotted. On a logarithmically scaled axis each increment of 
length is proportional to the fractional change in the value of the parameter. 
(If y = log(R) , then dy = dR/R.) Often it is more significant to note the 
fractional change in a parameter than the change in the value of the 

parameter itself. For example , when plotting stock exchange prices and their 
change in time, it is much more useful to plot the stock prices on a 
logarithmic ordinate scale than a linear one. 

Exercise 3.5.2 Logarithmic plot 
Modify your plot to use an appropriate logarithmic scale on the 
ordinate. To use a logarithmic scale you must use the &LOGY 
instruction before the &LABELAXES instruction . Details are 
given in the AMPERGRAPH documentation. Note that using a 
logarithmic scale is different than plotting logarithmic values on a 
linear scale. 
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This logarithmic plot is a very useful one to display the resistance of a 
thermistor vs. temperature for purposes of manually detemining the resis­
tance for a given temperature. However, for comparison with mathematical 
theory it is better to use a different plot. The form of the plot is determined 
by the particular phenomena being studied . As shown in Section 3.3, the 
variation of the resistance of a thermistor can be written as: 

R = R0 exp(T0/T) (3.5.1) 

where R0 (D) and T0 (K) are constants. To display graphically the extent to 
which the measured dependence conforms to this theoretical dependence, it 
is useful to plot the resistance vs. temperature using a scale such that the 
resulting plot becomes a straight line . This is easily done by taking the 
natural logarithm of the resistance for the ' linear' ordinate length and 1/Tfor 

the 'linear' abscissa length scale. Taking the logarithm of Equation (3.5.1) 
gives 

ln(R) = ln(R0 ) + (T0 /T) 
and by setting 

y = ln(R) A= T0 

Equation (3.5.2) becomes 

y =Ax+ b 

(3.5.2) 

x = 1/T B = ln(R0) (3 .5.3) 

(3.5 .4) 

which is a straight line. (You'll notice , on close inspection , that the previous 
plot in Exercise 3.5 .2 is not a straight line.) 

Exercise 3.5.3 Linearized thermistor data plot 
Make a plot of your resistance vs. temperature measurements using 
a logarithmic scale for R (as in Exercise 3.5.1) and liT for the 
abscissa. Tis the absolute temperature in degrees Kelvin. Check to 

see if your data conforms to the model equation (Equation 3.5.1). 

3.6 A least squares fit to the data 
Finding good values for the parameters R0 and T0 in Equation 

(3.5.1) are important in their own right for investigating the physics of the 
device; having good values for them is also important for making the 
temperature controller which you will be shortly called upon to do. By 
finding values for A and B from the linear plot of Exercise 3.5.3, values for 
R0 and T0 can be easily calculated via Equation (3.5.3). This can be done 
graphically or by a least squares fit of the data. 

In doing the experiment, you have acquired data at a sequence of values 
of temperature Ti or alternatively Xi = l!Ti. Each of these temperatures Ti 
yielded an experimental resistance value Ri or alternatively Yjx = ln(Ri) · 
Equation (3.5.1) yields a theoretical resistance value Rj11 for each tempera­
ture , ie , for each Xi a theoretical value Y)" = ln(R )") is given. The task is to 
find values for A and for B to minimize the error between the experimental 
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and theoretical values, E; = Y}11 
- Y7' . A common type of analysis 

minimizes the sum of the squares of the individual errors. Calling the total 
square of the error ET, we get 

ET = L £7 
i ) (3 .6.1) 

To minimize this error with respect to the parameters A and B we take 
derivatives with respect to A and Band set them to zero: 

aET!aA = o = L 2X;(AX; + B - Yj') 
i 

aET!aB = o = ~ 2(AX; + B - YT') 
i 

Taking A and Bout of the summations and collecting terms gives 

ASxx + BSx = Sxy 
ASx + BS = Sy 

where 

Sxx = ~XI Sy = ~ Y7' 
i i 

Sx =~X; S = ~ 1 
i i 

Sxy = L X;Yi' 
i 

Then solving for A and B 

D = SSxx- Sl 
A = SSxy- SxSy 

D 

B = SxxSy- SXYSx 
D 

Exercise 3.6.1 Least squares fit to data 

) (3.6.2) 

} (3 .6.3) 

1 (3.6.4) 

(3.6.5) 

Write a program to find values for A and Busing a least squares fit 
and plot this theoretical fit as a line together with your experimental 
values for temperature and resistance as open circles . Use a 
logarithmic scale for R and 1/T for the x scale. Also obtain the 
corresponding values for T0 and R0 . 

The least squares fit assumes that the measured data will be randomly 
scattered about the theoretical fit. The plot in Exercise 3.6.1 does not show 
this clearly . A quick visual test of this assumption is to make a plot of the 
difference between the data and the fit ie, plot the errors E;. These are the 
residuals . 
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Exercise 3.6.2 Plot of residuals 
Make a plot of the difference between the measured data and the 
theoretical fit for the data of Exercise 3.6.1. By inspection determine 
if the assumption of random errors is satisfied. 

3.7 Data modeling 
The purpose of data modeling is to obtain a mathematical model 

which represents a set of experimental data. First a model is chosen either on 
the basis of a theory of the physical process or by guessing the mathematical 
form which approximates the data . The model will have some parameters 
which can be adjusted to give a best fit. For example , the model may be a 
straight line y = mx + b with the slope m andy intercept b as parameters. 
These can be varied so that the line fits a set of data points . 

Many times a model can be fitted to data to sufficient accuracy by hand 
plotting. The best fit is then subjective to some degree. More accurate 
determinations of model parameters can be obtained mathematically and 
computationally. The first step is to form a mathematical estimate of how 
well the model fits the data. One common measure of the total error in the 
fit is the sum of the squares of the difference between they value predicted 
by the model , Y;modcl and they data value , yfata 

N 

Total error = e2 = L (y;model - Y?ata)2 
i= l 

(3.7.1) 

where N is the number of data points. The difference is squared so that it is 
always positive . A negative error (point above the curve) adds as much to the 
total error as an equal positive error. Another measure of the error which is 
sometimes used is the sum of the absolute values of the difference: 

N 

el = L IYiodeJ - yratal (3.7.2) 
i= l 

The total error can be calculated for a set of model parameters . The best 
fit will be that set which leads to the smallest total error. A brute force way 
to find the smallest error is to calculate the total error for a wide variety of 
parameters. The search can be narrowed to smaller parameter variations as 
the minimum is approached. 

This method is sometimes the only possible way to proceed . However for 
many models, the minimum error can be found by mathematically rather 
than computationally varying the parameters . Since the model is a function 
of the parameters ytodel = f(p 1 , • • • , pq; x;) so is the errore = f(p 1 , • •• , 

pq; x;, yf"1
" ) . The minimum of a function of a variable is found by solving 

the equation given by differentiating the function and setting the result equal 
to zero . In this case the minimum with respect to changes in the parameters 
is wanted so q equations are formed: 
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ae/api = O; ae!ap2 = O; ... ; ae/apq = o 
These can then be solved simultaneously for the parameters PI, p2, ... , Pq 
that give the minimum . (Here it is assumed there is only one minimum and 
no maximum as is generally the case for physically real models.) 

For example: consider the case of the simplest one parameter model , 

y = PI; that this, the data can be represented by a constant. The total error is 
N 

ez = L (PI - Yi) 
i= I 

With its derivative 
N 

ae2!ap, = 2: 2(p, - Yi) = 0 
i=l 

So 

PI = L y)L 1 = L y) N 
where the sums go from 1 toN. This is just the average value (mean) of the 
Y data. 

As a second example: consider the case where the data is to be fit to a 

straight line y =PI + p2x where p2 is the slope and PI they intercept. Then 

ez = 2: (plxi + Pz - YY 
ae2/api = P1 2: x7 + Pz 2: xi - 2: xiyi = 0 

ae2/apz =PI 2: xi+ Pz 2: 1 - 2: Yi = 0 
These equations can be solved directly or by forming a matrix representation 

(
L x1 
LXi 

L xi)(P1) = (L xiyi) 
L 1 Pz L Yi 

and using Cramer's rule from linear algebra to obtain the solution 

D = N 2: x f - (2: xi) 2 

PI= (NL: XiYi- 2: xi LYi) /D 

P2 = (2: x7 L Yi- L xi L XiYi) / D 
which are equivalent to Equations (3.6 .5). A three parameter polynomial fit 
y = p 1 + p 2x + p 3x 2 (parabolic) can be treated in the same way. 

As a final example: consider again a one parameter fit to the data but this 
time use the absolute value total error 

Then 

where 

N 

e1 = 2: IPI - Yil 
i= l 

N 

ae 1/ap 1 = 2: sgn(pi - Yi) = 0 
i=l 

sgn(x) = { ~ 
-1 

x>O 
X= 0 
x<O 
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This means that p1 is adjusted to balance the number of y values which are 
greater than p 1 with the number less than p 1 (the number of + ls and -1s 

must be equal to make the sum zero) . Thus p 1 = median(Yi· .. YN)· The 
median can be calculated by sorting the yi; then, p 1 = y1/2N. In some 
situations the median is a better average than the mean value. If an 
experiment took two days to produce one number and after six days these 
numbers came out to be 42 , 33 and 377, would you believe the mean value of 
151 or the median of 42? 

The model equations used in calculating the total error need not be as 
simple as those considered so far . An example would be the resistance 
variation with temperature of a thermistor R = R0 exp(T0/T). In this case 
by taking the logarithm and a change of variables , it can be expressed as a 
linear model : 

y=ax+b 

where 

y = ln(R), a= T0 , X= liT, b = ln(R0 ) 

However , the model equation may not linearize. For example the expres­
sion for the heat flow in a rod T = T1 (t1 It) 

112 exp(t 1 It) has this characteristic. 
You must start from the error expression, differentiate and solve the 
equations. 

For some expressions not even this is possible; the trial and error method 
can be used. However , by using the computational speed of the computer, 
there is a more elegant way of searching for the best parameters. T he 
Simplex algorithm is an iterative procedure which systematically explores 
the parameter values of the model. It has the virtue that any computable 
function can be used as a model and that no derivatives are needed. Another 
method commonly used is the Levenberg-Marquardt method which 
requires the use of error function derivatives. A good description of these 
algorithms can be found in the References. 

3.8 Errors in data and parameters 
In fitting data to a theoretical model in the least squares method 

used in Section 3.6, the implicit assumption has been made that each data 
point has been measured with the same reliability. This is often not the case 
and it is then important to include a measure of the data reliabi lity when 
fitting a model to these data . Another result of frequent interest which is not 
obtainable by the simple least squares fit is to determine how much the fitted 
parameters can vary without straining the fit to the data (how good is the 
fit?) . 

To make a statement of how good a measurement is we usually quote the 
value measured together with an expected error; for example a voltage is 
V ± Ll V volts. An accepted definition of Ll Vis that it is the root mean square 
(rms) value of the random error inherent in the measurement. 
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Fig. 3.9. Plot of experimental 
data together with a theoretical 
fit and errors bars inherent to 
each data point: Y]x­
experimental data points, 
e;- error in experimental data 
points, Y(X)- proposed 
theoretical fit. 
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Consider the plot of experimental data and of a proposed theoretical fit 
indicated in Figure 3.9 . It shows the results of a series of measurements 
which yield the values Yi ± ei at a series of parameter values Xi. Assume the 
Xi are well determined. The true variation of Y(X) is given as some function 
of X. For sake of discussion assume that Y is of the form Y(X) = AX+ B 
where the parameters A and Bare to be determined. 

The total error can now be written as 

(3.8.1) 

where ei is the error in the data point Yi . A small error ei at data point Yi will 
cause the difference between the model and the data point to be weighted 
heavily in the sum. Thus the points with small errors have a stronger affect 
on the fit. Proceeding as in Section 3.6 gives the same formula for A and B 
(Equation 3.6.5) except that now 

Sxx = 2: X7te7 

Sx = 2: X Je7 

(3 .8.2) 

S = 2: 11e7 
i 

By means of error propagation analysis, the errors in the estimates of A 
and B are determined to be 

d =SID } d = SxxiD (3.8.3) 

WhereD = SSxx- Si asbefore(Equation3.6.5).Thegoodnessoffitof 
the data to the model can also be calculated : 

G = l _ p(N - 2 Er) 
2 ' 2 (3.8.4) 
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where P(a , x) is the incomplete gamma function which is tabulated in most 
statistics books . If G is greater than 0.1, the fit is good; if less than 0.001 then 
your model does not fit the data very well. Please see Press et al. Numerical 

Recipes for further information. 
Keep in mind that the estimation of the parameters A ± eA and B ± e8 by 

the least squares method is a statistical one. That is, given the data and the 
model function, the calculated parameters A and Bare the most likely ones 
for the system. The method assumes that the errors made in the measure­
ments are random . It does not consider any systematic errors which may be 
lurking in your data . These last need to be ferretted out by careful thought 
and expe rimentat io n. 

Exercise 3.8.1 Errors in thermistor data 
Make an evaluation of the error in your resistance determinations 
with the ADC and reanalyze the thermistor data with error con­
sidera tions. To simplify the error analysis, assume some reasonable 
constant error (flR; = !lR for all i) and simplify the e rror equations 
by factoring the error out of the sums. 

3.9 Digital signal processing 
Proper use of the ADC requires analog signal conditioning before 

the ADC samples the data as described in Section 3.2. Once in the computer, 
a series of samples can then be analyzed to emphasize various features of the 
data. 

If the data has some noise mixed in with a broad trend , a smoothing 
process can be used to suppress the noise. One common method is to apply 
an averaging scheme as shown in Figure 3.10. The new point z; is a weighted 
average of the old pointY; with its neighbors . Specifically, 

Z; = HYi- 1 + 2y; + Yi+I) (3.9.1) 

Equation (3.9 .1) can be extended to more points if more smoothing is 

required. 
This way of smoothing data is one example of a digital low-pass filter ; it 

suppresses the high frequency components of the time series . Another way 
of making a digital filter is by the recursive procedure : 

Z; = (1 - a)y; + Cl'Z; _ 1 (3.9.2) 

When app lied to a time series , Equation (3.9.2) approximates a low-pass 
analog resistor-capacitor filter with the parameter a setting the frequency 
cut-off. Again, more smoothing can be done by including more terms in the 
recursion. Both recursive and non-recursive filters can be constructed which 
will act as high-pass filters if the interesting part of the signal is not the trend 

but the time varying part. 
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Fig. 3.10. Data smoothing 
example. 
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A reminder: digital filtering in no way replaces analog filtering before 
sampling the signal. Aliasing occurs when the data is sampled and cannot be 
remedied later. 

Much more elaborate signal processing is often required to analyze a set 
of data . The references contain further information. 

3.10 Generation of output using BASIC 
The next task you will work on is to use the thermistor in a 

temperature controller. The computer will not only be measuring the 
temperature of the block but will turn the heater on and off to maintain the 
predetermined temperature. To get a feeling of how to send output from the 
computer you will use a program written in BASIC to generate square waves 
at an output port of the 6522 VIA interface . 

Exercise 3.1 0.1 Square wave output 
Connect the oscilloscope probe of CH 1 to the terminal marked PBO 
of port B of the APPLE interface board . Set the switch on the scope 
probe to 1x, the oscilloscope triggering to AUTO and the CH 1 
amplifier to 2.0 VOLTS/DIY. The sweep time should be set to move 
at a rate of 1 DIY every 2 ms (2 x 10-3 s) . Also set the MODE switch 
to CH 1. 

Type in the following program; the program and comments are 
explained after the program. 



3.10 Generation of output using BASIC 35 

5 REM EX 3. 10. 1 
10 POKE 50178,1 Send1toDDRB, setsupDRBforoutputonPBO. 

20 POKE 50176,1 Send1toDRB,makesPBOgoHI. 

30 POKE 50176,0 SendOtoDRB,makesPBOgoLO 

40 GO TO 20 Loop back to instruction 20. 

Run the program; on the oscilloscope you should see two parallel 
lines , which are really square waves. To see them more clearly push 
the TRIGGERING LEVEL switch in on the oscilloscope and 
adjust the triggering level to get a steady picture. Measure and 
record the time the output is HI (ie , +5 V) and the time which it is 
LO (0 V). Be sure that the VARIABLE potentiometer knob on the 
SWEEP TIME/CM control (the red one) is in the CAL(ibrated) 
position. 

Line 10 of the program instructs the machine to store the data value 1 in 
memory location 50178; line 20 to store 1 in memory location 50176, etc . The 
6502 CPU uses a memory-mapped system of I/0. This means that certain 
memory addresses may not really be memory locations but may be con­
nected to the outside world . In this case , memory address 50176 is Port B to 
which the oscilloscope is connected . The ADC registers at locations 49312-
49320 , which you used before, are another example. 

Inside the APPLE a circuit board has been inserted on which is mounted 
a 6522 IC which is referred to as a VIA (Versatile Interface Adapter). This 
TC controls two output ports sometimes referred to as Port A and Port B. 
Port A is memory location 50177 , Port B is 50176. The 6522 controlling 
Port A and Port B can do many things (therefore the name 'versatile' ) . For 
example , the wires from Port B can be programmed to be used either as 
inputs or as outputs. Line 10 of the program stores a 1 in location 50178. This 
sets up line PBO as an output line ; storing a 0 in this location would have set 
up PBO as an input line. Location 50178 is referred to as DDRB (Data 
Direction Register B). It is a memory location which controls the direction 
of data flow of Port B. Port B is sometimes referred to as ORB (Data 
Register B). 

The 6502 is an eight-bit CPU. This means that each operation in the CPU 
is performed eight bits at a time. When memory is addressed , a byte of data 
(eight bits) is taken from or written to memory by the CPU . Each memory 
location is eight bits wide . One manifestation of this is that there are eight 
lines coming out of Port B labeled PB7 .. . PBO. A numerical value is 
ascribed to each line, PB7 is 128, PB6 is 64, PBS is 32 , etc. Line PBO has a 
value of 1. Each of the lines PBO-PB7 has a direct correspondence to one of 
the data lines of the 6502 CPU. 

Each line of Port B is individually programmable for either input or 
output. Storing 128 in DDRB (location 50178) will program line PB7 for 



36 Thermistor experiments 

output and leave all the rest as input lines , storing 80 = 64 + 16 in DDRB 
will set up PB6 and PB4 as output lines and leave the rest as input lines. The 
binary (base 2) representation of 80 is 0101 0000 which shows the easy 
correspondence of the binary representation with the 110 lines . Thus , as 
stated before, sending a 1 to location 50178 in line 10 of the program sets up 
PBO to be an output line and all the rest input lines. The program then 
proceeds to send ls and Os alternately to DRB , ie, location 50176, to 
generate the square waves which you see on the oscilloscope . IfPB7 were an 
output line , sending 128s and Os to DRB would generate a square wave on 
PB7. In the computer a 1 is represented by approximately +5 Von a wire , 0 
by approximately 0 Von a wire. To stop the program , which is trapped to run 
forever ; press CTRL-C. 

Exercise 3.1 0.2 Square wave output on PB3 
Rewrite program 3.10.1 to generate square waves on line PB3. 
When you get the program running satisfactorily, stop, print it out 

and save it on disk. 

3.11 POKE and PEEK 
POKE and PEEK are conjugate instructions when used with ordi­

nary RAM. The instruction POKE X, Y means store the number Yin 
memory location X. Conversely Y=PEEK(X) will read the number stored 
at address X and assign it to variable Y. Since the 6502 is an eight-bit 
processor (eight data lines) the number Y will range from 0 to 255 (256 = 2x) . 
The 6502 has 16 address lines and so is capable of directly addressing 65536 
memory addresses (65536 = i 6

) . Thus X in the POKE statement ranges 

from 0 to 65535 . Memory address 36864 is a RAM location in which eight bits 
of data can be stored and retrieved without disturbing programs in the 
computer. The instruction POKE 36864,45 will store the number 45 in 
address 36864. Type in this instruction in the immediate mode (no line 
number). The PEEK (X) instruction will read the number stored in memory 
address X. The number returned will be between 0 and 255. To demonstrate 
this , enter the immediate instruction PRINT PEEK (36864). The value 45 
should be returned if it was preceded by POKE 36864,45. Experiment with 
other combinations . 

3.12 Using a HEXFET to control the heater 
The digital signals coming out of the APPLE are feeble and in 

general cannot drive external circuitry loads directly . HEXFETs are one 
variety of enhanced mode power FETs (Field Effect Transistors) which are 
particularly suited for controlling large amounts of power by using the digital 
control signals coming out of a computer. 



Fig. 3.11. HEXFET connections 
and pin diagram for thermistor 
apparatus. 

3.12 Using a HEXFET to control the heater 

6.7 n 
Heater + 

5V 

or 
IRF 520 Ground 

0 
IRF 510 

HEXFET IR~~ 20 
Source 

Dram 
Gate 

+----V__,T_ to ADCO 

Thermistor 

37 

To see how these devices are used, set up the circuit as shown in Figure 
3.11. It will act like the push button switch you used earlier but will be 
contro lled by the computer. When a HI signal is applied to the gate of a 
HEXFET, the device conducts current like a closed switch; when a LO 
signal is applied, the device acts like an open switch, ie, it has infinite 
resistance. Connect the gate of the HEXFET to PBO after resetting the 
computer with a CTRL-RESET CR. This initiates Port B (as well as the 
other ports) as an INPUT port so that no potentially dangerous outputs are 
generated when the computer is idle. The 47 kD resistor which is connected 
between the HEXFET gate and ground is to insure that the HEXFET will 
be off in the absence of a signal specifically to put it on. That is the case if the 
port is set as an INPUT line with reset. 

Test the circuit using the immediate mode of BASIC. To turn on the 
HEXFET (and thus the heater) it is first necessary to set Port B up as an 
OUTPUT port ; type in POKE 50178,1 CR (50178 = DDRB) . Now, a 
POKE 50176,1 (50176 = DRB) should turn the pilot light on indicating that 
the heater is on. To turn the heater off type POKE 50176,0 CR. In doing this 
and subsequent experiments you must take care that the heater is not left on 
indefinitely ; that will heat the system continuously and destroy the 
thermometer. To turn to off use POKE 50176,0 or turn the power supply off. 

Exercise 3.12.1 Temperature controller 
Write a program for a temperature controller following the flow 
chart in Figure 3.12. The program should ask you to type in a 
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Fig. 3.12. Flow chart for 
temperature controller. 

Thermistor experiments 

Obtain temperature from thermistor T 

temperature . The computer should then turn the power to the 
heater on and off in response to the thermistor voltages read. Run 
the program and demonstrate that the thermometer does stabilize 
to the temperature typed in. When testing be sure the Light 
Emitting Diode (LED) (and heater) are off after you halt your 
program (POKE 50176,0 CR). 

For those interested , try using the statement ON ERR GOTO to 
detect the control C you used to stop the program and then to ensure 
that the heater is off before stopping. See the reference manuals. 

Exercise 3.12.2 Temperature controller with hysteresis 
So that heater is not turning on and off rapidly at the desired 

temperature , modify the program to turn on the heater when the 
temperature is below desired temperature minus 1.0° (To - H) and 
turn off the heater when it is above the desired temperature plus 1.0° 
(To+ H) . 

The process of turning the heater on and off used in the program of 
Exercise 3.12 is called hysteresis. It is used in many process control situations 
to stabilize the system. A thermostat for a household furnace uses hysteresis 
so that the furnace doesn ' t turn on and off too quickly. In a later section you 
will be using a Schmitt trigger which uses hysteresis to stabilize voltages. 



4 Timing 

In many experiments , the measurement of interest is the change with time of 
a particular quantity (eg, dx/dt). One of the most useful capabilities of a 
computer is to provide accurate and varied timing signals so that these 
measurements can be made. Indeed , the internal operation of the computer 
requires the orchestration of many events to the beat of the internal clock. 
In this section several ways of generating time intervals will be presented . 

4.1 Timing loops in BASIC 
A simple method of generating time intervals is to use the time 

required by the computer to execute BASIC instructions. This method is 
neither precise nor constant but nevertheless is useful in situations where 
those qualities are not required . 

Exercise 4.1.1 Square wave output (BASIC) 
(a) Run the following BASIC program which uses PBO as an output. 

This is a program you have used before so you might have it on your 
disk . (Note: disconnect the wires to the circuit of the previous 
experiment before running.) 

5 REM EX 4.1.1A 
10 POKE 
20 POKE 
30 POKE 
40 GOTO 20 

50178,1 
50176,0 
50176,1 

I nit DDRBO for output. 

Put PBO to LO. 
Put PBO to HI. 

Repeat. 

With the program running look at the output (PBO) with the 
oscilloscope. You may need to adjust the oscilloscope triggering 
level and time base to obtain a steady trace. Note the time it takes for 
one period and the time PBO is HI and the time it is LO. 

(b) Now try the following program : 

3 REM EX 4.1.18 
5 8=50176 

10 POKE 8+2,1 
20 POKE 8,0 

8,1 
20 
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Again measure the time PBO in Hi and the time is LO. Why are the 
HI and LO times different? Why are the times different from those 
of Program 4.1.1A? 

(c) Now add the following program lines and LIST the program so you 
see how they fit in. 

REM EX 4.1.1C 
8 N =10 

35 FOR I = 1 TO N 
38 NEXT I 

Run the program and note the HI and LO times again. Try different 
values of Nand determine the time required for one FOR-NEXT 
loop in this program. Also try placing a statement in the middle of 
the loop. Some interesting ones might be: 

37 X= I* I + 1 (this is called a 'flop') 
37 X= I~2 +1 

37 REM 
37 PRINT "A"; 
Be sure to keep a record of your results. 

This type of timing loop could be placed anywhere in a program to provide 
time base. However , it suffers from several disadvantages. First, since every 
BASIC statement takes a different amount of time, it is very difficult to 
predict the exact amount of time a loop will take. You must resort to trial and 
error and use an oscilloscope to obtain a particular desired time. Second, the 
BASIC interpreter is slow when compared to the capability of the micro­
processor itself. Frequently BASIC is just too slow to measure the time 
interval between events in an experiment. A third disadvantage is that the 
timing is not independent of the program statements. If you change a 
program line or add a statement even elsewhere in the program, the timing 
of the loop may change and you will need to readjust it. 

Programming in assembly language (more on that later) can solve the first 
two problems. However, the 6522 VIA which is discussed in Sections 4.4 and 

4.5 provides an easier way to do timing which is fast, accurate and indepen­
dent of the program. The next section illustrates one use of BASIC timing 
loops. 

4.2 Stepping motors 
Stepping motors are used to position apparatus of all kinds pre­

cisely. A stepping motor rotates a shaft a small increment of a turn for each 
pulse of electric current it receives. An electric clock is a stepping motor: it 
rotates a fixed, small amount for every pulse of current it receives from the 
wall power outlet. The power outlet provides the current which reverses 
polarity 60 times each second so that by using gears the hands rotate at the 
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proper speed. A clock motor always rotates in a fixed direction (unidirec­
tional). Some stepping motors can be made to rotate either clockwise or 
counter-clockwise under computer program control (bidirectional); the one 
which you will use and the one in the disk drive which positions the reading 
head are bidirectional. 

Exercise 4.2.1 Single step of stepping motor 
(a) To see how a stepping motor and controller IC are used, make 

connections to PBO and PB1 as indicated in Figure 4.1. Write a short 
BASIC subroutine to generate a single negatively going pulse out 
on PBO by setting PBO and PB1 for output and PBO HI initially; then 
send PBO LO then HI to pulse the motor once. 

(b) Write a second subroutine which allows you to control the direction 
of rotation by specifying the level of PBl. The awkward voltage 
programming for the motor itself is done by the 4202 control 
Integrated Circuit (IC) so that you need only specify the direction 
by setting the polarity of the direction control and then applying a 
short pulse to the stepping input. 

Fig.4.1.Steppingmotor +SV 
controller (4202) connections. 

PB I >-------' 
directio n 

The mechanics of a stepping motor are shown in Figure 4.2. The rotor is a 
permanent magnet with 12 sets of north and south poles ; the stators each 
have 12 sets of fingers which can be magnetized electrically. Each stator has 
2 coils of wire inside it, labeled C and D. If coil Cis energized the fingers 
marked A become north poles , those marked B become south poles. Coil 0 
energizes the stator with reversed current direction relative to the stator so 
that A becomes a south pole and B a north . 

Figure 4.2(a) shows the motor pulled apart to show the relationship of the 
stators and the rotor. Figure 4.2( b) shows the rotor unravelled with its north 
and south poles lying next to one another. There are two sets of stators, the 
fingers of each are displaced from one another in azimuth as shown in Figure 
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Fig. 4.2. Stepping motor opened 
up. (a) Stators 1 and 2 each have 
12 pairs of poles (A1, 81, A2, 82) 
and 2 coils (C1, D1, C2, D2). 
Current in coil C makes A poles 
north and B poles south and 
current in coil D makes A poles 
south and B poles north. (b) 
Poles and rotor flattened out to 
show staggering of stator 1 and 
stator 2's poles. To move rotor 
one position to the right from 
the position shown, turn coil D1 
off and D2 on (A2 is then south 
and 82 north). To move once to 
left, turn D1 off and C2 on (A2 
north and 82 south). 

Timing 

4.2(a). With the rotor unravelled as shown , it can be pulled to the right by 
energizing the A2 B2 stator set with coi l 0 2 so that A 2 becomes a south pole 
and B2 a north pole. The rotor will then move over one step so that the north 
poles of the rotor lie under the south poles of the stator 2. 

The controller IC has two inputs : a direction control and a step control. A 
HI level on the direction control signals movement in one direction, a LO 
level in the other. The controller is set so that each time the voltage goes 
from LO to HI on the step control input, the stepping motor wi ll advance two 
steps in the appropriate direction. Between pulses the step control should be 
left HI. In the case of the stepping motor illustrated , one step is 360/(4 x 
12) = 7S since it has 12 poles and each step moves the rotor one fourth of 
a pole distance. Thus one pulse on the step control line will move the shaft 
15°. The controller IC regulates the current flow in the four windings of the 
stator. If has logic circuitry within it so that it knows which coil must be 
energized to step in the specified direction from where it is. This saves you 
the trouble of programming these details. If the stepping motor shaft is 
connected to a gearbox with a 200:1 gear ratio , the output shaft will turn one 
revolution for every 200 revolutions of the motor shaft (200: 1 gear ratio). 

(a) 

(b) 

(a) 

Exercise 4.2.2 Maximum stepping rate 
You have seen that it is only necessary to use two POKE statements 
which make PBO go LO and then back to HI to step the motor once. 
The stepping motor is a mechanical device which is inherently slow ; 
thus it is important that there be a reasonable amount of time 
between pulses. By using a FOR-NEXT loop to waste time between 
pulses, determine the maximum number of pulses per second that 

Stator I StJtor 2 Ro tor 

B2 A I A2 B 1 B2 A I A2 B I B2 
~ c::=:::::J c=:J c::=:::::J ~ ~ ~ ~ ~ ... Stators 

~ 

N 
~ 

N 
~ 

s 
. .. Rotor 
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the motor will respond to. Do this by varying time delay of the loop 
and watching to see whether the motor responds properly or not. 
For example , a program which give 200 pulses to the stepping motor 
of Figure 4.2 with the gearbox attached should turn the gearbox 
output shaft 15°. Use the oscilloscope to measure the time beween 
pulses. 

(b) Write a subroutine , to be used by later programs, which will step the 
motor in the direction specified before entering. The program 
should delay the proper amount of time for the stepping motor 
before returning. Set the delay time of the loop so that you never ask 
the motor to rotate faster than! the maximum rate. This will ensure 
reliable operation . 

Exercise 4.2.3 Positioner 
Using the subroutine in Exercise 4 .2.2 write a program which moves 
the output shaft of the gearbox to a specified angle . Since it is only 
the number of pulses and not their detailed timing which is impor­
tant , a simple BASIC program is adequate. At the outset the 
current position of the stepping motor should be INPUT to the 
program. The program should then ask you for the angular position 
of interest and step the motor to that angle. After it is at this position 
the program should come back and ask for the next desired position. 
To avoid truncation errors in calculating the angle, keep track of 
steps not degrees. The program should accept the position or 
negative numbers of any magnitude and turn the shortest route to 
the angle . 

4.3 Number systems 
To work with 110 devices and with assembly language programs , it 

is necessary to go back and forth among the representations of numbers in 
decimal , hexadecimal and binary. Except for a few commands, BASIC 
statements use decimal (base 10) representations for numbers. However, 
internally the computer represents all numbers and characters in binary 
(base 2). This internal conversion to binary is usually not important to the 
user but becomes so when connecting I/0 devices to the computer. Then a 
binary representation directly corresponds to signal levels on the I/0 lines. 
Hexadecimal numbers (base 16) are a convenient shorthand notation for 
long binary numbers . 

When a decimal number is written down , say 348, what is really indicated 
is that there are 3 hundreds , 4 tens and 8 ones (Figure 4.3). This can be 
described by the equation 

348 = 3 X 102 + 4 X 101 + 8 X 10° (4.3.1) 
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Fig. 4.3. Decimal, binary, and 
hexadecimal number 
representations. 

Timing 

0-9 0-9 0-9 0-9 

0-F 0-F 0-F 0-F 

Decimal 

Hexadecimal 
$ 

0, I 0, I 0, I 0, I 0, I 0, I 0, I 0, I 

In exactly the same spirit a hexadecimal number with the characters 1234, 
represents 

$1234 = 1 X 163 + 2 X 162 + 3 X 161 + 4 X 16° 

It is useful to remember that 163 = 4096 , 162 = 256 , 161 

(4.3.2) 

16, and 16° = 1. 

Hexadecimal numbers are often indicated by a$ sign preceding the number . 
Sometimes a period is used to indicate a decimal number even if it is an 
integer (for example 348.). Each of the characters 1, 2 , 3 , 4 in Equation 
4.3.2) could be a number from 0 to 15 just as in the decimal representation 
each place (column) has a number between 0 and 9 (Figure 3.3) . In 
hexadecimal , to represent 10, A is used, 11 , B, etc., as shown in Table 4.1. 
As an example 348. = $15C = 1 x 256 + 5 x 16 + 12 x 1. 

A number will be preceded by a % sign to indicate that the characters 
which follow are a number in binary representation. Thus 

% 0101 = 0 X 23 + 1 X 22 + 0 X 21 + 1 X 2° (4.3.3) 

The magic numbers here are 27 = 128, 26 = 64, 25 = 32, 24 = 16, 23 = 8, 
22 = 4, 21 = 2, 2° = 1. In writing down binary numbers it is convenient to 
write them down in groups, four digits (bits) at a time. This makes it easy to 
identify the position in which each bit belongs . It also makes it easy to go 
back and forth between binary and hexadecimal since 4 binary bits = 1 
hexadecimal character. Thus , 348. = $15C = %0001 0101 1100. 

To get a feel for the above ideas , use Port BB of the 6522 board to display 
the output of the eight data lines PBB7-PBBO on eight LEOs (a schematic 



Fig. 4.4. LED number display 
wiring. Schematic of LEDs on 
PBB. The 74LS041C is a BUFFER/ 
DRIVER to provide current drive 
for LEDs. A 'HI' on a PBB line will 
illuminate an LED. 

4.3 Number systems 

Table 4.1 Correspondence between binary, 
hexadecimal, and decimal characters 

Binary 
% 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Hexadecimal 
$ 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
c 
D 
E 
F 

Decimal 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
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wiring diagram for this is shown in Figure 4.4). Anytime a 1 is put into a 
particular bit of Port BB the correspoding LED will light up. Data lines 
PBB7- PBB4 are connected to four red LEOs, data lines PBB3-PBBO are 
connected to green LEOs. The 74LS04 integrated circuit between the actual 
data port lines and the LEOs has what are called line drivers or buffers ; they 
provide the 15 or 20 rnA of current required to light up the LEOs. The data 
lines alone are not capable of generating enough power. 

PBB7 

PBB6 

PBBS 

PBB4 

PBB3 

PBB c 

PBBI 

PBBO 

Gree n 
LEDs 

+ 5 v 
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Exercise 4.3.1 LED binary number display 
(a) Write a BASIC program which sets up all the data lines of PBB for 

output and sends various numbers to PBB . (DDRBB = 50306, 
DRBB = 50304) . 
(i) Make data PBB3 , PBBS and PBB7 HI and the rest LO. 
(ii) Send the numbers $28 and $C3 to PBB ; remember to convert 
to decimal. Verify that the expected LEDs light up . 
(iii) Send the number % 1010 0111 to PBB. What is this in hexa­
decimal? 

Even though PBB is set up for output it is possible to read the data 
which is in PBB using the PEEK statement in the usual way. Store 
several numbers in DRBB and note their hexadecimal equivalents 
and their binary equivalents (the lights which light). Also read them 
back into the memory using the PEEK instruction and PRINT them 
out. 

(b) To get a feeling for counting in binary , enter and run the program 
below. 

5 REM EX 4.3.18 
6 BA=50304 

10 POKE BA+2,255 Set up all PBB lines fo r output. 

20 FOR I=O TO 255 
30 POKE BA,I 
40 FOR J=O TO 200 Insert time delay. 

50 NEXT J 
60 NEXT I 

The representation of negative numbers in a computer is one somewhat 
differently than in common computations . In many ways the system is more 
logical than the customary one, and it certainly makes things much simpler 
in a computer. Imagine a continually incrementing binary four-bit counter. 
A counter is a device which increments each time a pulse is applied. Table 
4.2 shows the sequence of digits as the count pulses are added (start at 0 and 
read upwards) . The correspondence to the ordinary number system is shown 
in the column to the right. Being a four-bit counter the 'readings' repeat 
every 16 counts , that is, the count after 1111 gives 0000. (This transition is 
called overflow.) A representation of the numbers 0-15 is naturally done 
through the correspondence to the counter readings of 0000-1111. One 
possible way to represent positive and negative numbers is to assign the 
numbers between -8 and 7 to the counter readings of 1000-011 1. This is 
called the two's complement representation . As shown in Table 4.2, -1 
becomes 1111, -2 becomes 1110, etc. Notice that the most lefthand bit takes 
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Table 4.2 A four-bit counter 

Negative No-negative 
Four-bit numbers numbers 
binary interpretation interpretation 

1111 -1 15 
1110 -2 14 
1101 -3 13 
1100 -4 12 
1011 -5 11 
1010 -6 10 
1001 -7 9 
1000 -8 8 

0111 7 7 
0110 6 6 
0101 5 5 
0100 4 4 
0011 3 3 
0010 2 2 

==1 
0001 1 1 Add 
0000 0 0 

Subtract 
1111 -1 15 
1110 -2 14 
1101 -3 13 
1100 - 4 12 
1011 -5 11 
1010 -6 10 
1001 -7 9 
1000 -8 8 

on a special meaning ; if it is 1, a negative number is being represented, if 0, 
a positive one. 

Within the computer a particular bit combination , say % 1011 will repre­
sent 11 one time and -5 at another. An example of this is in the numbering 
of memory addresses. There is RAM available between $9000 and $9FFF 
which is normally not used by APPLE routines and can be safely used. Now 
for instance, 

$94AC = 38060. = % 1001 0100 1010 1100 = -27476. 

Thus typing POKE 38060,163 CR followed by either PRINT PEEK (38060) 
or PRINT PEEK( -27476) will bring back the number 163 (try it). 

Also note that the four-bit counter will repeat its reading every 16 counts. 
Thus the decimal numbers 11 ,27, 43 , etc. , will all be represented by the same 
binary combination in a four-bit counter. If we count down 16 counts from 
11 we come back to the same binary reading ; thus 11 and -5 (which is 11-16) 
are repesented by the same binary string. Similarly in a 16-bit counter, the 
bits will repeat every 65536 counts (216 = 65536). By the same reasoning the 
number 38060 and the number -27476 will both be represented by the same 
16-bit string since 38060- 65536 = -27476. 



48 Timing 

4.4 Generation of square waves by the 6522 
You have used the data output capability of the 6522 VIA to control 

the heater in the experiment in Chapter 2 and to light the LEOs in Section 
4.3. The VIA can do other functions as shown in the data sheets in Appendix 
G. You need not concern yourself with the details of each function but some 
practice in deciphering these often cryptic descriptions is valuable. As you 
work through this section read the data sheets about functions which you 
have already used and about timers 1 and 2. 

There are actually two 6522 VIAs on the card plugged into the APPLE . 
You have used the VIAl with registers at memory locations $C400-$C40F 
to control the heater and VIA2 with registers at memory locations $C480-
$C48F to control the LEOs . Port A (ORA) and Port B (DRB) are used as 
1/0 ports , the I/0 function of each line is controlled by DORA and DDRB. 
The timers in the 6522 can be programmed to run in several different modes 
by writing (POKEing) various bit combinations into a special control 
register called the Auxiliary Control Register or ACR (see Appendix E , 
Figure 14) . The ACR is at memory location 11 (ie, hexadecimal $B) above 
the base address and so will be at $C400 + $B = $C40B for VIAl. The mode 
we will use is with timer 1 (Tl) operating continuously and generating a 
square wave output on PB7. (In Appendix E, read the paragraphs under the 
heading 'Timer 1 Free-Run Mode', don 't worry about ' interrupts' now.) 
Therefore , bits 7 and 6 in the ACR must bel. For now , the rest of the bits 
can be 0, so the ACR should contain % 1100 0000 = $CO = 192. 

The Tl counter counts down at the rate of the internal clock of the 
APPLE. This rate , called <1>2 , is set by a quartz crystal oscillator to a 
frequency of approximately 1.022727 MHz. The Tl counter counts down at 
this rate from the 16-bit value loaded into registers 4 and 5 (TlL and T1H) . 
Since Tl is a 16-bit counter , it takes two 8-bit bytes to fully define the PB7 
rate. When the counter reaches zero several things happen: the state of PB7 
is changed (ie, 0 goes to 1 or 1 goes to 0) , the numbers which were originally 
in the counter registers are automatically reestablished , and counting down 
begins again . So to obtain a desired rateR at PB7 , you need to: calculate the 
number N of <P2 cycles in R , make two 1-byte numbers from Nand place 
these into registers 4 and 5 (neglecting the '1.5 ' and '2' cycle corrections 
shown in Figure 16 of the Appendix E) . As an example, suppose it is desired 

to have PB7 invert every 0.008 s. This is 8000 J.LS , soN = 8000 x 1.022727 = 
8182. = $1FF6. HIGH-ORDER = $1F = 31.; LOW-ORDER = $F6 = 
246. The following program will cause PB7 to invert every 0.008 s. (Note that 
the period of the square wave is 0.016 s.) 

5 REM PROGRAM 4.4.1 
10 BA = 50176 BaseaddressofVIA1 , $C400. 

20 POKE BA+11,192 Set ACR for T1 free run, ie, store $CO in 

BA + 11 = ACR. 
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30 POKE BA+2,128 

40 POKE BA+4,246 
50 POKE BA+5,31 

49 

Important! Enable PB7 as an output pin, 

ie, store $80 in DDRB. 

Load low-order T1 , $F6. 

Load high-order T1 , $1 F and start 

countdown. 

RUN the program and look at PB7 with the scope . Notice that the timer 
keeps operating even after the program has stopped! Press CTRL RESET 
to stop its operation. 

Exercise 4.4.1 Square wave on PB7 VIA 6522 
Modify Program 4.4.1 to invert PB7 every 0.005 s; ie, a square wave 
of period 0.01 s. 

4.5 Making an interval timer 
Experiments frequently require the measurement of time intervals. 

The combination of the T1 control of output on PB7 (you have used above) 
with the pulse counting mode of counter T2 (described below) can provide 
this on the APPLE. In the ACR, bit 5 controls the mode of operation ofT2. 
When set to 1, the value in the T2 counter registers (low-order is register 8, 
high-order is register 9) decrements on each HI to LO transition of a signal 
input to PB6. (Described further in Appendix E, Figures 17 and 19 and text 
under the heading 'Timer 2 Pulse counting mode'.) 

Exercise 4.5.1 T1-T2 interval timer 
Put a wire from PB7 to PB6 on the protoboard . This will allow T2 
to count the number of PB7 periods (remember the PB7 rate is 
controlled by T1). The following program will start T2 counting 
down at the rate of 0.1 s which is coming from PB7. 

5 REM EX 4.5.1 
10 BA = 50176 
20 POKE BA+11,224 

30 POKE BA+2,128 

40 POKE BA+8,255 

50 POKE BA+9,255 
60 POKE BA+4,192 

Base address of VIA 1. 

Set ACR bits 7,6,5 to 1, others to 

0 (%1 110 0000) 

Enable PB7 as output, PB6 (and 

also PB5-PBO) as input (put 

%1000 0000 in DDRB). 

Initialize T2 low-order counter to 

maximum value $FF. 

Initialize T2 high-order counter. 

Initialize T1 low-order to $CO. 
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70 POKE BA+5,199 Initialize T1 high-order to $C7 and 

start counter and square wave 

generation . 

100 T = 256 * PEEK(BA+9) GetT2H(highbyte)eachunit = 

110 T = T + PEEK(BA+8) 
120 PRINT "T ="; T 

256 PB6 HI to LO transitions. 

Get T2L (low byte) and add toT 

Print T2 va lue. 

In this program T2 is set to its maximum value $FFFF. At each 
HI-LO transition on PB6, the timer/counter decrements one count 
( eg, T2 = FFFF, FFFE , FFFD , ... ) . Since these transitions on PB6 
are wired to PB7 , they occur every 0.1 s (which is twice the T1 rate). 

Now, periodically run the part of the program from instruction 
100 on to see that the counter is indeed decrementing. To do this use 
the command 'GOTO 100 CR' which will pick up the program from 
where it ended with variable values left as they were . This is 
different from the command RUN 100 in that the latter will first set 
all variables to zero (eg, BA) and then begin executing at 100 giving 
nonsense results . 

Subtracting successive values of T which appear on the screen 
should give you the time elapsed between the two PEEKs in units of 
0.1 s. check with a watch to see that this is indeed true. 

Exercise 4.5.2 Beeper 
Write a program which BEEPS the terminal 'bell ' at one second 
intervals . The statement to ring the bell is 'PRINT CHR$(7);' Run 
PB7 at 0.01 s per cycle. In this program the T2 counter should be set 
up as in the above program. Then read TIL and T2H periodically 
and take differences to obtain the desired one second interval. 

The one second timing program in Exercise 4.5.2 may be in error when T2 
counts down past $0000 because the subtraction done will give a negative 
time interval. For instance , if the first time determined is $005F = 95. and 
the second is $0050 = 80., subtracting the second from the first (as is 
normally done) gives $000F = 15 ., a valid number. But if the first is 
$005F = 95. and the second is $FFF5 = 65525 ., the result is - 65430 but 
should be 107. 

There is another problem which occurs when reading the value of time T2 . 
In the statement: 

T2 = 256*PEEK(TH) + PEEK(TL) 

(where THis the high byte ofT2 and TL the low byte) the peek to THis done 
before the PEEK to TL. If a count should come into the timer between the 
two PEEKs and ifTL is at $00 when THis PEEKed , an error will occur. For 
example: 
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TH 
28 
28 
2A 

TL 
01 
00 
FF 

PEEK(TH) occurs here. 

PEEK(TL) occurs 

here. Gives: T2=256* ($2B)+($FF)=256*43+255. 

Both of these problems can be fixed by using additional BASIC statements 
in your program. 



5 Thermal diffusion 

Fig. 5.1. The flow of heat in a rod 
of specific heat C (J/kg K) and 
thermal conductivity k (W/m K). 

Cross section A 
~ 

T2 

The experiments which you will be called upon to do in this chapter give you 
a chance to apply the 6522 timing concepts and to review the use of the ADC 
while learning about the phenomenon of diffusion. Specifically, you will be 

studying thermal diffusion but many of the concepts encompass a variety of 
other phenomena. 

5.1 Heat flow equation 
In this section you will explore some of the physical and mathe­

matical considerations of one-dimensional heat diffusion. When heat is 
added to a material there are two parameters which affect the distribution of 

temperatures: the specific heat (or heat capacity) and the thermal con­
ductivity. The specific heat indicates how much heat is added to a mass of 
material for a specified temperature rise. The thermal conductivity indicates 
how fast the thermal energy is transported through the material. 

Consider the flow of heat in a rod as shown in Figure 5 .1. The specific heat 

C of a material is the ratio of the amount of heat added dq (Joules) to the 

resulting rise in temperature d T( degrees Kelvin) per unit mass dm (kg); thus 
C = (dqldT)Idm, (see Equation (3.3.1)). For a rod of cross-sectional area 
A , the vo lume d V = Adz and dm = p d V where p is the density. So , the 
amount of heat added to the length dz of the rod is 

dq = CpAdTdz = sAdTdz (5 .1.1) 

where sis the volumetric heat capacity, Cp. 
When one end of the rod is hotter than the other there will be a net flow of 

energy from the hot end to the cool end. The power P (Watts) of this heat 
flow down the rod is the heat energy per unit time flowing past a point on the 

rod P = dq ldt (Equation 3.3.2)). For one-dimensional heat flow , P is 
proportional to the temperature gradient d Tldz , the thermal conductivity k 
(W/m K) and the cross-sectional area; 

P = -kA (dT/dz) (5.1.2) 

There is a minus sign because heat flows from higher to lower temperatures . 
In writing this equation, it is assumed that the rod is insulated; no heat 

escapes from the rod by conduction, convection or radiation . The net heat 
gain pe r unit time dq/dt in the piece of rod between z and z + dz is given by 
the difference in the power flowing in at z and the power flowing out at 
z + dz, so 
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dqldt = P(z)- P(z + dz) = -(aP/az )dz (5.1.3) 

Combining Equations (5 .1.1) , (5.1.2) and (5.1.3) gives the differential 
equation for heat flow in a rod 

s(aT/at) = k(a2T!al- ) (5.1.4) 

This equation has many solutions ; if a quantity of heat is added to the rod 
quickly (a heat pulse), the solution can be written as follows: 

B 1 = constant 
B2 = constant 
T(t, z) = B1 + B2 exp( -z 2s/4kt)!t112 

} (5 .1.5) 

Details of how this solution can be obtained are found in Appendix F. 

Exercise 5.1.1 Impulse heat diffusion solution 

(a) Show that Equation (5 .1.5) is a solution of Equation (5.1.4). 
(b) Show that B1 can be interpreted as the starting temperature ; that is , 

T(t , z)att = Oforz=/=0 . B 1 = T5 • 

The solution (5 .1.5) describes the temperature at any point in the rod as a 
function of time after an impulse of heat has been added at z = 0. Before 
proceeding furth er it is useful to examine the graphs temperature T vs . 
distance z of the solution at various times after the impulse . These are shown 
in Figure 5.2. In this figure, T = T(t , z)- T5 • At times near zero , the heat , 
and thus the excess temperature , is concentrated near z = 0. As time 
progresses the heat diffuses away from the center to larger and larger values 
of z with the peak temperature decreasing in time. 

Fig. 5.2. Heat flow in a rod, 1.20 
temperature vs. distance where 
t = t 'slk .. 
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An important point to note is that the solution is symmetric with respect 
to z, just as much heat diffuses up as down the rod. Since there is no heat flow 
across the cross section at z = 0, cutting the rod at z = 0 will not modify the 
form of the solution although now all the heat added goes one way. This 
half-space rod is the configuration which you will study experimentally . 

To obtain a theoretical expression convenient for analyzing a quantitative 
experiment, it is useful to relate the constant B2 in Equation ( 5 .1.5) to the total 
heat Q added to the rod (from z = 0 to z =co) by integrating Equation (5.1.1). 
Consider T as the excess temperature above T(O), ie, T = T(t, z) - T, 
= T' - T,; integrating Equation (5 .1.1) from temperature T, to T' gives 

dq = sAdz(T'- T,) = sATdz (5.1.6) 

To integrate from z = 0 to z = co, use Equation (5.1.5) to describe the 
variation of temperature at any z and t. Then 

Q _ J"' A B2 exp(-rs/4kt) d = sA - s 1/2 z 112 
z=O l l 

B2 J~ exp( -z2s/4kt)dz 

- s B 71' t - B ( k )li2A A J/2 (4k )112 
-- z-- - z71'S 

t 112 2 s 
(5.1.7) 

solving for B2 and inserting into Equation (5.1.5) 

T( ) = Q 1 exp(- z
2
s/4kt) + T 

t , z A ( 71'kS )1/2 tl/2 s (5.1.8) 

As written Equation (5 .1. 8) is not in an optimum form for displaying some 
of the important features it contains. It is often very helpful, particularly for 
purposes of recognizing the domain of behaviour in a given physical 
situation , to relate the quantities in an equation to physically significant 
parameters rather than simply measuring time in seconds, temperature in 
degrees centigrade , etc. You saw this before in the equation for the 
thermistor resistance as a function of temperature of Chapter 2. The natural 
parameters there being R0 and T0 . For displaying the change in temperature 
T as a function of time tat a fixed z, Equation ( 5 .1. 8) can be written in terms 
of a characteristic time t1 and a characteristic temperature T1 as 

TIT1 = (t1/t)
112 exp( -t1/t) 

t1 = sz214k 

T1 = 2Q!Azs71'112 

T = T(t, z) - Ts 
} (5.1.9) 

Equations (5.1.9) immediately show several important points. First, the 
variation of temperature with time at a constant z can be related to just two 
parameters t1 and T1. Second, the characteristic time scale t1 is proportional 
to z2

; this is a general property of diffusion phenomena. 

Exercise 5.1.2 Graphing the heat diffusion equation 
(a) Use the AMPERGRAPH utility program to plot TIT1 as a function 

of tlt1 from tlt1 = 0.1 to tlt1 = 10. 
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(b) Show that the temperature T1 is proportional to the temperature 
rise which a quantity of heat Q would produce if absorbed by a 
length z of the rod with the heat distributed over the length of the 
rod . Find the constant of proportionality. 

(c) The temperature T 1 can also be related to the maximum values 
which T assumes, show that the maximum occurs at tlt 1 = 2 and at 
the maximum TIT 1 = 0.43 . 

5.2 Numerical integration of the heat flow equation 
Appendix F shows a solution to the differential equation for one­

dimensional heat flow for an impulse of heat at t = 0. For other starting 
conditions or parameter dependencies the equation could be much harder, 
if not impossible , to solve. For example, the thermal conductivity k is really 
temperature dependent k = k(T) and so cannot be treated as a simple 
constant parameter. An analytical solution quickly becomes impossible and 
you must resort to numerical solutions. 

General numerical integration of partial differential equations is a broad 
and difficult subject. The following will be a simple procedure which works 
in this case but must be used with care. It is really only meant to illustrate a 
general approach . For further discussion see Numerical Recipes The Art of 

Scientific Computing, by Press et al. in the bibliography. 
The basic equations for the flow in a rod are the static equation for the heat 

capacity Equation (5.1.1) and the dynamic equation with the thermal 
conductivity Equation (5.1.2) which are combined to form the differential 
equation , Equation (5 .1.4). Howeverfor purposes of numerical integration, 
it is best to leave them separate and write them in this form : 

~Q = -kA ~T ~tl~z 

~T = ~Q/As ~z 

where~ is assumed to approach zero. 

(5 .2.1) 
(5.2.2) 

Now break up the rod (Figure 5.1) into N z pieces of length ~z each and 
consider the ith piece; the heat flowing into this piece in the time~~ will be: 

Q;n = kA(T;- 1- T;) ~tl~z (5.2.3) 

If the temperature in element i - 1 is hotter than in the element i then Q;n 
will be positive . The heat flowing out of the piece will be: 

Q out = kA(T;- Ti+ l)~t/~z (5.2.4) 

The difference of the two is the heat gained or lost in the element: 

(5 .2.5) 

This heat changes the temperature of the element in proportion to its heat 
capacity: 

~T; = ~Q;!As ~z (5.2.6) 

and so 
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Exercise 5.2.1 Integration algorithm 
(a) Equations (5 .2.3)-(5.2.6) can be used to determine the temperature 

in any element at any time (which is all we want out of a solution to 
the differential equation) as follows: 

First specify ~z and Nz and the temperature T; in each of the 
elements i = 1 . . . Nz at the start, which in the case of the laboratory 
experiment will be T1 = Q (from heater)/As~z and T2 , T3 , . . . , 

T Nz = 0. Also specify the time step desired M. 

Next , make the calculations in Equations (5 .2.3)-(5 .2.3) for each of 
the elements using the old temperatures to give new temperatures. 

Repeat the last step until the desired time is reached . 

Now repeat the whole procedure but with a smaller ~z and/or 
smaller !::.t. Compare these results with the previous ones to make 
sure that they are not sensitive to the size of the steps used . If they 
are, reduce the step size again. 

Since the theory deals with an infinite rod, another parameter which 
needs to be examined is the length of the rod Nz ~z . Make sure that 
it does not affect the results. 

(b) With a working program in hand, the results can be checked by 
comparison with the analytical solution. But now the analysis can be 
taken further; consider the following questions and how the pro­
gram might change to answer them: 

What is the effect of a short rod or a rod with one end clamped at a 
constant temperature? 

What is the effect of a thermal conductivity k which is a function of 
temperature, eg, k = k' IT? 

What is the effect of the heat impulse occurring over a longer 
interval of time? 

How does convective and radiative heat loss affect the temperature 
distribution? 

5.3 Experimental setup and program development 
The apparatus you will use for these experiments is illustrated in 

Figure 5.3 . In the top of the copper rod (#10 copper wire, 2.59 mm 
diameter) is set a 3.3 D resistor which is used as a heater. Current can be 
switched into the heater under program control using the IRF 520 HEXFET 
in a manner similar to that used in Section 3.12. After generating a short 
pulse of heat by momentarily turning on the HEXFET, the computer will 
measure the increase in temperature at two positions down the rod using two 
thermistors . The thermistor positions are as shown on Figure 5.3. A plot of 
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the temperature vs. time at each of these thermistors will yield values for the 
heat capacity and thermal conduction constants of copper and also demon­
strate the functional dependence of heat diffusion on time and distance . 

Exercise 5.3.1 Heat impulse to rod 
Write a subroutine which uses the 6522 T1-T2 timing set-up of 
Chapter 4 to turn the heater on for an amount of time which you 

type as input data into the computer. Use P AO to control the 
HEXFET. A flow chart outlining the steps in the program is shown 
in Figure 5.4. Check your program and apparatus by putting an 
oscilloscope probe between the heater and ground and then turning 
the heater on for times ranging from 0.1 s to 2 s. Note the voltage 
across the heater when it is on with the oscilloscope and compute 
the power being put into the heater. (Remember: do not put the 
alligator clip to any circuit point which is not at ground potential!) 

5.4 Voltage amplifier 
The change in temperature of each thermistor from an initial 

temperature (T(t, z) - T0 ) is the significant quantity to measure in this 
experiment. However the temperature increments and thus the voltage 
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Fig. 5.5. Voltage ampl ifier circuit 
for heat flow apparatus. 

Thermal diffusion 

changes are very small; if the ADC is connected directly to the thermistor as 

in Chapter 3, the changes are less than the step size of digitization . To 
overcome this problem an amplifier is used to boost the voltage change. On 
the proto board attached to the experimental apparatus is an amplifier using 

a CA3140 operational amplifier; a schematic diagram is shown in Figure 5.5. 

It is not necessary to understand the details of this amplifier circuit except to 

note that the relationship between the three voltages VA (output) (pin 6), V1 

(pin 2) and VT (pin 3) is given by 

VA= G(VT- VI) (5.4 .1) 

For the circuit components used, the gain G is equal to 21. 

The amplifier output (VA) is constrained by the characteristics of the 

CA3140 to be between 0 V and + 3 V. Since a rise in thermistor temperature 
will lead to a rise in the output voltage of the amplifier , the potentiometer R 1 

should be set so that the output voltage of the circuit starts near the lowest 
voltage before a heat pulse is applied. This will allow the greatest voltage 

swing as the thermistor heats up without exceeding the 3 V limit. Using the 

oscilloscope to monitor the output voltage of each amplifier, set the poten­

tiometers (one for each amplifier-thermistor combination) so that the 
amplifier outputs are about 0.20 V before you start each run. When this is 
done each potentiometer R 1 has been adjusted to be essentially the same 

resistance as the thermistor resistance RT before a temperature pulse is 

applied. Since the amplifier gain is 21, the change in the output voltage .:1 VA 

will be 21 times greater than the change in the thermistor voltage .:1 VT. 
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Fig. 5.6. Flow chart for Exercise 
5.4.1. use 
PRINTPEEK(49312);" "; 
-putting a semi-colon and 
quotes with a few spaces will 
make it possible to view what is 
going on using the screen with a 
minimum of programming. 

Apply heat pulse of 
specified time T 

program of exercise 5 .3.1 

I 
! 

Measure ADC output of 
thermistor and amplifier 
PRINT result on screen 

I 

Fig. 5.7. Flow chart for Exercise 
5.4.2. 
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Exercise 5.4.1 Amplifier check 
Before writing a detailed program write a simple program to see 
that the apparatus is functioning following the outline shown in 
Figure 5.6 . When you run this program you should see on the 
oscilloscope the voltage output rise and then slowly fall. It should 
start above 0 V and not try to go above 3 V. Stop it after 20 or 30 ~ 
using CONTROL C. 

Do the same to check thermistor 2, the lower thermistor. You will 
need to let the apparatus cool down and reset the potentiometer 
between heat pulses . 

Exercise 5.4.2 Heat flow real-time plot 
(a) The next task is to make thermistor ADC measurements at specified 

times. To do this, modify the program by putting in waiting loops as 
indicated by the Figure 5.7 . Note that a sample is taken before the 
heater is turned on (A1(0) an A2(0)) . This records the baseline 
ADC reading. The heating of the rod then changes the ADC 
reading from this starting value. 

(b) Now combine this with AMPERGRAPH so that these relatively 
rough, unprocessed data are plotted in real time while they are 
being collected . You have enough time (even though BASIC is very 
slow) to read the time , A1(1) and A2(1) and to get them on a graph 
as data points before the next reading must be taken! slater. the 
AMPERGRAPH symbol plotting is too slow so use '& 
DRAW,X,Y: & PENUP' for each point. In addition, it may be too 
slow to convert the ADC readings to voltages so just leave them as 
raw data. Also make a data file of the ADC readings A 1(1), A2(1) 
and times T(I) together with the time the heater was kept on (T H). 

5.5 Data analysis 
Before proceeding to more data plots and analysis, here are some 

additional mathematical considerations. We will assume that the tempera­
ture and voltage changes at the thermistor are small enough to that their 
behaviors are adequately described by differentials . Thus: (change in 
amplifier output voltage) = (gain) x (change in the input voltage) 

dVA = GdVT (5 .5.1) 

The relationship between VT and RT is similar to the thermistor experiment 
of Chapter 3, ie, VT/V0 = R1/(R 1 + RT) with V0 = 5 V. The relationship 
between dVT and thermistor resistance changes dRT can be obtained by 
differentiation ; the result (which you should work out) is 

dVT = _ dRT ( 1 )
2 

(5 .5.2) 
V0 R 1 1 + RTIR 1 
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Noting that R 1 and RT are adjusted to be nearly equal at the outset gives 

dVT/Vo = -dRT/4RT (5 .5.3) 

The next task is to relate change in the thermistor resistance to changes in 
temperature. The relation between thermistor resistance and temperature is 

RT = R0 exp(T0/Ta) as discussed in Chapter 3. Differentiation of RT with 
respect to temperature Ta gives 

dRT = _To dTa 
RT Ta Ta 

(5.5.4) 

where Ta is the absolute temperature (K) (not the excess temperature, 

T(t, z) - Ts) and d Ta is a small temperature change due to the heat pulse. 
Thus if dTa is small, it can be approximated by the measured temperature 
change of the apparatus (ie, the excess temperature) and Ta can be approxi­
mated by room temperature. Appropriately combining Equations (5.5 .3) 
and (5.5.4) gives the result 

dT, = T, _i_ Ta dVA (5.5.5) 
' ' G T0 Vo 

As Equation (5.5.5) shows, the change in output voltage in volts is not 
important , only its ratio with V0 . This ratio d V AIV0 is equal to the ratio of the 
change in ADC units to the ADC full scale reading. 

Exercise 5.5.1 The thermal conductivity and specific 
heat of copper 
Plot the data which you have taken with the vertical axis 111 

temperature change from the initial temperature-(Equation (5.5.5)) 

and the horizontal axis in seconds (T0 = 3440 K for the GB32J2 

thermistor). As a first step in the analysis of these data use the 
relations derived in Exercise 5. 1. 2( c), ie, visually estimate the 
position Tpcak and height Tpcak of the peak and calculate 11 and T1 

from these values. Use these estimates to draw a curve on your 

graph of the data and check the fit. Then you may want to change 
your estimate and try another fit. 

When you are satisfied with your values of T1 and t 1 use them to 
calculate, via Equation (5.1.9) , the diffusion constant D = kls, the 
thermal conductivity k and the heat capacity c = sip where pis the 

density . Make an estimate of the error made in differential evalua­

tion of the temperature change (Equation (5.5 .5)) compared with 
actual temperature change . For doing this esti mate , use the 
maximum change which can be measured using the amplifier circuit 
employed. 

One further consideration can be applied to the data analysis. In deriving 
Equation (5.1.5) we assumed that the time during which the heater was on 
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( T) was very small in relation to the time the heat takes to diffuse down the 
rod (t 1), ie , it was an impulse of heat (see Appendix F) . In doing your 

experiments thi s approximation is valid as long as you make t = 0 on your 

graph correspond to the midpoint of the heating time and if the heating time 

is less than any t 1 • Appendix G gives the details. 

Exercise 5.5.2 Time shift of heat flow data 
Shift the time scale of your heat flow data by hand again estimate 

T1, t1, D,sandk. 



6 APPLE architecture and 
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Fig. 6.1. Inside the APPLE I! e. 

• programming 

Thus far, there has been no need to understand the inner workings of the 
computer in order to do useful experiments. It has been a black box which 
responds in a reliable way when given instructions. Just as in using a car, 
many times this is sufficient; however, to utilize its capabilities as a tool in the 
laboratory fully, the internal operation of the computer should be under­
stood. In this chapter, we will look under the hood to explore the internal 
organization of the APPLE and to learn to program the 6502 microprocessor 
directly . 

6.1 Inside the APPLE 
A first glance under the cover of the APPLE shows a circuit board 

with a row of connectors which contain other circuit boards standing 
vertically . The horizontal board (the mother board) contains the 6502 
microprocessor chip and various other chips which control the keyboard and 
screen and contain the memory cells. The microprocessor is the CPU which 
controls the system and executes the program instructions. The boards in the 
connectors perform a variety of other functions. Figure 6.1 shows the general 
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organization. The different chips and boards communicate with each other 
via the buss: a group of 50 wires which carry digital signals. There are 16 
address lines, 8 data lines, and 26 auxiliary lines . The data lines contain the 
8 bits of data which are to be transferred by the CPU. The bits on the address 
lines contain the binary number of the location from or to which the data will 
be transferred. The operation of the computer is, at the lowest level, a 
controlled transfer of bits of data among the various devices. 

The CPU uses the auxiliary lines to control the data transfers. The 
READ/WRITE (R/W) line signals whether the data will be transferred to 
the CPU (a READ, R/W HI) or out from the CPU (a WRITE, R/W LO) . 
Another auxiliary line is controlled by the oscillator which is the clock that 
determines how fast the CPU operates and thus, how fast the data transfers 
will take place. The one in the APPLE generates about one million cycles 
per second (Figure 6.2). At the beginning of each clock cycle, the CPU puts 
the binary bits defining an address on the address wires and sets the RIW line 
to indicate the direction of the data transfer. In the second half of the clock 
cycle the data transfer takes place on the data lines . The time lag between the 
first and second parts of the cycle is used by the memory circuits to locate the 
unique memory cell being addressed. 

Since the 6502 CPU has 8 data lines, it is called an 8-bit microprocessor. 
These 8 binary bits (or 1 byte) can represent various things. They could be a 
binary data value, a machine instruction code ( op-code) or one half of a 
16-bit address. The electronic protocol for transferring the data is always the 
same no matter what the data may represent. 

6.2 The 6502 microprocessor 
Programs are ultimate]~' stored in the computer as a series of data 

bytes . All programs written in other languages (eg, BASIC, FORTRAN, 
Pascal) are translated into this form (by another program!) before they can 
be executed . The machine language program is executed by the CPU by the 
following steps: 

The CPU (1) reads the next instruction code ( op-code) in the series, 
(2) decodes the instruction, 
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(3) if necessary, reads additional data (such as an address or data 
byte), 

(4) executes the instruction, 
(5) starts at step (1) again. 

In the 6502 each machine instruction requires 2-7 clock cycles to execute. 
There are approximately 150 different op-codes of which 56 are funda­
mental. 

The 6502 CPU has six internal memory locations which it uses for 
executing instructions and to keep track of where it is in the program. These 
are called registers (Figure 6.3). The most sophisticated instructions are 
done with the eight-bit accumulator (A register). This is the arithmetic 
register whch can do addition and subtraction as well as logical operations . 
The X and Y registers are auxiliary eight-bit registers used principally for 
counting. The program counter (16 bits) contains the address of the next 
byte to be accessed in the program. The stack pointer contains the address 
of the top of the stack which is a group of memory locations used predomin­
antly for executing subroutines. The 6502 uses the memory between $0100 
and $01FF for the stack. You will learn more about how this works in Section 
6.10. Notice that the high byte of the stack pointer is always $01; only the low 
byte varies. The last register is the process status (P or F, Figure 6.3) register 
which is used for a variety of housekeeping chores. Each bit in the register 
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indicates a different state of the CPU . The branch machin e instructions 
(Section 6. 9) use the bits in this register to determine whether or not a branch 
should be taken. 

6.3 Writing machine language programs 
In the APPLE computer , short machine language programs are 

conveniently written using the 'MINIASSEMBLER' which is in the 
INTEGER BASIC package of programs loaded into the RAM in the 
language card when the machine is bootstrapped with the SYSTEM START 
DISK (the bootstrap procedure is described in detail in Appendix H). The 
MINIASSEMBLER makes it possible to write programs using mnemonics 
which directly represent the machine instructions to be executed by the 
CPU. A program written with these mnemonics is called an assembly 
language program . When using the MINIASSEMBLER the program is 
actually stored in machine language (ie, binary op-codes and data) but is 
displayed in assembly language (ie, mnemonic characters). 

Starting with the APPLESOFT prompt (])on the CRT screen, turn the 
printer on by typing PR#l CR to get hard copy for your reports . Put the 
machine under control of INTEGER BASIC by typing INT CR; this will 
produce the prompt character of INTEGER BASIC, (> ) . Then type 
CALL-2458 CR ; this will run the MINI ASSEMBLER program which starts 
at memory location -2458. , the MINI ASSEMBLER program prompt is ' !' . 
With the! before you , type the program indicated below. SP means press the 
space bar ; CR means press the RETURN key (the spaces marked with SP 
are mandatory, the other spaces are optional). 

Program 6.3.1. 
9300: LDA #01 CR Load the accumulator (A) with the number $01. 

SP STA C402 Store the contents of A in memory location 

$C402, (OORB) 

SP LDA #01 CR 
SP STA C400 CR 
SP LDA #00 CR 
SP STA C400 CR 
SP JMP 9305 CR 
$9300L CR 

$9300G CR 

Load A wi th $01. 

Store in ORB. 

Store 0 in ORB. 

Jump to instruction coded in location $9305. 

Monitor command to li st program steps starting 

at $9300. 

Monitor com mand to run program starting 

at $9300. 

Figure 6.4 shows what the screen and printer should look like after this is 
completed . Appendix I contains useful information about assembly 
language programming. 

Connect the oscilloscope to the line PBO ; you should see square waves. 
The above program which you have typed into the machine and set running 
is the machine language equivalent of the BASIC program used to generate 



Fig. 6.4. Assembly language JINT Go to INTEGER BASIC 
program listing and comments. >CALL-2458 Go to MIN IASSEMBLER 

!9300:LGA#01 Type in; start loc: instruction 

APPLE responds 

9300- A9 01 LDA #$01 Type in space after instruction 
I STAC402 

9302- 8D 02 C4 STA $C402 APPLE responds 

! LDA#01 

9305- A9 01 LDA #$01 
I STA C400 

9307- 8D 00 C4 STA $C400 Etc 

! LDA#00 

930A- A900 LDA #$00 
I STA C400 

930C- 8D 00 C4 STA $C400 
! JMP 9305 

930F- 4C 05 93 JMP $9305 Type $9300L CR 

!$9300L - sends control to monitor 

9300L- disassembles 

9300- A9 01 LDA #$01 starting at 9300 

9302- 8D 02 C4 STA $C402 
9305- A9 01 LDA #$01 
9307- 8D 00 C4 STA $C400 
930A- A9 00 LDA #$00 Disassembled program 

930C- 8D 00 C4 STA $C400 starting at 9300 

930F- 4C 05 93 JMP $9305 
9312- FF ??? Garbage 

9313- FF ??? 

9314- 00 BRK 9300L disassembles 

9315- 00 BRK 20 instructions 

9316- FF ??? 9300LL would do 40 

9317- FF ??? 9300LLL would do 60 etc. 

9318- 00 BRK 
9319- 00 BRK 
931A- FF ??? 

9318- FF ??? 

931C- 00 BRK 
931D- 00 BRK 
931E- FF ??? 

!$9300G Type $9300G CR 

$sends control to monitor 

9300G starts program running 



Fig. 6.5. Comparison of 
equ ivalent machine language, 
assembly language and BASIC 
programs. 
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square waves in Exercise 3.10.1. Figure 6.5 shows the parallel statements 
between the two programs. To display the square waves set the SWEEP 
TIME/DIY on the oscilloscope to 5 ,us/DIV. Note the time ratio between the 
machine language program and the BASIC program. 

The lines you typed in with the $ as the first character are instructions to 
be executed by another set of subroutines in the APPLE called the monitor 
(prompt *). When the MINIASSEMBLER finds a$ as the first character of 
a line , it sends the rest of the line to the monitor for execution. The line 
$9300L instructs the monitor to go to memory location 9300 (hex) and to 
translate the machine codes into assembly codes which are then displayed 
alongside the machine code (Figure 6.4). This process of translating a 
machine language program into assembly language is called disassembly . 
$9300G starts the program execution at 9300 (hex). To stop the program 
which loops back to itself continually, press CONTROL-RESET. 

It is informative to look at the details of this program as displayed to gain 
insight in the operation of the computer. Beyond the first seven lines the 
material is irrelevant; it is probably 'garbage' which the L instruction is 
trying to disassemble. 

The first line, LDA #01 , instructs the 6502 to load the hexadecimal 
number $01 into its accumulator. The program starts at memory location 
$9300 , the number shown in the lefthand column of the first line of the 
program in Figure 6.4. In memory location $9300 the eight-bit number $A9 
is stored. 

When this program is started at memory location $9300, the 6502 retrieves 
the number $A9 from memory and decodes it as the instruction 'load the 
accumulator immediate' (mnemonic LDA). Immediate means that the 
accumulator of the 6502 is to be loaded with the number stored in the next 
memory location ; in this case , the next address is $9301 and the number is 
$01. When the instruction $A9 is decoded by the 6502 , it also knows that the 
instruction requires two bytes for its definition and thus the next instruction 
code will be found in the memory location $9302. 

Address Machine code Assembler code BASIC statement 

9300 A9 01 LDA #$01 10 POKE 50178,1 
9302 8D 02 C4 STA $C402 

9305 A9 01 LDA #$01 20 POKE 50176,1 
9307 8D 00 C4 STA $C400 

930A A9 00 LDA #$00 30 POKE 50176,0 
930C 8D 00 C4 STA $C400 

930F 4C 05 93 JMP $9305 40 GOTO 20 
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Fig. 6.6. Memory dump. 

Apple architecture and assembly language 

The next instruction ST A $C402 means 'store the number which is in the 
accumulator , ($01) into memory location $C402'. The data is also retained 
in the A register. Memory location $C402 is the DDRB. This will set up 
ORB (memory location 50176 = $C400) with PBO as an output port. When 
the 6502 retrieves the number $80 from memory it decodes it as the 
instruction to store the eight-bits of data in the accumulator in the memory 

location designated by the data stored in the next two memory locations, ie , 

$9303 and $9304. The least significant eight bits (low byte) of the address ( eg, 
$02) are stored in the location just after the op-code and the most significant 
eight bits (high byte) of the address ($C4) in the memory location after this, 
$9304. This sequence is the protocol of the 6502 for storage of addresses; the 
low byte of the 16-bit address goes into the lower memory address and the 
high byte into the next higher address. 

The above mode of memory addressing ( eg, ST A $C402) is called 
Absolute Addressing because the memory location upon which the instruc­
tion acts is explicitly designated. The instruction 'store accumulator with 

absolute addressing' is a three byte instruction; it requires three memory 
locations to completely specify the instruction. The memory address upon 
which an instruction acts is called its operand. The 6502 has about a dozen 
different ways of defining operands. 

The next two instructions listed in the program put $01 into the 
accumulator from whence it is transferred into Port B. The next two 
instructions put $00 into Port B. The final instruction JMP $9305 makes the 
6502 jump to memory location $9305 to find its next instruction, thereby 
looping the program interminably upon itself. 

To examine but not disassemble the data stored in the memory defining 
the program above, type $9300.9311 CR. The result displayed on the CRT 
is shown in Figure 6.6. The above is called a memory dump; it is a simple 

tabulation of the data stored in the memory locations between $9300 and 

$931F. With this memory dump before you, take the time to make a step by 
step review of what occurs when the program is run from memory location 
$9300. 

Saving machine language programs on the disk and retrieving them again 
can be done from the MTNIASSEMBLER or BASIC. Machine language 
programs are saved as binary files. A binary file is simply a series of data 
bytes stored on the disk; this sequence may represent a variety of things: data 

!$9300.9311 

9300- A9 01 8D 02 C4 A9 01 8D 
9308- 00 C4 A9 00 8D 00 C4 4C 
9310- 05 93 

Type $9300.9311 CR 

9300.9311 is a monitor instruction 

to dump memory contents from 

9300 to 9311 inclusive 
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bits, a machine language program, a CRT graphics image. They are different 
from TEXT files which are a sequence of encoded character strings or from 
APPLESOFT files which are encoded BASIC instructions. 

To save a machine language program use : 

BSA VE filename, A address , L length 

where 'address' is the address of the start of the program and 'length' is the 
number of bytes you wish to save . These are specified by a decimal number 
or alternatively using a hexadecimal number preceded by a$. For example 

BSA VE EX6.0 .0, A$9300, L$11 

will save 17 bytes starting at memory $9300 with the filename 'EX6.0.0'. To 
retrieve a binary file use 

BLOAD filename , A address 

If you leave off the A parameter, the binary file will be loaded into the 
location from which it was saved. Otherwise it will be put in the memory 
starting at the specified address . To use BLOAD as a DOS command within 
a BASIC program use the instruction PRINT CHR$( 4) 'BLOAD filename'. 

Exercise 6.3.1 Machine language square waves 
and BSAVE 

(a) Write, run, and print out a machine language program which 
produces square waves at PB4. Examine and record the signals on 
your oscilloscope. BSA VE and BLOAD the program. 

(b) Run the program DEM02 on the AMPERGRAPH disk or one of 
your own programs which will quickly produce a graph. Data for 
page 2 of high resolution graphics are stored in the memory 
locations from $4000 to $5FFF. BSA VE this page of graphics on a 
disk. Write a BASIC program to BLOAD and display the file . Be 
sure to set the display to HGR2. 

6.4 Operation of a DAC 
The purpose of this section will be to explore the use of Digital to 

Analog Converters (DAC) and to get some practice in assembly language 
programming. You also will learn how to instruct the computer to go back 
and forth between BASIC and machine language programs. 

You have used an ADC in the previous sections to convert an analog 
voltage signal external to the computer into a digital signal which the 
computer can manipulate and store . The inverse operation is done with a 
DAC. The DAC is an output device which converts the binary number to an 
analog voltage . They can be used for a variety of purposes. For example, 
they are used as the output devices for digital music playback and for digital 
video players . You will use them to drive oscilloscope displays. 
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Fig. 6.7. DAC circuits. 

Apple architecture and assembly language 

There are two DACs connected to the APPLE parallel interface, Figure 
6. 7; one is on Port AA and one is on Port BB of the second 6522 VIA (base 
address $C480). They are used by setting up the ports as output and then 
writing digital numbers into the ports . 

For electronic reasons which need not concern us , the DAC you are using 
uses an inverted representation of numbers, ie , the binary number $00 at its 
input produces +5 Vat its output and $FF at its input +0 Vat the output. To 
generate the conventional conversion between analog voltage and binary 
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numbers the binary numbers at the output to the DAC should be inverted , 
ie , all ones converted to zeroes and zeroes to ones. 

Exercise 6.4.1 DAC sawtooth wave (BASIC) 
Using BASIC and Port AA, write a program which will set up the 
port for output and write the temporal sequence of numbers $00, 
$01 , .... , $FF, $00, ... ad infinitum into the port. Observe the output 
of the DAC with the oscilloscope and note the results . The output is 
on pin 4 of the DAC chip. 

Exercise 6.4.2 DAC sine wave (BASIC) 
Write a BASIC program which will output a sine wave from the 
DAC. Take note of the fact that the sine function goes from -1 to 
+ 1; this must be put in a digital range from 0 to 255 for the DAC. 
Display the sine function in two ways : (a) by calculating the sine 
each time it is needed, (b) by using a lookup table . In (b) a table 
(array) of 100 sine values is calculated once and then, when the 
program needs a value , it is obtained from the array . Observe with 
the oscilloscope and note the difference in speed of the two methods 
of programming. 

6.5 Indexed addressing 
Before proceeding to the use of DACs with assembly language 

programs, two more assembly language concepts need to be understood; 
these are indexed addressing and program branching. 

A BASIC program sequence to move the data from one area of memory 
to another is 

10 8A=36864 : 88=37120 
20 FOR !=0 to 99 
30 A=PEEK (8A+I) 
40 POKE 88+1, A 
50 NEXT I 
60 END 

These instructions transfer an array of values from memory locations 
BA ,BA + 1, BA + 2, . .. , BA + 99 to BB,BB + 1, ... , BB + 99. An 
assembly language program can do the same thing much more quickly using 
indexed addressing. A program to do this is: 

9300 LOX #$00 Get 0 into the X register. 

9302 LOA $9000 ,X Get the data from address $9000+X 

into A. 

9305 STA $9100 ,X Store the data in A at address 

$9100+X. 
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9308 
9309 

9308 

9300 

INX 
CPX 

BNE 

BRK 

#$64 

$9302 

Add 1 to the X registe r. 

Compare (calculate X - $64) the 

number in the X register with $64 

($64 = 100) 

If X- $64 is not equal to zero, go back to 

$9302. 

Stop execution. 

There are several new instructions here. Read the comments on the right 
thoroughly to understand how they work. LDX #xx (immediate) is similar 
to LDA #xx ; it will load the X register with the value of the byte which 
follows. LDA $xxxx,X indicates indexed addressing . This instruction will 
'load A with the data which appears at the address computed by adding the 
value in the X register to the address $xxxx .' In the above program if X 
contains the value $1C, the 6502 will load the data from address $901C 
($9000 + $1C) into A. Notice one limitation- since the X register can only 
range from $00 to $FF (eight bits) the range of addresses which can be 
'indexed' is limited to those within 255 from the base address . STA $9100,X 
operates in an analogous manner. INX stands for 'increment X' ; it adds 1 to 
the X register. 

The next instruction, CPX #$64, is 'compare X with the next byte' (notice 
the immediate mode addressing indicated by #) . In this case $64 is sub­
tracted from X and the flags (the data bits in the processor status register) are 
set according to the result. TheN bit is set to 1 for a negative result, Z is set 
to 1 for a zero result; otherwise, these flag bits go to zero . The last 
instruction, BNE $9302, tests the Z flag. BNE stands for 'branch if the 
previous result was not zero' . (More on branching in section 6.9.) Thus the 
computer will jump to $9302 if Z is zero. Since the state of the Z flag is set by 
the CPX instruction, the result of these last two instructions is that the 
program will loop (branch) back to $9302 if X is not equal to $64. Thus, as 
the program does each loop, the X register increments until it gets to $64 , 
then the branch is not taken and the computer goes on to the break 
instruction at $930D and stops. The net result is the same as the BASIC 
program shown before. 

Exercise 6.5.1 DAC output in machine language 
By using indexed addressing, the BASIC program which you wrote 
for Exercise 6.4 .1 can be translated into assembly language. The 
procedure is as follows: first, write a BASIC program which POKEs 
the numbers 0-99 into memory $9000-$9063. These will be the 
'data' to be output to the DAC. Next, go to the MINIASSEMBLER 
and enter a program starting at $9300 which will read the data bytes 
from address $9000 to $9063 and output them to the DAC. This 
program will be very similar to the one described above. Add a JMP 
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instruction at the end which will loop back to the beginning of the 
program. Then run the machine language program with $9300G, 
and observe the results with the oscilloscope . 

6.6 The CALL and RTS connection 
A few embellishments will make the operation of the BASIC­

machine language system smoother. Once the machine language program is 
in the memory , it can be used by a BASIC program through the use of the 
CALL statement. When BASIC executes a 'CALL address' statement it 
jumps to the address given and begins to execute the instruction it finds there 
as a subroutine. To then return to BASIC from the machine language 
subroutine , the machine language instruction 'return from subroutine' RTS 
is used . The last instruction of every subroutine is RTS. (More on this later.) 

Exercise 6.6.1 BASIC- machine language connection 
Try using the assembly language program you wrote in Exercise 
6.5.1 in a BASIC program. First go to the MINIASSEMBLER and 
replace the JMP instruction at the end with RTS . Then go to BASIC 
and enter and run the following . 

200 CALL 37632 
210 GO TO 200 
Watch what happens with the oscilloscope and explain the qualita­
tive shape of the waveform. 

Exercise 6.6.2 DAC sine wave (BASIC and machine 
language) 
Write a BASIC program which calculates a sine wave table (array) 
whose amplitude varies between 0 and 255 and which is stored in 
$9000-$9063 (100 values) and then uses a CALL to a machine 
language program to show the results on the oscilloscope . Try 
varying the frequency of the calculated sine wave and observe the 
effects. 

6.7 An X-V plotter 
By using two DACs and the oscilloscope you can make an X-Y 

plotter, that is a display whose X value is determined by one function and 
whose Y value by another function of the same parameter. The oscilloscope 
will display the two input channels in this way if you set the MODE to 'X-Y' . 
As an example of X-Y plotting, suppose the x axis voltage varied as 
cos( 0) and they axis voltage varies as sin( 0), what would be the figure traced 
out as successive points were plotted ( e = 01 , 02 , .. . )? 
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Exercise 6.7.1 Lissajous figures on a DAC X-V plotter 

Use the two ports and DACs to plot Lissajous figures. Program the 
calculations in BASIC and the display output in assembly language . 

(a) Begin with the simplest figures , a circle : 

x = cos(e) , y = sin(e) 

and a line : 

x = cos(e) , y = cos(e) 

(b) Next try: 

x = cos(8 1) , y = sin(82) 

where 

or 

(c) What happens when you vary the relative phase or amplitude of x 
and y? For example , try a circle again but with 

x = cos(e) , y = ! sin(O) 

then 

x = cos(e + br) , y = ! sin(e) 

6.8 Boolean algebra 
Normal algebraic variables can take on an infinity of values and are 

added, subtracted, multiplied, etc . to give new values. Boolean variables are 
quantities which can take on only two values and are operated upon by 
AND , OR, NOT, etc to give new values. The two values can be described by 
0 and 1, HI and LO , or true and false. (No!, MIDDLE, or maybe .) The 
AND operation combines two Boolean variables A and B to produce a third 
Boolean variable C such that Cis 1 if, and only if, both A and B are 1. The 
AND operation between two Boolean variables is represented by A or by a 
dot , 

C = A·B or C=A A B 
Boolean algebra statements are frequently defined by truth tables . Table 6.1 
shows the AND operation 

Table 6.1 Truth table for the AND operation 

A B C =A · B 

0 0 0 
0 1 0 
1 0 0 
1 1 1 
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The 6502 has an instruction AND which does exactly this . Each of the 
eight data bits is considered as a Boolean variable . The AND instruction 
performs the AND operation between each of the corresponding bits in the 
accumulator A and some memory location and deposits the result in the 
accumulator. In the table of instruction codes of Appendix I, and AND 
operation is written A A M~ A. 

An important application of the AND instruction is to help determine 
whether some bit in a byte is a 0 or a 1. The first step is to isolate the bit and 
to produce a result dependent upon the value of the bit in the place being 
tested. This operation is called masking. It is as though we hide the bits of no 
concern behind a mask and look through a hole in it at the one of interest. 
The result is independent of the value of the other data bits. The program 
steps 

LDA #10 
AND $9405 

will isolate DB4 (Data Bit 4) of the contents of memory location $9405. The 
AND operation between the 1 loaded into DB4 of the accumulator by the 
LDA#lO operation and the data in memory location $9405 will produce a 1 
in DB4 of the accumulator if DB4 of $9405 is a 1 and 0 if it is a 0. All other 
data bits of the result in the accumulator will be zero because 0 AND 0 = 0 
and 0 AND 1 = 0. 

Exercise 6.8.1 AND 
To see how this works, use the MINIASSEMBLER to write the 
machine language program code for the following program starting 
at memory location $9300. 

$9300 LDA 9400 
AND 9401 
STA 9402 
RTS 

Store some random numbers into $9400 and $9401 by typing the 
appropriate monitor commands from the MINIASSEMBLER. To 
do this , with the ! prompt before you, type 

$9400: D3 SF CR 

to store $D3 in $9400 and $5F in $9401. To verify that these are the 
numbers stored, type (with the prompt! on the monitor): 

$9400.9401 CR 

This will display the contents of memory locations from $9400 
through $9401 (which is of course just $9400 an $9401). In general, 
these two numbers could be the beginning and end of any interval. 

Store some selected hexadecimal numbers in $9400 and $9401 , 



76 Apple architecture and assembly language 

run the program and then display the results in locations $9400-­
$9402. Write out the hexadecimal numbers in binary to demonstrate 
how AND worked between the two starting numbers. Choose two 
starting numbers so the entire AND truth table between them can 
be verified . 

The Boolean algebra operation conjugate to AND is OR, which given two 
Boolean variables A and B, will produce a Boolean variable that C which is 
1 if A orB is 1. The OR operation is written 

C = A + B or C = A V B 

It is defined by the truth table, Table 6.2. 

Table 6.2 Truth table for the OR operation 

A B C=A+B 

0 0 0 
0 1 1 
1 0 1 
1 l 1 

Exercise 6.8.2 ORA 
Rewrite the program in Exercise 5.8.1 using the ORA instruction 
(A + M ~A) in place of the AND instruction. As above, run the 
progam and write out in binary form the resulting byte in $9402 and 
note the relationship between them and the bits you started with in 
$9400 and $9401. Put the data into $9400 and $9401 which verify the 

entire truth table . 

The third and final Boolean algebra instruction in the 6502 is exclusive OR 
(EOR). It works on each bit like the AND and OR operations. EOR is 
written 

C=AEBB or C =A VB 
The rule for exclusive OR between A and B is that Cwill be HI only if either 
A is HI or B is HI. 

Table 6.3 is the truth table for EOR. 

Table 6.3 Truth table for the EOR operation 

A B C=A EB B 

0 0 0 
0 1 1 

0 l 
1 0 
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An important application of EOR is to invert one or more bits in a 
memory location and leave all the others alone. For example you could 
produce square waves on PB7 at the same time that the other lines on this 

port are used for other applications. This inverting property of EOR, that 
1 EEl DB = DB and 0 EEl DB = DB ; is easily derived by inspection of the 
truth table above. (DB means DB inverted or 'NOT DB' thus , if DB = I 
then DB = 0 and if DB = 0 then DB = 1.) 

Exercise 6.8.3 EOR 
Write a program which inverts DB6 of the data stored in the 
memory $9401 and leaves the rest of the bits alone. Run it and 
demonstrate this property by displaying and printing out the con­
tents of $9401 before and after running with several initial values. 

6.9 Branching instructions 
The 6502 has a group of instructions called branching instructions. 

They test the byte obtained in a previous operation for various conditions: 

if the result of that test is true ; the program will continue execution at some 
other location. The BNE instruction in the program in Section 6.5 tested 
whether or not the result of the CPX instruction was equal to zero; if not , the 
branch to $9302 was taken and program execution continued from there. If 
the test result is false, the program counter advances sequentially, as it 
would in the absence of the instruction . Thus , branching instructions are 
similar to the IF ... GOTO statement in BASIC. 

To demonstrate how this works wire up the circuit shown in Figure 6.8. 
Before doing so it is important that you make sure that Port A is set up for 
INPUT which means that all the data bits in data direction register A be set 
equal to zero. A quick way of doing this is to simply press CONTROL 
RESET. To protect electronic components, the 6522 sets all its control 
registers, eg, DORA and DDRB to zero whenever the power is turned on or 
the machine is RESET. If it were otherwise , the possibility , indeed probabil­
ity, would be present of both the 6522 and the switch which you are installing 
trying to control data lines leaving the machine. This can lead to a 'short 
circuit' since the 6522 may try to connect a data line to + 5 V, at the same time 
that the switch which you installed connects to ground. This condition can 
lead to burned out components so be careful to avoid it. 

Exercise 6.9.1 Masking and branching 
Enter and run the program indicated in Figure 6.9. In formulating 
programs it is usually easier to write a mnemonic memory location 
like ORA for $C401 (which is what you type into the MINI-
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Fig. 6.9. Masking program. 
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AGAIN LOA #04 
AND ORA 
BNE AGAIN 
BRK 

AGAIN= memorylocationof 

beginning of program 

ORA= $C401 

ASSEMBLER) and a mnemonic like AGAIN to indicate the s~p 
where the program is to loop upon itself. Then do the proper 
translation of mnemonics as you use the MINIASSEMBLER. This 
program will continuously loop back upon itself waiting until you 
press the switch which you have connected to the PA2. When you 
do, it will go on to the BRK instruction and stop execution. The 
APPLE monitor will display the contents of the machine registers, 
ie, A,X,Y, P and S, together with the value in the program counter 
when the BRK was encountered . 

The 6502 has eight instructions like BNE which branch as the result of a 
test. These instructions actually test one of four of the bits in the process 
status register. They are the carry bit (C), the zero bit (Z), the overflow bit 
(V), and the negative bit (N) . These bits are set as a result of what happened 
in the processor during a previous operation. For example, if the AND 
operation produced zeros in all eight data bits , the zero bit in the P register 
would be set to 1. If it did not produce all zeros, the Z bit in the P register 
would go to 0. If DB7 is 1 as the result of an operation , theN bit in the P 
register gets set to 1; if the operation produced a 0 in DB7 theN bit goes to 
0. Each of the branch instructions tests one of these flag bits (Z,N ,C, V) for 
a 0 or a 1. The effect which each machine instruction has on the P register 
flags is shown by checks (j) in the right hand column of the 6502 instruction 
list in Appendix I. Some instructions do not affect the P flags ; this is indicated 
by a dash(-) . 

An important point to note is that a scheme of relative addressing is used 
by the 6502 CPU in executing branch instructions (and only branch instruc­
tions!). In typing the branch instruction for the switch circuit above into the 
APPLE you typed BNE followed by the memory location ($9300) where the 
instruction was to be found ifthe branch is taken . Look at the code generated 
and note that in memory location $9305, the number $DO is stored which is 
the op-code for BNE. In the following memory location the number $F9 is 
stored in response to your instruction that the branch go to $9300 if the BNE 
test is true . If the test is true the 6502 will take the value of the number stored 
in the location following the branch op-code and add it to the current value 
of the program counter if the branch is to be taken. Then execution resumes 
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at that calculated address . To demonstrate this, take the number stored in 
$9306 and add it to the low byte of the location where the program counter 
will be if the branch is not taken, ie, $07. You can do this with paper and 
pencil or using a hexadecimal adding routine which is in the monitor. From 
the MINIASSEMBLER type $07 + F9 CR. The result is $00, which, 
together with the high byte of the program counter $93 , gives the address 
$9300 which the CPU will use to find its new instruction if it has to take the 
branch. The high byte of the offset is assumed to be $FF if the offset is 
negative. 

This scheme of relative addressing has the important consequence that 
program codes which have branches are intrinsically relocatable in memory . 
It has the drawback that branches can be taken which are no more than 128 
memory locations earlier in the program and not more than 127 steps further 
on since the largest negative eight-bit number $80 is -128 and the largest 
positive eight-bit number $7F is 127. In practice this does not cause serious 
restrictions for short programs. 

6.10 Subroutines and use of the stack 
Another program branching capability which every computer must 

have is that of executing subroutines. A subroutine is a sequence of program 
steps that can be used anywhere in a program by a jump to subroutine (JSR) 
instruction. 

To execute a subroutine, the computer stops fetching instruction op-codes 
sequentially from memory, jumps (JSR) to the memory location indicated 
and from there continues fetching instructions until a return from subroutine 
(RTS) instruction is encountered. It then returns to the original program and 
resumes fetching instructions in sequential progression where it left off when 
the subroutine was called. This process is illustrated in Figure 6.10 . 

In order for the computer to return to the correct place in the calling 
program , the memory location of the next op-code after the JSR in the 
calling program needs to be saved. When the instruction JSR is executed, 
the 6502 stores the memory location of the next op-code after the JSR 
instruction on the top of the stack. This operation is analogous to writing the 
return address on a card and placing it on top of a pile. The last instruction 
of every subroutine is RTS which means return from subroutine. This 
instruction effectively takes the top card from the pile, reads the return 
address, puts that location into the program counter and then throws the 
card away . 

The idea of using a stack (the pile of reminder cards) to store addresses , 
may seem like a tortuous way of doing things. It is, however, an invention 
which was very important for the development of modern computers. 
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Fig. 6.10. Subroutine execution 
sequence. 

Apple architecture and assembly language 

$9100 LDA #$01 

1 
$9203 JSR $9500 

$9206 LDA $C400 

1 
$9253 BRK 

$9500 LDX #$00 

1 
$9563 RTS 

First op-code of main program; 

program executes sequentially to 

$9203 where JSR is found; 

Program execution continues at 
$9500. 

Main program continues after 

subroutine execution until BRK 
which halts computer. 

First op-code of subroutine; 

subroutine executes sequentially 

until RTS is found; then the 

computer returns to the main 

program at the instruction just after 

the JSR. 

Without something like a stack it is not possible to use ROM to store 
subroutines. It is said that one of the most awkward things about using the 
first successful minicomputer , (the DEC PDP8), was that it did not have a 
stack. The stack is akin to the Reverse Polish Notation used by Hewlett 
Packard calculators. The last item stored in the stack is the first to be 
retrieved. In addition to storing the return address for the subroutine, the 
stack is sometimes used (with care and understanding) to pass numbers from 
a calling program to a subroutine. 

As mentioned in Section 6.2 the memory locations of the stack on the 6502 
are those memory locations on page 1 of memory , ie , those memory 
locations with addresses between $0100 and $01FF. The stack pointer is a 
16-bit register in the 6502 which contains the address of the top of the stack. 
There, after completion of the subroutine, the CPU will find the memory 
address to which it must return program control. The bookkeeping of the 
stack is quite automatic in the CPU. From the programming point of view 
the only thing which you must be sure to do , is to have an RTS instruction for 
every JSR instruction . 



Fig. 6.11. Machine instruction 

execution times (from MOS 

Technology Microcomputer 

Programming Manual) . The 

numbers are the machine cycles 

needed to execute the 

instruction . 
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Exercise 6. 10.1 JSR 
Write a machine language program which starts at $9100 and waits 
for you to push a switch which is wired to PB3, as shown in Figure 
6.8. When the switch closes the machine language routine should 
call (JSR) the monitor subroutine at address $FBE4 which produces 
a 0 .1 s BEEP. CALL the program from a BASIC program which 
then prints 'THE BELL RANG' on the CRT monitor after the 
subroutine has been completed. 

6.11 Assembly language timing loops 
Frequently it is necessary to estimate the time required for a 

program to run and to write simple time delay programs in machine language 
to wait for some event. Time delay loops written in BASIC are not precise 
because of the way in which the BASIC interpreter functions. Most pro­
grams written in machine language run with well-defined and with easily 
calculable execution time . A copy of the 6502 instruction set with the 
execution time in number of machine cycles of each instruction is shown in 
Figure 6.11. 
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ADC 2 3 4 4 4' 4' . 6 5' JSR 6 
AND 2 3 4 4 4' 4' . 6 5' . LOA 2 3 4 4 4' 4' . 6 5' . 
ASL 2 5 6 6 7 LOX 2 3 4 4 4' . 
BCC 2'' . LOY 2 3 4 4 4' 
BCS 2'' LSR 2 5 6 6 7 
BEQ 2" . NOP 2 
BIT ORA 2 3 4 4 4' 4' . 6 5' . 
BMI 2" . PHA 3 
BNE 2" . PHP 3 
BPL 2" . PLA 4 
BRK PLP 4 
BVC 2''. ROL 2 5 6 6 
BVS 2 ... ROR 2 5 6 6 
CLC 2 RTI 6 
CLD 2 RTS 6 
CLI 2 SBC 2 3 4 4 4' 4' . 6 5' . 
CLV 2 SEC 2 
CMP 2 3 4 4 4' 4' . 6 s· . SED 2 
CPX 2 3 4 SEI 2 
CPY 2 3 4 STA 3 4 4 5 5 6 6 
DEC 5 6 6 7 sTx• 3 4 4 
DEX 2 STY•• 3 4 4 
DEY 2 TAX 2 
EOR 2 3 4 4 4' 4' . 6 5 TAY 2 
INC 5 6 6 7 TSX 2 
INX 2 TXA 2 
INY 2 TXS 2 
JMP 3 5 TVA 2 

• Add one cycle if indexing across page boundary 
• • Add one cycle if branch is taken, Add one additional if branching operation crosses page boundary 
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Fig. 6.12. Time delay program. 

Fig. 6.13. Longer time delay 
program. 

Apple architecture and assembly language 

Number of clock cycles 

LDX #12 
MORE DEX 

2 
2 
3 BNE MORE 

The execution time is five cycles for each circuit of the loop. 
$12 = 18. times around loop so 18 . x 5 . = 90 J.LS delay . 

Total time for program 90 + 2 J.LS = 92 J.LS. 

To compute the time required for a program to run we simply note the 
number of machine clock cycles required of each instruction and add them 
up . A time delay program is given in Figure 6.12 together with a computation 
of the number of clock cycles required for it to run . To get longer delays it is 

easy to write programs with multiple nested loops or using multiple precision 
addition. An example showing the use of double precision addition is given 
in Figure 6.13. 

Number of cycles Instruction 

2 LDA #00 Initialize sum low and sum high 
4 STA SL 
4 STA SH 

10 

2 AGAIN C LC 
2 LDA #01 Add 1. to SL and update SL 
4 ADC SL 
4 STA SL 

2 LDA #00 Double precision add: # 00 and 
4 ADC SH carry added to SH 
4 STA SH 

4 CMP TH Compare SH to TH , if not equal 
3 2 BNE AGAIN add one more 

29 or 28 

4 LDA SL Compare low bytes, SL and TL 
4 CMP TL 
3 BNE AGAIN 

11 
10 J.LS for init 

TH x 256 x 29 J.LS for main loop 
TL x (28 + 11) J.LS for final loops 
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Exercise 6.11.1 Machine language timing loops 
Write a program using triple precision addition to generate a time 
delay of 5 s. After each 5 s interval , add one count to the LED 
display connected to PBB. With a watch measure the time for the 
contents of PBB to increment to check that your program is correct. 

6.12 Indirect addressing 
Although you will not have occasion to use indirect addressing in 

this course it will be discussed briefly because it is often used in assembly 
language programs. 

Indirect addressing is an addressing mode which can be contrasted with 
absolute addressing that you have already used. The instruction written JMP 
$9500 (jump absolute) means jump to memory location $9500 and continue 
program execution with the op-code found there. The indirect instruction 
written as JMP ($9500) (jump $9500 indirect) instructs the CPU to look in 
memory locations $9500 and $9501 to find the low and high parts of the 
address where the next op-code is to be found and from which subsequent 
program execution is to be continued. The jump indirect instruction is useful 
for jumping to different parts of a program depending on previous program 
steps. The previous steps may for instance, write a new address into $9500 
and $9501. In general , writing parentheses around a memory address in an 
assembly language program means ' the contents of' . With the exception of 
the JMP indirect instruction, the indirect addressing modes of the 6502 are 
limited to indirect addressing from memory locations lying between $0000 
and $00FF. 
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Fig. 7.1. Drag force of a fluid on 
thin plates, F, = - A!L(dv,ldx). 
For a 'Newtonian ' fluid, the 
shear force· per unit area is 
proportional to the shear in the 
velocity, dvj dx. The viscosity !L 
is the proportionality constant. 

A solid body moving through a fluid has a force pushing on it which depends 
on the type of fluid. You might imagine that it would be much harder swim 
in honey than it is in water. The parameter which describes this difference is 
the viscosity (F-L). The drag force also depends upon other parameters much 
as the surface area of the body and the fluid density, as you will discover in 
this chapter. The computer will be programmed to measure the speed of a 
sphere falling through glycerine and to calculate the viscosity. The measure­
ments are made with photosensors and using machine language program­
ming. A short section at the end of the chapter describes the use of an 
EPROM to record semipermanently a machine language program. 

7.1 Force required to move a solid body through a fluid 
In this section the physics of a sphere moving in a fluid will be 

discussed . There are two distinct regimes ; if the sphere is moving slowly, the 
dominant force resisting its motion is due to viscosity. For rapid movement, 
the inertial resistance of the fluid due to its densi ty is the dominant factor. 
The magnitude of the resistance and the functional dependence on sphere 
size, velocity, fluid density and viscosity can be estimated in a rough way for 
both cases. This gives insight into how the drag force behaves without getting 
lost in the mathematics . Indeed , with turbulent phenomena exact computa­
tions have not been possible. 

Viscous resistance of a fluid arises from shear in the velocity profile of 
flow . If two flat plates have fluid between them , as shown in Figure 7.1, a 
force is required to move the top one at a constant speed in re lation to the 
bottom one . The force is proportional to the area of the plate and, (if the 
fluid is characterized by a Newtonian viscosity coefficient) , to the relative 
velocity and inverse distance between plates , ie , to the ve locity gradient 
dvz/d.x. 

/Plate of 

I "'"A 



Fig. 7.2. A sphere falling slowly 
in a fluid, the fluid flow to move 
fluid from front of sphere to rear 
extends to about r away from 
sphere. So, dv/dx = vi rand F= 
47Tiuvwith 47T,-2 as the area of 
sphere . 

v 

Fig. 7.3. A sphere falling with 
velocity v and a turbulent Wake. 
The fluid is accelerated to about 
velocity v. The volume of fluid 
displaced each second is 1rrlv, 
the cross-sectional area A is 1rrl. 
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Fluid motion to 
make space for 
the advancing 
sphere. Fluid 
accelerated to 
about velocity v. 
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Without doing elaborate computations this simple concept can be used to 
estimate the viscous resistance of a falling sphere. The effective area of 
velocity shear is more or less the area of the sphere, 47Tr2 (Figure 7.2). The 
velocity perturbation resulting from moving the ball through the fluid 
extends to a distance about equal to the radius of the sphere; thus, the 
velocity gradient, dv ) dx , which enters into the viscous drag relation is 
approximately vir. Putting these two rough estimates together, an estimate 
of the viscous drag Fv on the sphere is 

Fv = 47Tr2J.LVIr = 47Tj.LTV (7.1.1) 

where J.L is the viscosity of the fluid . 
This problem is amenable to exact mathematical analysis; it was first done 

by Stokes and the relation is known as Stokes' law for the viscous resistance 
of a sphere moving in a fluid. His result t is 

Fstokes = 67Tj.LTV (7.1.2) 

Stokes' law is verified experimentally for cases when the sphere's motion is 
sufficiently slow. The approximate approach used above gives important 
insight into the physical origin of the Stokes' formula. 

More rapid motion leads to a turbulent wake behind the sphere. Though 
mathematical computation of the drag force in this regime has not been 
done, relatively simple ideas give a good estimate of the force observed . To 
move an object rapidly , the speed of the fluid in the path of motion is 
accelerated from zero to the speed of the sphere and the fluid is pushed aside 
and then forms a turbulent wake behind the sphere. The turbulence 
eventually dissipates the kinetic energy of the moving fluid as heat and sound 
energy without giving any kinetic energy back to the sphere . The drag force 
on the sphere will be equal to the force required to push the fluid out of the 
way. 

An estimate of the mass of fluid moved per unit time is the mass of the 
column of pushed aside fluid each second as the sphere falls . This is the 
product of the cross-sectional area A of the object perpendicular to the 
direction of motion, the velocity of motion v, and the density p of the fluid 
(Figure 7.3). A maximum guess is that each element of this column is 
accelerated to the velocity of the moving object by the presssure exerted on 
the front face of the object. 

Therefore the work done by the drag force on the sphere (force x 
distance) is equal to the kinetic energy of the fluid (! x mass of fluid 
moved x v2

). 

(Fest) ( v Lll) = HPr7Tr 2v Llt )v2 

Thus 
Fest = !prv2A (7.1.3) 

is the estimated drag on the sphere where A is the cross-sectional area . 

t See , for instance, Geodynamics: Applications of Continuum Mechanics to Geological 
Problems, D. L. Turcotte & G. Schubert , Wiley, New York, 1982. 
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The drag resistance of a blunt object in terms of an experimentally 

determined drag coefficient cd is by definition 

F drag = CoApv 212 (7 .1.4) 

The combination pv 2!2 is called the kinetic pressure of a fluid. The experi­
mentally determined drag coefficient for a sphere moving rapidly through a 
fluid is Cct = 0.5. As you can see , Equation (7.1.3) over estimates the drag 
on a sphere by a factor of 2 . Drag coefficients for other shapes are given in 

Figure 7.4 . 
Combining the Stokes relation with the turbulent force gives the total drag 

force on the falling object as 

Frat = 67r!-LYV + Co m 2! pv 2/2 (7 .1.5) 

Fig. 7.4. Experimental drag 
coefficients (from p. 11.68 of 
Mark's Standard Handbook for 
Mechanical Engineers, ed. T. 
Beaumeister, 8th edn, McGraw­
Hill, New York, 1978- used by 
permission). 

As Equation (7 .1.4) shows , the turbulent drag for a sphere is proportional 

the square of the velocity; therefore , it is the dominant phenomenon at high 
velocity whereas viscous drag is more important for a slowly moving sphere. 

Drag Coefficients of Various Bodies 

For bodies with sharp edges the drag coefficients are almost 
independent oi the Reynolds number, for most of the resis­
tance is due to the ciifference in pressure on the front and rear 
surfaces. Table~ gi,·es Co = D!qS, where Sis the maximum 
cross section perpendicular to the wind. 

For rounded bodies such as spheres, CJiinders , anJ ellipsoids th!" 
drag coefficient depends markedly upon the Reynolds num­
ber, the surface roughness, and the degree of ruruuknce- in the 
air stream .. \ sphere and a cylinder, for instance, experience a 
sudden reduction in Co as the Reynolds numuer e:;ceeds a 
certain critical ,·ahte. The reason is thH at low speeds (small 

Re) the Anw in the boundary layer adjacent to the body is 
laminlf 31ld the Aow separates at about 83° from the fror.t (Fig . 
20) . . \ wide wake thus gi' es a large drag . . -\t higher speeds 
(large Re) the boundary layer becomes turbulent, gets addi­
tional energy from the outside Anw, and does not separate on 

Laminar boundary loy~r Turbulent boundary layer 
(early separation- (later sepa rat ion-

wide woke) norro• woke) 
Fig. 20 Boundary 1>,\cr of a sphere . 

the front side of the sphere. The drag coefficient is reduced 
from about 0.47 to about 0.08 at a critical Revnolds number of 
about ~00,000 in free air. Turbulence in the ~ir stream reduces 
the nlue of the critical Reynolds numher (Fig. 21). The 
Reynolds number at which the sphere drag CD= 0. 3 is taken 
as a criterion of the amount of turbulence in the air stream of 
wind tunnels . 

Table 4. Drag Coefficients 
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Fig. 7.5. Drag force vs. Reynolds 
number (from Turcotte & 
Schubert, Geodynamics: 
Application of Continuum 
Physics to Geological Problems, 
Wiley & Sons, New York, 1982). 
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The ratio of the turbulent drag force for a sphere to the viscous drag is 

F turb = ConT2 pv2 _1_ = Co p(2r)v = Co Re (7 .1.6) 
Fvis 2 61TJUV 24 fL 24 

Re = 1r2rv 
fL 

The parameter Re (dimensionless) is called the Reynolds number ; it is used 
as a measure of the turbulence of the fluid flow . The length (2r) used in 
defining Re for a given body is usually taken as the length of the chord it'i the 
direction of motion . Thus, for a sphere it is the diameter. 

Setting Equation (7 .1.6) equal to 1, shows that the change from smooth to 
turbulent flow occurs at a Reynolds number of about 48 (with C0 = 0.5) . 
Figure 7.5 is a graph of the drag force vs Reynolds number for the range of 
Reynolds numbers from 10- 1 to 106 and shows that the transition occurs over 
a wide range of Reynolds numbers . The smooth flow regime is generally 
below a Reynolds number of 1 and the turbulent regime above 103. 

Exercise 7 .1.1 Stokes' law 
(a) For a 2 mm diameter bubble of air rising through glycerine, what is 

the predicted terminal velocity assuming Stokes ' flow? Is this what 
you observe in the laboratory? What is the Reynolds number? Does 
it agree with the assumption of Stokes' flow? 

(b) By using a propeller-like flagella an E. coli bacterium 1 fLm in 
diameter can swim about 0 .03 mm/s in water. What is the Reynolds 
number? What is the drag force on the bacterium? If the bacterium 
can obtain 3 x 10- 12 erg per molecule of glucose and can use 10% of 

that energy for propulsion , how many molecules per second must it 
metabolize to swim continuously? 

Material Viscosity (kg/ms) Density (g/cm3
) 

glycerine 2.33 (at. 288 K) 1.24 
mr 1. 78 x w-s 1.23 x w-3 

water 1.0 X 10- 3 1.0 

10 

Stoke's law 
limit 

Observed 
drag 

/ Turbulent 
dragC0 =i-

104 

Reynold's number (2rv p/JJ.) 
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A sphere starting from rest in a liquid will be acted upon by gravity Fg and 
buoyancy Fb forces. Once it begins to move, the drag force Fd will act to slow 
its acceleration. By Newton's laws 

Fg - Fb - Fd = rna (7.1.7) 

Fg and Fb are constant regardless of the speed of the ball but Fd is dependent 
on the speed. If Stokes' flow is assumed, Equation (7 .1.7) becomes a 
differential equation for the velocity of the sphere 

m(dv/dt) + (67TrfL)V- (Fg- Fb) = 0 (7.1.8) 

Exercise 7 .1.2 Approach to terminal velocity 
(a) Assume the solution to Equation (7.1.8) is of the form 

v = a(1 - e11
h ). Plug into Equation (7.1.8) and find a and b. 

(b) Plot the velocity vs. time for a glass sphere of 0.60 em and 0.26 g 
starting from rest in glycerine. What is the decay time b of the 
acclerated motion? 

(c) How far will the sphere fall before attaining 0.95 of the final terminal 
velocity? 

7.2 The experimental apparatus 
To measure the viscosity of a fluid the apparatus like that shown in 

Figure 7.6 will be used. It consists of a column of glycerine into which spheres 
of various sizes and compositions can be dropped and observed to fall under 
the influence of gravity. The velocity of the falling sphere can be measured 
by noting the time at which it moves through each of the four light beams. 
The essence of the following experimental work is to write programs to 
measure the required times and to graph the resulting data. 

Each of the four light beams which traverse the glycerine column have 
several elements . LED light source activates a cadmium sulphide photo­
resistor whose resistance changes when light shines upon it. To sense this 
resistance change and to convert it into a digital signal suitable for computer 
processing , a voltage comparator circuit is used. 

An LED is a small solid state light bulb which requires about 10 rnA of 
current and 1.5 V to operate. A higher voltage source is generally used 
together with a current limiting resistor in series as shown in Figure 7. 7. An 
LED passes current in only one direction so it is important that it be 
connected with the correct polarity. 

A cadmium sulfide photo-resistor, is used in many cameras to compute the 
exposure time. Like a thermistor , it is a passive device whose resistance 
changes . The cadmium sulfide sensor being shown has a resistance of over 20 
MD in the dark and a resistance in the hundreds of ohms in bright sunlight; 
so its resistance changes by over 100,000 to 1. Although it is quite sensitive 



Fig. 7.6. Viscometer apparatus. 

Fig. 7.7. Optical position sensor 
circuit. 

7.2 The experimental apparatus 
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to light , a cadmium sulfide cell is a rather slow device; it takes about 30 ms to 
fully respond to a sudden change in light level. 

To translate the resistance change which the light beam induces in the 
photo-resistor to a digital signal, a voltage comparator is used (Figure 7.7) . 
The comparator will produce an output of either 5 V or 0 V depending upon 
whether the input voltage to the + input of the device is greater than or less 
than the voltage to the - input. Each LM339 has four such comparators in 
a single 8 x 15 mm integrated circuit chip. The comparator circuit in Figure 
7. 7 has a little bit of positive feedback incorporated to give latching action; 
it takes more voltage to turn it on and less voltage to turn it off than just the 
minute voltage change required to make the comparator switch. This 
hysteresis is similar to that used in the temperature controller of Chapter 2. 
The circuit is called a Schmidt trigger and is used frequently with mechanical 
switches to eliminate chattering. 

Exercise 7.2.1 Cadmium sulfide eel resistance and 
voltage changes 

To get a feeling of the voltage changes being registered by the 
cadmium sulfide light detectors, attach the wires and turn on the 5 
volt power to the fluid column apparatus. Fill the column with 
glycerine and wait until most of the bubbles are gone. The glycerine 
column needs to be in place for the sensors to focus correctly . Level 
the apparatus with the screws on the base . Attach an oscilloscope 
probe to the test point provided on the circuit board and put the 
oscilloscope in the free running mode with a sensitivity of 1 V/div. 
This point is the hot (not ground) side of the cadmium sulfide cell 
(point A, Figure 7.7). The 50 kf! potentiometer which is in series 
with the photoresistor should be set so that the voltage at A is about 
one half the supply voltage , ie , 2.5 V . Break the light beam with a 
small piece of paper and note the voltage change which occurs . 
Move the paper across the light beam as fast as you can to get an idea 
of the minimum response time of the cadmium sulfide cell. Moving 
the paper vertically will probably give a faster response since the 
entry slit on the front of the tube is about 3 mm high and about 
10 mm wide. 

To set the potentiometer level for the experiment, turn it so that 
LED goes off, then the other way until it just goes on. Test the 
setting by dropping a medium sized ball. 

7.3 The need for using machine language 

Even though the data taking rate in the experiment under consider­
ation is modest by most standards, BASIC is too slow to do the job properly . 
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In addition, testing the value of binary bits associated with the comparator 
outputs can be done more simply and cleanly in machine language where 
binary is the natural number system. 

To show the speed limitation imposed by BASIC on this experiment , we 
need only estimate the time scale associated with the apparatus . To make a 
rough estimate, assume that the maximum velocity of fall to be reckoned 
with is about 0.3 m/s; this corresponds to the ball falling from the top of the 
column to the bottom (about 0.6 m) in about 2 s. The light beams have a 
width of about 3 mm ; thus the computer should be able to record an instant 
of timet with a resolution oft = distance/velocity = 0.003/0.3 = 0.01 s. In 
this time the computer needs to be able at least to decide that the light beam 
has been intersected and to record the time of intersection . 

Exercise 7.3.1 Speed of a sphere in air 
Estimate the time resolution needed to measure with the present 
apparatus described above , the speed of a sphere falling through air. 

For the computer to decide that the light beam has been intersected , the 
data in an input port must be read and tested. This can be done in BASIC 
with a WAIT instruction . To estimate the execution time of the WAIT 
instruction Program 7.3.1 in Figure 7.8 can be used . Square waves are 
generated on DB7 and fed into DB2 as a simulated signal. These are tested 
with the WAIT instruction . After the WAIT instruction finds DB2 HI it puts 
out a pulse on DBO which is then viewed simultaneously on an oscilloscope 
with the square wave going into DB2. Thus the execution time can be 
measured directly. The time at which theW AIT instruction found a 1 in DB2 
is recorded by line 65. To go through the WAIT and time recording 
instructions took 9 ms. Since we require a resolution of 10 ms , the WAIT 
instruction would be only marginally fast enough for our purposes . 

Though testing a bit in APPLES OFT can be done using the WAIT 
instruction, it has the annoying features that only one state of the bit can be 
tested. If you want to determine if a bit is HI or LO , Program 7.3.2 in Figure 
7. 9 can be used . If a number xis written in binary form then dividing it by 2N 
has the effect of simply moving the digits N places to the right; if 

x = %00ab edOO 

then !xis 

h = %000a bedO 

The INT(X) instruction sets all of the digits to the right of 2° place equal to 
zero . Thus line 70 of Program 7.3.2 with N + 1 = 3 does the following 
operation on the number X = %abed efgh: 

%abed efgh- %abed eOOO = %0000 Ofgh 
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Fig. 7.8. The BASIC WAIT 
instruction program example. 

Fig. 7.9. A BASIC program to 
determine the status ofthe Mh 
bit. 

Viscosity measurement 

]r o~~~~:;~pe 
6522 
port 
B 2 

___ Oscilloscope 
Ch 2 

-9 ms 

Connect ions Oscilloscope face 

5 REM PROGRAM 7.3.1 
10 BA = 50176 

1 
12 C1 = 256 
14 C2 BA + 9 

Constants = 
16 C3 = BA + 8 
20 POKE BA + 2,129 Set up DDRB out DB7 ,DBO set up 

30 POKE BA + 11,224 ACR $CO free run load T1 
40 POKE BA + 4,246 
50 POKE BA + 5,64 
60 WAIT 8,4 W ait for DB2 GO HI and record ti me 

65 T = C1 * PEEK (C2) + PEEK 
(C3) 

70 POKE BA,1 
80 POKE BA,O Put out pulse on DBO 

90 GOTO 60 

Time fo r wait loop and T measure ment ""' 9 ms 

5 REM PROGRAM 7.3.2 
10 INPUT "X=";X 
40 INPUT "N=";N 
50 F = rN - 1 
60 g = 2~ (N + 1) 

70 IF X - G * !NT (X I G) > F THEN 
GOTO 180 

75 PRINT "N TH PLACE IS 0" 
76 END 
180 PRINT "N TH PLACE IS 1" 
190 END 



Fig. 7.10. Flow chart for Exercise 
7.4.1 . 

Assembly language 
program to start 

clock 
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This technique for testing bits is useful in some situations but is even slower 
than a WAIT instruction. We will use machine language to test the sensor 

bits . 

7.4 Machine language program to record fall of a sphere 
through glycerine 
A common technique for controlling experimental apparatus is to 

use a main program written in BASIC or other high level language for doing 
the mathematical analysis of data, displaying the experimental results , and 
plotting data, in conjunction with subroutines written in assembly language 
which do the bit manipulation and other tasks associated with gathering the 
data . 

Exercise 7.4.1 Light beam sensing and timing 
(a) Connect the fluid column outputs to the PBO, PBl, PB2 and PB3 

inputs to the 6522 and write an assembly language program to start 
the clock decrementing the T2 counting registers at 1 ms intervals. 
Call the program from BASIC and write a few instructions which 
read the clock registers to check that the clock is functioning 
properly . 

(b) Expand your assembly language program so that in addition to 
starting the clock , it will wait for the first light beam to be cut and 
store the time that this occurs . Test with a piece of paper interrupt­
ing the beam. 

(c) Write a BASIC program which calls the machine language pro­
gram and prints out the recorded time. (See Figure 7.10 for a flow 
chart.) 

For debugging assembly language programs you can use the trace com­
mand which single steps through the program. Another useful technique is 
to substitute a BRK instruction for an instruction op-code and then run the 
program to see whether execution gets to the place in question. The op-code 
for BRK is 00. When execution is halted by a BRK instruction, the memory 
location just after the BRK is displayed together with the values in the 6502 
registers. By temporarily inserting BRK instructions in different locations, 
the difficulty can usually be found fairly quickly. It is rare to write an 
assembly language subroutine (or any program for that matter) which does 
not require debugging . With this in mind you may wish to leave spaces in the 
program (by inserting the 'No Operation' instruction, NOP) at places where 
you may want to put in BRK to debug . 
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Fig. 7.11. BASIC program 
example for automatic 
adjustment of graphing scales. 

Viscosity measurement 

7.5 Graphing scales 
Another problem which this experiment presents is that of choosing 

scales to plot the experimental data gathered. Before making a set of 
measurements, the best choice of graph scale is not apparent. It is desirable 
to have the computer choose an appropriate scale for the axis on the graph 
after the data has been obtained. The length of the scale axes should be such 
that the data points use as much of the screen as possible . This will make 
good use of the limited resolution which the APPLE graphics screen offers. 
It can be done by finding the maximum value to be plotted and multiplying 
by 1.1 so that there is 10% free space to the right of the maximum data point. 
Thus , the second parameter in the &SCALE instruction will be set to 

1.1 *MAX VALUE OF DATA. 
To work out where to put the tick marks is slightly more subtle. The graph 

should have tick marks at even values. For example the oscilloscope uses a 
1, 2, 5 spacing for its scales. Program 7.5.1 of Figure 7.11 chooses an 
appropriate tick mark interval from ... , 0.001, 0.002, 0.005, 0.01, ... , 1, 2, 
5, ... etc. Having a total of 5-10 tick marks on the graph seems appropriate. 

The program starts with the assumption that the points range from t = 0 to 
t = TM. It assumes that the values of the ordinate of the graph are known at 
the outset, ie, it is to go from -10 to 40, and that tick marks on the ordinate 
are to be placed every 10 units. 

3000 
3005 
3010 
3020 
3030 

3040 
3050 
3060 

REM SUBROUTINE TO SET SCALE 
REM PROGRAM 7.5.1 
REM INPUT TM THE MAX VALUE OF T 
XM = 1.1 * TM 
LM = 0.43429 * LOG (XM) 

IM = INT (LM) 
MM = LM - IM 
IF MM < 0.301 THEN XT = 0.2 * 
10 ~ IM: GO TO 3090 

3070 IF MM < 0.602 THEN XT = 0.5 * 
10 ~ IM: GO TO 3090 

3080 
3090 
3100 
3110 
3120 
3130 
3140 

XT = 1 * 10 ~ IM 
&SCALE, - XT,XM, - 10,40 
LX$ = "TIME" 
LY$ = "Z" 
& LABELAXES,XT,10 
& GR ID,- XT,- 10,XT,10 
RETURN 

Max va lue for XM 

Take logarithm base 

10 of XM 

Get mantissa of the 

logarithm 

If the mantissa 

0-0.301 tick marks 

Put left edge of scale 

at- XT; tick marks 

will go at intervals of 

XT from left edge of 

graph 



Fig. 7.12. Assembly language 
arithmetic: (a) double precision 
addition (b) double precision 
subtraction. 
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7.6 Double precision addition and subtraction 

Exercise 7.6.1 Double precision addition 
The Program 7 .6.1 in Figure 7.12 does a double precision addition 
between two numbers and stores the result. If xL and xH are the low 
and high parts of x and the same is true of y and z, where do you put 
x andy before starting and where do you look for z = x + y? Show 
with examples and explanation that the program steps do a correct 
double precision addition . 

Program 7 .6.2 of Figure 7.12 shows how a double precision subtraction is 
done in assembly language . The SBC instruction actually uses the adder 
inside the microprocessor to do a subtraction. This is done using the 
following observations: first, subtracting a binary number x from the binary 
number % 1111 1111 gives the result x (x complement) which is just x with 
all its zeros changed to ones and ones changed to zeros. For example: 

1111 1111 $FF 
-1011 0011 -$B3 

0100 1100 $4C 

(a) Program 7.6.1 

9300 18 CLC 
9301 AD 00 94 LDA $9400 
9304 6D 02 94 ADC $9402 
9307 8D 04 94 STA $9404 
930A AD 01 94 LDA $9401 
930D 6D 03 94 ADC $9403 
9310 8D 05 94 STA $9405 

(b) Program 7.6.2 

9320 38 SEC 
9321- AD 00 94 LDA $9400 
9324- ED 02 94 sse $9402 
9327- 8D 04 94 STA $9404 
932A- AD 01 94 LDA $9401 
932D- ED 03 94 sse $9403 
9330- 8D 05 94 STA $9405 
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Secondly, adding $01 to $FF gives $00 (try it). Therefore: 

y - X = y + $01 + $ FF - X = y + $01 + X 
y-x=y+x+c 

where cis the carry. 

} (7.6.1) 

So. when the 6502 executes an SBC instruction, it complements the 
subtrahend, then adds that result to the minuend and the carry ($01). That 
is why the carry is set before doing an SBC. 

Exercise 7 .6.2 Quadruple precision subtraction 
(a) Show that the Program 7.6.2 in Figure 7.12 does double precision 

subtraction as is claimed. 
(b) Write and test a program which does quadruple precision subtrac­

tion of the number x stored in $9400, $940 I, $9402, $9403 ($9403 
contains the most significant part of x, $9400 the least) from the 
number y stored in $9404 ... $9407 and place the result z in $9408 
... $940B. You may wish to use indexed addressing but be careful! 

CMP, CPX and CPY change the carry bit. 

7.7 The viscometer 

Exercise 7. 7.1 The viscometer and the viscosity 
of glycerine 

(a) Write and test a program outlined by the flow chart in Figure 7.13 

which waits for the subsequent light beams to be cut, measures the 

time interval from the cutting of the first beam and then plots the 
data on a graph. So that your assembly language program is suitable 
for putting onto the EPROM in the next section be sure it requires 
less than 256 bytes and contains no JMP or JSR instructions . The 
ASL instruction is quite useful for shifting the mask in this program. 
Store your program as a binary file on a disk. The BASIC program 
should call the assembly program, then plot the position vs. time for 
the data obtained. 

Use your position vs. time plots to determine the terminal 
velocity and calculate the viscosity and Reynolds number for several 
balls of different diameters and densities. It is not necessary to do a 
least squares fit for each plot. Have the computer use two of the 
measured times to calculate the velocity and draw a line. You can 
check visually to make sure the other points fall along the line. If you 
input the diameter and mass of the ball, the computer can then 
calculate the viscosity (using Equation (7 .1.5)) and Reynolds 
number (Equation (7 .1 .6)) and print them on the graph, too. Make 
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Fig. 7.13. Flow chart for Exercise 7.7.1, the viscometer. 

Set up ports , set up timer T 1, set up T2 counters and start counting 

Wait for light beam 0 to be cut 

Read T2L, T2H and store data T0 

Wait for light beam X to be cu t 

Read T2L, T2H and store data in TL,X and TH,X 

Subtract TL,X and TH,X from T0 
to get elapsed time and store in TL,X and TH,X 

No 
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Table 7.1 Typical diameter and mass of spheres 

Diameter Mass Material 
(em) (g) 

0.60 0.26 glass 
l.31 2.7 ± 0.1 glass 
1.575 5.2 ± 0. 1 glass 
0.09 4. 1 lead 
1.17 9.22 lead 
1.45 17.8 lead 
0.80 2.02 steel 

several graphs with balls which are available to you . Some useful 
sizes are shown in Table 7 .1. 

(b) Compare your dete rminations of the viscosity with the value given 
in a reference book. Note that temperature and water content have 
a large effect on the viscosity of glycerine. (Exercises 7 .7.3 and 

7.7.4) 

(c) Using the data for several balls , make a plot of the drag force on the 
ball (which equals the gravity minus buoyancy forces) vs. its 
terminal velocity times its radius ( vr). Why is this plot significant? 
Can the transition to turbulence be seen? 

(d) Will the timing part of your program work for a ball dropping in air 
(no glycerine) ? 

(e) Try replacing the glycerine in the column with water and repeating 
some of the measurements. Lead balls work the best in this case. 
Since the flow will be well into the turbulent regime (Re ~ 400), the 
viscosity cannot be accurately determined (why?). However, the 

drag coefficient Cc~ can be plotted vs . Re by assuming a value for the 
viscosity of water (!1- = 0.010 poise at 20 °C) . 

One experimental problem with this apparatus is that with larger diameter 
balls , the walls of the column interface with the flow and affect the motion of 
the ball. The viscosity value can be corrected with the following empirical 
formula (Dinsdale & Moore , 'Viscosity and its Measurement', Reinhold 
Publishing , New York , 1962): 

!1- truc = /1-mcasurcd [1 - 2.104(r/R) + 2.09(r/R)·'- 0.9S(r/R) 3
] 

where R is the radius of the column and r the radius of the ball. 

Exercise 7.7.2 The wall effect 
Correct the viscosity values obtained in Exercise 7. 7.1 to account 
for the wall effect. 
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The temperature and water content of glycerine affects its viscosity 
grea tly. The water content is particularly hard to control since glycerine 
abso rbs water vapor from the air when it stands uncovered. 

Exercise 7.7.3 Temperature variation ofthe viscosity 
of glycerine 
The data shown in Table 7.2 taken from the Handbook of Chemistry 
and Physics and the American JnstitUie of Physics Handbook shows 
the temperature dependence of the viscosity of glycerine. Make a 
plot of viscosity vs. temperature . Suspecting an exponential depen­
dence , now plot the natural logarithm of the viscosity vs. tempera­
ture and find the parameters and the model eq uation which give the 
best fit. 

Table 7.2 

Temperature oc Viscosity Pas (MKS unit ) 

0 
6 

10 
15 
20 
25 
30 

12.1 
6.26 
3.95 
2.33 
1.49 
0.954 
0.625 

Exercise 7.7.4 The viscosity of aqueous solutions of 
glycerine 
The data shown in Table 7.3 fro m the Handbook of Chemistry and 
Physics (Chemical Rubber Co., 52nd Edition , page 0191) gives the 
relative viscosity of aqueous solutions of glycerol by percentage 
weight of glycerol. 

(a) Plot these data to see the general behavior. Try both linear and log 
plots. 

(b) Try fitting these data with the mixture fo rmul a: 

~=~+1-P 
f1- fl- I J.i.-2 

where P is the concentration of component one and 11- 1 and 11-2 are 
the viscosities (11- 1 = glycerine, 11-2 = water). 

(c) Try fitting these data with the Arrhemis formula (Dunstan & Thole , 
The Viscosity of Liquids, Longmans Green and Co., London, 1914). 

f1- = 11-': fl- i- P 
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Table 7.3 

% glycerol by weight 

1 
10 
20 
30 
40 
50 
60 
70 
80 
88 
92 
96 
98 

Relative viscosity 

(Viscosity/viscosity of wate r) 

1.02 
1.29 
1.73 
2.45 
3.65 
5.92 

10.66 
23.00 
59 .78 

147.20 
383.70 
778.90 

1177.00 

(d) Try fitting a simple exponential to the data above 80% con­
centration. 

7.8 Using an EPROM 
Erasable Programmable Read Only Memory (EPROM) is a cross 

between ROM (which can ' t be reprogrammed) and RAM (which forgets 
everything when the power is turned off) . Like a ROM , an EPROM requires 
special equipment to write the data into its memory. It will not forget the 
data when the power is turned off; but unlike ROM, it can be erased by 
shining ultraviolet light through a quartz window in the top of the chip . Thus, 
programs can be developed by erasing and reprogramming improved ver­
sions on a single EPROM. In building experimental apparatus it is often 
convenient and economical to have a simple one board computer dedicated 
to doing a single task with a ROM or EPROM to store its program . 

Exercise 7.8.1 Blasting and using an EPROM 
Using a computer which has an EPROM programmer , blast an 
EPROM with the program you wrote above . If you are using the 
J. Bell programmer the APPLESOFT program EPROM. 
BLASTER can be used . Read through these instructions before 
you begin. Take your disk with the BASIC and assembly language 
programs from Exercise 7.7 .1 to an APPLE computer set up with 
the EPROM programmer and RUN EPROM. BLASTER (a copy 
of the program listing for this program is in Appendix J) . Then 
follow the instructions to enter your Exercise 6. 7.1 machine 
language program into the EPROM from your disk . When the 
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program is done, release the lever and remove the chip from the 
holder. Return with the programmed EPROM and an EPROM 
card to your APPLE. 

WARNING!!! 
Before placing the EPROM into your computer, turn the computer 
off! 

After being sure the computer power is off, pop the cover off the 
APPLE computer, place the EPROM in the holder in slot 7, being 
careful that the pin orientation is correct; gently lock it with the 
lever. From BASIC, the program in the EPROM will now be called 
at address $C700 . Modify your Exercise 7.7.1 BASIC program to 
call the machine language program in the EPROM. Repeat the tests 
with the same type of balls to demonstrate that you can reproduce 
your Exercise 7. 7.1 graphs using the EPROM chip and that the data 
is consistent. When you have finished with this exercise please turn 
off the computer, remove the EPROM you used and place it in the 
place designated for blasted EPROMs. 
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Fig. 8.1. The process status 
register. If a BRK instruction is 
executed, a forced interrupt is 
done and the B bit is set to 1 (this 
forced interrupt is not masked, 
ie it is not inhibited when the 
interrupt disable bit is set to 1 ). 
Sett ing the D bit to 1 (SED 
instruction) makes the 6502 do 
binary coded decimal addition 
(ADC) and subtraction (SBC). 
IRQ is recognized only if I bit is 0. 
After IRQ is accepted I bit is 
automatically set to 1. 

Interrupts are an important capability of modern computers . They allow the 

processing of several independent tasks by the CPU. On large computers 

they allow multiuser and time shari ng activities. On microprocessors they 
allow the running of a main program while periodically taking data or 
sending data to a slow device like a printer. Also computer start up, DOS, 
reset and BREAK instructions make use of the interrupt function. 

In the discussion which follows, we will first trace the steps taken by the 

CPU when it receives an Interrupt Request (IRQ) from other parts of the 

APPLE and then look into the ways we can cause interrupts to be generated 
and serviced. 

8.1 Interrupts and the CPU 

The interrupt sequence is similar to a jump to a subroutine except 

that it occurs when signalled by wire leading to the CPU (IRQ) line whereas 
the subroutine jump is a normal executable statement (JSR) . When an 
interrupt signal is present on the IRQ and the interrupt disable bit (I) of the 
process status register (see Figure 8.1) is 0, the CPU begins processing the 
interrupt. The interrupt disable bit is used to prevent the CPU from 

beginning to process the same interrupt again before it is completed the first 

time. Without it the computer would go into a continuous regression . The I 
bit is set equal to 1 duri ng an interrupt sequence and further interrupts are 
ignored until this I bit is returned to zero. This can be done with the CLI 

lNl V l I B I D I I I z I c I 

~ 
Processor status register 

Carry 

Zero result 

Interrupt disable 

Decimal mode 

Break command 

Expansion 

Overflow 

Negative result 



Fig. 8.2. Flow chart for normal 
generated interrupts. 
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instruction but is done automatically at the return from the interrupt service 
routine. 

If the I bit of the process status register is 0 the CPU recognizes an IRQ 
signal and, after completing the machine language instruction currently in 
process, stores the program counter (P) and process status register (S) (with 
the I bit set to 0) on the stack. It is remarkable but necessarily true that if 
these registers and the A, X, Y registers are restored to their values just 
before the interrupt , the executing program will continue exactly where it 
left off as if the interrupt had not occurred. After saving the P and S registers, 
the CPU then sets the I bit of the process status register to 1 to prevent 
further interrupts and goes to the top of memory $FFFE.FFFF to find the 
location of its next instruction (see Figures 8.2 and 8.3). 

At Rom addresses $FFFE.FFFF the CPU finds the address $FA40 and 
begins executing the program at that address. The first instruction (ST A $45) 
saves the accumulator in memory location $45 for later restoration. The next 
instructions at $F A42. F A47 pull the old value of the process status register 

If interrupt inhibit bit in process status 
register is not set, IRQ is accepted. 

Processor jumps indirect to $FFFE, ie, it looks 
at $FFFE and $FFFF for address of next op-<:ode, 

address $F A40 is stored in APPLE ROM 

NB all locations 
except $03FE and 
$03FF are in ROM, 
APPLE uses a JMP 
instruction through 

this location so 
that a user can 

intercept the ISR 

Program routine in 
addresses $F A40 - $F A47 

decides if IRQ came from a BRK 
instruction by examining the 

B bit in P register 

Jump indirect to $03FE; 
when machine is booted 

$FF65 is stored in $03FE 
and $03FF. If DOS has 
initiated an IRQ it ex­

pects the CPU to look in 
$FF65 for an op-code to 

process its IRQ 

Routine to pro­
cess reaction 

to a BRK starts 
at $FA4C 
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Fig. 8.3. Unmodified Machine 
Generated Interrupt Service 
Routine. 

Interrupts 

from the stack and check to see if the interrupt came from a BRK instruction . 
If it did , the CPU is directed to $FA4C to service the BRK interrupt where 
the CPU registers are displayed on the screen and the computer halts the 
program. If the BRK bit was not set, the CPU would execute JMP ($03FE) 
which is an indirect jump to the memory address stored in $03FE.03FF. 
Under normal operation the machine would find the address $FF65 there 
and proceed to further interrupt processing by the APPLE monitor pro­
gram. This is the APPLE Interrupt Service Routine (ISR) . 

At the end of servicing an interrupt, the value stored at $45 is returned to 
the accumulator followed by a return from interrupt instruction (RTI). 
This instruction pulls the old value of the process status register (with the I 
bit set to 0) and program counter from the stack and restores them in their 
appropriate registers. The interrupted program then continues from where 
it left off. 

Note that the X andY registers are not automatically saved by the normal 
interrupt sequence . If they are used during the servicing of the interrupt the 
original values must be saved at the start and restored before returning . Also 
notice that the indirect addressing JMP at $F A49 using addresses at 

FFFE- 40 FA After placing the process 

status register and program 

counter on the stack and 

setting the B bit to 1, CPU 

goes here to start normal 

machine ISR. 
FA40- 85 45 STA $45 Accumulator saved at $45. 
FA42- 68 PLA 
FA43- 48 PHA 
FA44- OA ASL 
FA45- OA ASL Break bit of old PSR checked. 

FA46- OA ASL 
FA47- 30 03 BMI $FA4C Branch to break I SR. 
FA49- 6C FE 03 JMP ($03FE) Jump indirect to ($03FE) 
FA4C Routine continues. 

FF65 08 CLD Entry point for continued 

FF66- 20 3A FF JSR $FF3A service of normal machine 
FF69- A9 AA LDA #$AA interrupts. 
FF6B- 85 33 STA $33 
FF6D Routine continues. 

03FE- 65 FF Address loaded for normal 

machine interrupts . 
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$03FE.03FF is the only part of the interrupt sequence that causes the CPU 
to look in the RAM. The other instructions are all in the ROM and cannot 
be modified by the user. This short trip outside the ROM is what allows the 
user to enter the interrupt process . 

8.2 User controlled interrupt 
Your APPLE is equipped with a 6522 VIA which has the capability 

of generating IRQs by means of its Interrupt Enable Register (IER) (see 
Appendix E, Figure 4). User controlled interrupts involve programming the 
IER and intercepting the ISR at $03FE. 

The programming of the IER is indicated in Appendix E , Figures 29 and 
30. Six events can generate IRQs. We will be concerned with interrupts 
produced by either the T1 counter or T2 counter reaching zero. The 
programming of the IER is a two step process . First the bit(s) for the function 
not being used must be disabled . This is accomplished by placing a zero in bit 
7 to indicate a disable action followed by ones in bits to be disabled and a zero 
in bits not to be disabled . Then enabling is accomplished by placing a one in 
bit 7 followed by ones in bits to be enabled and zeros in bits not to be enabled . 
For example to set up T1 for interrupts first %00111111 is sent to the IER 
followed by %1100 0000 sent to the same location. After programming the 
IER the I bit of the process status register is set equal to zero with a CLI 
instruction . This signals the computer to accept interrupts. 

Now if the address of your own interrupt program (ISR) is put into 
$03FE.03FF, all non-BRK generated interrupts will be directed to it. Some 
of these inte rrupts (those not generated by the VIA) still need to be sent to 
$FF65. So in your ISR there must be a check to see if the non-BRK 
generated interrupt was caused by the 6522 VIA or some normal machine 
interrupt. This check is performed by reading the Interrupt Flag Register 
(IFR) of the 6522 (see Appendix E, Figure 29). 

Bit 7 of the IFR is set any time the VIA produces an IRQ. The other bits 
are set by the conditions indicated . For example, if T1 generated the 
interrupt, bit 6 and bit 7 are set. Both bits are cleared by reading the low byte 
of the T1 counter (TlC.L) or by writing the high byte (TIC. H) . 

The user controlled interrupt process is now complete . Two programs are 
necessary . The Interrupt Initialization Routine (IIR) redirects the interrupt 
process by inserting the memory location of the ISR at $03FE. The IER is 
programmed . The I bit of the process status register is set to zero and the IFR 
cleared . The interrupt initialization routine ends with an RTS instruction 
and is called or run only once to establish the user controlled interrupt 
conditions. 

The second program is a user ISR which will be run on every non-BRK 
generated interrupt. This ISR begins at the memory location put into $03FE. 
The first thing that must happen in the ISR is a check to see if the interrupt 
was generated by the 6522 VIA . This is done by reading the IFR. If the 
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interrupt was not generated by the 6522 then the CPU is sent back to $FF65 
in the ROM. If it was generated by the 6522 then the IFR is cleared and the 
rest of your ISR executed. At the end of this ISR the old value of the 
accumulator is retrieved from $45 and the X and Y registers restored if they 
were used. The ISR is completed with a RTI instruction. 

8.3 An ISR 
To illustrate the use of an IRQ, a program which continuously 

displays the elapsed time on the CRT monitor screen in the upper left hand 
corner, without disturbing the normal APPLE operation, will be used as an 
example. The procedure uses the Tl timer in the 6522 VIA to generate a 
continuous stream of interrupts, one every 11100 s. Each time the CPU is 
interrupted the ISR increments a three-byte counter TL, TM, TH by one 
count. After 100 counts (1 s) a display routine is called and data are displayed 
on the CRT. After this is done program control is returned to the APPLE 
program in process. 

Exercise 8.3.1 Running an interrupt program 
Using the MINIASSEMBLER, type in the IIR of Figure 8.4(a) and 
(b) and the ISR from Figure 8.5(a) and (b). Run the IIR from 
BASIC (call 37120). You should see a display of seconds in the 
upper line of the CRT which increments every second. Once this is 
going try running other programs and doing other operations of the 
APPLE. 

In addition to the interrupt processing, several aspects of the ISR of 
Exercise 8.3.1 are new. The section of the program from $900D to $9027 uses 
Binary Coded Decimal (BCD) arithmetic. In BCD each byte represents a 
number from 0 to 99 rather than from 0 to $FF, that is, each nibble (four bits) 
is allowed to count only to 9 before a carry is taken to the next nibble (see 
Figure 8.6). The four-bit nibbles thus become direct representations of 
decimal digits. The SED instruction (set decimal) at $9000 puts the CPU 
into the BCD mode and the CLD at $9027 takes it out. To help in the 
understanding of the BCD mode replace SED with a NOP in $9000 for 
Exercise 8.3.1 and observe the operation of the ISR. 

Another new operation is the direct write to the screen in the program 
section from $9032 to $906F. When the APPLE is in text mode (TEXT) just 
as in graphics mode (HGR2), certain memory locations are being read to 
display the information on the screen. For HGR2 these are $4000.5FFF and 
for TEXT they are $0400.07FF beginning at the top left of the screen. Each 
byte is interpreted as one character to be displayed. So a character can be 
placed anywhere on the screen by writing to one of these memory locations . 



Fig. 8.4. IIR for generating T1 
timer interrupts at 0.01 s 
intervals: (a) flow chart; (b) 
program. 

8.3 An ISR 

Store start of ISR in $03FE and $03FF 

Set up PB7 so timing can be viewed on scope 

Set ACR for continuous interrupts 

Set timer T I so that interrupts 
are generated every 1/100 second 

Set I ER so that the Tl interrupt 
flag on IF R is active 

9100- 78 SEI 
9101- A9 00 LDA 
9103- 8D FE 03 STA 
9106- A9 90 LDA 
9108- 8D FF 03 STA 
9108- A9 80 LDA 
9100- 8D 02 C4 STA 
9110- A9 co LDA 

#$00 
$03FE 
#$90 
$03FF 
#$80 
$C402 
#$CO 

9112- 8D 08 C4 STA $C408 
9115- A9 EC LDA #$EC 
9117- 8D 04 C4 STA $C404 
911A- A9 27 LDA #$27 
911C- 8D OS C4 STA $C405 
911F- A9 3F LDA #$3F 
9121- 8D OE C4 STA $C40E 
9124- A9 co LDA #$CO 
9126- 8D OE C4 STA $C40E 
9129- AD 04 C4 LDA $C404 
912C- A9 00 LDA #$00 
912E- 8D 00 94 STA $9400 
9131- 8D 01 94 STA $9401 
9134- 8D 02 94 STA $9402 
9137- 58 CLI 
9138- 60 RTS 

107 

Load $9000 into $03FE 03FF 

Set up PB7 output to observe 

square waves on scope 

] Set T1 for free run 

] 
Set T1 Land T1 H for 1/100 s 

Set IER forT1 interrupts 

Clear bits 6 and 7 of IFR 

Initialize TL TM and TH 

Clear I bit of process status 

register 
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Fig. 8.5. ISR for counting 
interrupts and displaying the 
elapsed time: (a) flow chart; (b) 
program. 

Interrupts 

Add one to time counter 
use 6502 BCD (binary coded 
decimal mode- don't worry 

about details of this) 
triple precision 

9000- AD OD C4 
9003- 29 co 
9005- DO 03 
9007- 4C 65 FF 
900A- AD 04 C4 
900D- F8 
900E- 18 
900F- A9 01 
9011- 6D DO 94 
9014- 8D DO 94 
9017- A9 00 
9019- 6D 01 94 
901C- 8D 01 94 
901F- A9 DO 
9021- 6D 02 94 
9024- 8D 02 94 
9027- D8 

Interrupt came from 
DOS; send program to 

$FF65 to find DOS 
ISR op-code 

No 

LDA $C40D 
AND #$CO 
BNE $900A 
JMP $FF65 
LDA $C404 
SED 
CLC 
LDA #$01 
ADC $9400 
STA $9400 
LDA #$00 
ADC $9401 
STA $9401 
LDA #$00 
ADC $9402 
STA $9402 
CLD 

Read IFR and send CPU to 

$FF65 if interrupt did not 

come from 6522 T1 . 

Otherwise go to $900A 

Clear IFR bits 6 and 7 

Set decimal mode 

Increment TL, TM and TH 

by 1 

Clear decimal mode 
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9028- AD 00 94 LDA $9400 
9028- FO 03 8EQ $9030 If $9400 is not zero reload 
9020- AS 45 LDA $45 accumulator and RTI. If 
902F- 40 RTI $9400 is zero go to $9030 
9030- 8A TXA ] Transfer X register to stack 9031- 48 PHA 
9032- AD 02 94 LDA $9402 
9035- 6A ROR 
9036- 6A ROR 
9037- 6A ROR 
9038- 6A ROR 
9039- 29 OF AND #$OF 
9038- 18 CLC 
903C- 69 30 ADC #$30 
903E- 8D 00 04 STA $0400 
9041- A9 OF LDA #$OF 
9043- 2D 02 94 AND $9402 
9046- 18 CLC 
9047- 69 30 ADC #$30 
9049- 8D 01 04 STA $0401 
904C- AD 01 94 LDA $9401 Increment display on 
904F- 6A ROR screen 
9050- 6A ROR 
9051- 6A ROR 
9052- 6A ROR 
9053- 29 OF AND #$OF 
9055- 18 CLC 
9056- 69 30 ADC #$30 
9058- 8D 02 04 STA $0402 
9068- A9 OF LDA #$OF 
905D- 2D 01 94 AND $9401 
9060- 69 30 ADC #$30 
9062- 8D 03 04 STA $0403 
9065- A9 20 LDA #$20 
9067- A2 00 LDX #$00 
9069- 9D 04 04 STA $0404,X 
906C- E8 INX 
906D- EO 23 CPX #$23 
906F- DO F8 8NE $9069 
9071- 68 PLA Restore X register and 
9072- AA TAX accumulator 
9073- AS 45 LDA $45 
9075- 40 RTI 
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Fig. 8.6. Number systems : 
binary, hexadecimal , decimal, 
BCD. In BCD each group of four 
bits represents one decimal digit 
and thus the binary 
representations of hex numbers 
A, B, C, D, E, Fare not valid . 

Fig . 8.7. ASCII Code. 
(Reproduced with permission 
from American National 
Standard X3.4-1977 , copyright 
1977 by the American National 
Standards Institute. Copies may 
be purchased from the 
American National Standards 
Institute, 1430, Broadway, New 
York, New York 10018.) 

8.3 An ISR 

Binary % 0010 0101 0110 0100 Binary r epresentation of decimal 
9572 

Hex $ 2 5 6 4 Hexadecimal representation of 
decimal 9572 

Decimal 9 5 7 2 Decimal number 

B CD 1001 0101 0111 0010 BCD representation of decimal 9572 

2 5 6 4 

4096 19572 25611380 161 100 1[4 
8192 1280 96 4 

-
1380 100 4 0 

9572. = $2564 

~ 
0 00 0 1 0 1 1 1 1 

0 1 0 0 1 1 
0 1 0 1 0 1 0 1 

s 
' 

b, b, b, b1~ 0 1 2 3 4 5 6 7 I I I I •o•l 

0 0 0 0 0 NUL OLE SP 0 "' p \ 
-~ 

0 0 0 1 1 SOH DC1 I 1 A Q 0 q 

0 0 1 0 2 STX DC2 " 2 B R b r 

0 0 1 1 3 ETX DC3 # 3 c s c s 

0 1 0 0 4 EOT DC4 s 4 D T d I 

0 1 0 1 5 ENQ NAK " s E u • u 

0 1 1 0 6 ACK SYN & 6 F v ' v 

0 1 1 1 7 BEL ETB / 7 G w g w 

1 0 0 0 8 BS CAN ( 8 H X h • 
1 0 0 1 9 HT EM ) 9 I y i y 

1 0 1 0 10 LF SUB • : J z j l 

1 0 1 1 11 VT ESC • ; K [ k { 

1 1 0 0 12 FF FS < L \ I I 
1 1 0 1 13 CR GS - . M 1 m } 

1 1 1 0 u so RS > N A 
n ~ 

1 1 1 1 15 Sl us I ? 0 -- 0 DEL 

0/0 NUL Null 1/0 OLE Data Link Escape 

0/ 1 SOH Start of Heading 1/1 DC! Device Control 1 

0/2 STX Start of Text 1/2 DC2 Device Control 2 

0/3 ET X End of Text 1/3 DCJ Device Control 3 

0/4 EOT End of Transmission 1/4 DC4 Device Control 4 

0/5 ENQ Enquiry 1/5 NAK Negative Acknowledge 

0/6 ACK Acknowledge 1/6 SYN Synchronous Id le 

017 BEL Bell 1/7 ETB End of Transmission Block 

0/8 BS Backspace 1/8 CAN Cancel 

0/9 HT Horizontal Tabula tion 1/9 EM End of Medium 

0/1 0 LF Line Feed 1/1 0 SUB Substitute 

0/ 11 VT Vertical Tabulation 1/ 11 ESC Escape 

0/ 12 FF Form Feed 1/ 12 FS File Separator 

0/ 13 CR Carriage Re tu rn 1/ 13 GS Group Separator 

0/1 4 so Shift Out 1/1 4 AS Record Separator 

0/15 51 Shift In 1/15 us Unit Separator 

7/15 DEL Delete 
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To do this the alphabet and punctuation characters must be represented by 
numbers . In the APPLE (and many other computers) the seven-bit ASCII 
code (American Standard Code for Information Exchange) is used . This 
code was first used by teletype machines . Figure 8. 7 shows the mapping of 
characters to numbers. To see how the display and character are related , 
type in and RUN the following BASIC program. 

5 REM PROGRAM 7.3.3 
10 FOR I=O TO 255 
20 POKE 1024 + I, I 
30 NEXT I 

CONTROL - RESET 
RUN 

The program section to display the time on the screen contains parts which 
isolate each nibble of the sum, convert it to ASCII , then write it to the proper 
location on the screen . 

8.4 T2 generated interrupts 
Interrupts generated by T2 can be handled in a similar fashion to 

those generated by Tl. As in previous chapters, if we use the Tl-T2 timer 
pair to give us longer time intervals, PB7 must be set up as an output and a 
wire connected from PB7 to PB6. The initialization routine (Program 8.3.1) 
needs to be modified to allow only T2 generated interrupts. T2H and T2L 
as well as TlH and TlL are initialized . The clearing of the T2 flag in the 
IFR is done by reading T2L or by writing T2H as indicated in Figure 8.4 . 
Register T2H must be written to again anyway since it does not reload 
automatically. 

Exercise 8.4.1 Writing an interrupt program 
Write an IIR and on ISR using the T2 interrupts to ring the bell 
every second . Use T2 to count down (via Tl signals) from a starting 
value . When it reaches zero , it should interrupt ; then the ISR 
should reset T2 and ring the bell. To ring the bell , JSR to the bell 
subroutine at $FBE2. This subroutine uses theY register so be sure 
to save it. Test that your interrupt routine is working properly by 
running other APPLE programs you have on your disk with the bell 
ringing in the background mode . What happens when you access 
the disk with the interrupt going? Do you now have a beeping 
APPLE? 



9 Other topics 

9.1 Hardware for data acquisition and control 
There are two styles of hardware for using a microcomputer to 

acquire data and control equipment. One is exemplified by the APPLE lie 
system you have used in the laboratory. The ADC, the DAC and the digital 
I/0 cards are inside the computer and are under direct control of the 
microprocessor. They have control and data registers which are directly 
addressable via the buss. External devices (sensors, switches, etc) are 
connected to the cards. Creative programming can turn the computer into, 
for example , an oscilloscope (ADC and display) or a signal generator 
(DAC) as the laboratory exercises have shown. 

Other buss systems are in use which, like the slots in the APPLE, allow a 
microprocessor to be connected to various data acquisition and control 
devices by simple board replacements . Some of the more widely used ones 
are IBM-PC buss, SlOO, STDBUS, MULTIBUS and QBUS. 

The second style is to have a separate box next to the computer which has 
the ADCs, DACs, digital I/0 lines and a programmed microprocessor 
controller. It communicates with the computer via a serial or parallel 
communication system (see Section 9.2). The box takes care of the data 
acquisition and control while the computer is used to send control bytes to 
tell the box what to do and to receive the data for further processing. The 
limitation of this style is in the speed of communication to the computer and 
in the number of things the box has been preprogrammed to know how to 
do. However, some computers do not have card slots (notably the APPLE 
lie and the Apple Macintosh) so that this style of data acquisition and 
control is the only possible choice . 

9.2 Serial data communication 
In the exercises you have done, transmission of data to the computer 

has been direct. The sensors have been connected to the ADC or VIA which 
are inside the APPLE and connected to the internal buss . This is not always 
the case. Many newer instruments have means of gathering and storing 
digital data themselves . To analyze the data, they are transmitted along a 
cable between the instrument and computer. The methods used for this 
communication can be split into two broad groups: serial and parallel. 

Serial data is transmitted one bit at a time . Each bit follows the previous 



Fig. 9.1. Serial transmission of 
an ASCII 'K' character. 'K' = 
Binary01001011. The time for 
one bit is 1/BAUD rate. 
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one after a preset time interval has passed. This interval must be known to 
the receiver so that it can synchronize its timing with the transmitter. There 
are several hardware standards which are used for serial transmission. By far 
the most widespread is the RS-232C standard. It is used for slow to moderate 
speed communication (110-19200 bits per second or 'baud') over distances 
of up to 300m. Most terminals connected to multiuser computer systems use 
this standard as do many printers and plotters . At its minimum only two 
wires are needed: a ground and a signal wire . Since the standard requires 
that data only go one way on the signal wires , this minimal system would be 
good only for devices like printers . Most of the time another wire is added to 
provide two way communication . The RS-232C standard is also used to 
communicate with a modem which is a device that transmits and receives 
serial data over the telephone lines . A data rate of 300 or 1200 baud is 
commonly used . 

Figure 9.1 shows how an ASCII character 'K' would be sent using the 
RS-232C protocol. The start bit signals the beginning of a data word. It is 
followed by 4-8 data bits. Then sometimes a parity bit is included which is 
used for error checking. At the end are one or two stop bits. The number of 
bits and their meaning as well as the rate of transmission must be known at 
the receiver. Since the receiver restarts its timing at each start bit , it only 
needs to remain synchronous over the length of the data word . 

One problem which arises often is that the transmitter sends data faster 
than it can be processed at the receiver. The receiver needs to have a way of 
saying, 'Hold on a moment while I take care of what I already have.' This is 
done either with another wire which signals a hold or in software by having 
the receiver transmit characters to signal the transmitter. Most commonly 
the ASCII character 19 (ControlS or XOFF; is HOLD and 17 (Control Q or 
XON) is GO. The transmission becomes a game of RED LIGHT GREEN 
LIGHT. 

The transmission and reception of serial data is usually done by a UART 
(Universal Asynchronous Receiver Transmitter). Once it knows the 
protocol of the data being sent , the UART takes care of the serial interface . 
It is used by addressing registers; those for the 6551 chip are shown in Table 
9.1. On transmission, it translates the byte in its data register to serial form 
and on reception , it translates the serial data into a byte in the data register. 

! ·-- --

lsb 
t 

Start I 

Start bit 

0 0 0 

8 data bits 

msb 
t 
0 Stop 
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Table 9.1 6551 register format 

Register Write 

0 Transmit Data Register 
1 Programmed Reset (Data is "Don't Care") 
2 Command Register 
3 Control Register 

Read 

Receiver Data Register 
Status Register 

The control register is used to set the protocol of the serial data, the 
command register is for interrupt control , and the status register is used to 
signal data transmission and error conditions. The interrupt capability is 
often used in communication programs so that the computer need not 
continually monitor the UART status . 

The most obvious limitation of serial data transmission is in the speed of 
communication. A new standard , RS-422A , has been defined to try to 
alleviate this problem. It offers speeds of 100 000 bits per second over 
distances of 1500 m. Another limitation is that each device needs a separate 
cable and interface . Further information about serial communication can be 
found in the references. 

Exercise 9.2.1 Serial communication 
Write out the serial sequence (Figure 9.1) which would transmit an 
ASCII ' j ' character on a serial line . Use 1 start, 7 data, no parity, 
1 stop bits and 9600 baud. Indicate the time on your picture. Refer 
to the ASCII chart of Figure 8. 7 for the binary code for ASCII 'j '. 

9.3 Parallel data communication 
In parallel transmission the data in one word are communicated 

simultaneously by having many wires connecting the transmitter and 
receiver. The data buss connecting various parts of the computer is one 
example; each bit of a data byte is stored in a memory location at the same 
time . To transmit and receive an eight-bit byte of data externally, eight wires 
are needed as well as several other wires , eg, a R/W wire, to control the 
direction and timing. A parallel hardware standard has been adopted for 
laboratory instrumentation which is called IEEE-488. Although the com­
munication distance is limited to a total of 20m, it can have up to 16 devices 
simultaneously connected and can transmit data at speeds up to 1 000 000 
bytes per second . Many laboratory instruments now have options which 
allow connection to this buss. 

In the IEEE-488 cable there are a total of 24 wires. Eight of these are 
ground wires which help to increase the noise immunity . There are eight 
data wires , three data transfer control wires and five management control 



Fig. 9.2. IEEE-488 data transfer 
protocol. DAVis 'Data Valid', 
NRFD is 'Not Ready for Data' , 
NDAC is 'Not Data Accepted' . 
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wires. The devices on the buss can be designated as either talkers, listeners 
or controllers. There must be at least one controller which is usually a 
general purpose microcomputer. It manages the communication by using the 
management control wires to designate which devices should be listeners 
and which should be the talker. Only one talker is allowed at one time but 
the talker device can be changed at any time . For example, a printer would 
be a listener and a voltmeter would be a talker . Devices can also be active or 
inactive so , for example , the printer need not be printing all the time. 

Communication of a byte of data is synchronized via a handshake 
mechanism using the three data transfer control wires. Figure 9.2 shows the 
sequence of signals to transmit one byte after the active talkers and listeners 
have been designated. Note that a LO level indicates a true condition and a 
HI level false . The sequence starts by each active listener letting the NRFD 
(Not Ready For Data) line go HI (false) thus indicating that it is ready to 
receive data . Due to the open collector design of this signal wire interface, 
the signal does not go HI until all of the listeners are ready. When the active 
talker sees the NRFD high it places the data on the data wires and signals 
that the data is valid by dropping DA V (DAta Valid). The listeners then set 
NRFD LO and each store the data from the buss . As each completes that 
task , it lets the NDAC (Not Data ACcepted) signal go HI indicating that the 
data has been stored . As with the NRFD , the NDAC wire does not go HI 
until all the listeners have let it go. Thus the slowest listener active on the 
buss limits the speed of communication. The talker then sends DA V HI 
indicating that the data is not valid any longer and the listeners drop NDAC. 

Signal wires Sequence Controlled by 

2 of 8 
Data 
lines 

CD 

> il~ati~gl~vel ... ...... .... .. ... .... ... ..... . .. . ~ 
@~---. 

Active 
talker 

'"<---------' 

DAY False Active 

True talker 

NRFD 
False 

Active 
listeners 

True 

False Active 
Listeners 

NDAC 

True 
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The buss is then ready for the next byte transfer. This sequence is called a 
handshake since the data transfer takes place when both the transmitter and 
receiver have agreed (signalled) that they are ready. 

The remainder of the wires in the buss are used for signals between the 
devices so that the talkers and listeners can be designated and so that the 
devices can signal emergency conditions. For example, if ATN (ATtentioN) 
is true it indicates to all the other devices that the controller wants to talk and 
that everyone else should listen. If SRQ (Service ReQuest) is true a listener 
is requesting to talk. The full protocol can be found by reading the interface 
documentation (Hewlett Packard calls it the GPIB interface) or by getting a 
description from the Institute of Electrical and Electronic Engineers. 

Exercise 9.3.1 Parallel communication 
Using 6502 assembly language implement IEEE-488 protocol using 
the 6522 VIA interface. Assume that the eight data lines of Port B 
are connected to the data lines of the interface and that PAO is 
connected to DAY, PAl to NRFD, PA2 to NDAC. Also assume 
that the active talker is the computer (6502). Write a program which 
will transfer 100 bytes from memory locations $9000--$9063 to the 
active listeners. Use the following outline: 

(1) initialize the ports, set the data lines as inputs (floating temporarily), 
set DAY HI 

(2) start loop of 100 
(3) look for NRFD HI (all listeners ready) 
( 4) set data lines as output and put data on lines 
(5) set DA V low (signal data is val id) 

(6) look for NDAC HI (data accepted by all listeners) 
(7) set DA V HI and set data lines as inputs (floating again) 
(8) loop back for next byte of data 

9.4 Sensors and transducers 

In the laboratory work in this book you have used only three kinds 
of sensors , a potentiometer , a thermistor and a photoresistor, and two 
controllers, a stepping motor and a HEXFET switch. There are many other 
kinds of sensor, at least one for each physical parameter which is measured. 
A good physical understanding of the system to be measured is always the 
first step. Then, selection or design of the sensor can be done. Some 
generalized performance characteristics have been discussed in the sections 
on zero, first, and second-order systems. Understanding the physical and 
electrical basis of the sensor is also important. Please refer to the references 
for information on the wide variety avai lable . Keep in mind that there is 
always room for invention. 
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9.5 Software for data acquisition and control 
Of the large amount of software available for a particular micro­

computer, there are two basic types: languages and application programs. 
The first are the primary tools with which a computer is programmed (eg, 
BASIC). The second are particular programs which have the computer 
perform specific tasks (eg , AMPERGRAPH) . Both have their places in the 
use of the computer in the laboratory. 

As in the work done in this laboratory, most laboratory computers are 
programmed in the laboratory using a chosen language. Table 9.2 lists the 
more popular ones with some comments on their efficacy . A program in an 
interpreted language is executed as it is run whereas one in a compiled 
language must be translated into machine code before it can be run. Be sure 
that the language has the capability of PEEKing and POKEing absolute 
memory locations. 

Most application programs for data acquisition which are available at this 
time are libraries of subroutines (or procedures or modules) which, when 
called , do specific tasks. For example , one subroutine would output a 
number to the DAC and another would get the time from the timer. The 
libraries are specific to the language and the hardware being used. 

What really made microcomputers popular for the home and business 
were two applications programs: the word processor and the spread sheet. 
These are versatile programs dedicated to a specific need (such as writing) 
but general enough to encompass a variety of tasks within that need (such as 
letters, reports , lists). There are a few programs available which address the 
need for a generalized data acquisition , storage , analysis and graphing. As 
the business market saturates , it is to be expected that more and varied 
programs will be written for the scientist and engineer. 

Table 9.2 Microcomputer languages 

Language 

BASIC 

Assembly 

FORTRAN 

Pascal 
Ada 
Modula II 

FORTH 

c 

Comments 

Interpreted or compiled , common, easy to learn , awkward, slow 

Compiled, most direct control of computer system , awkward 

Compiled , traditional for number-crunching analysis , has complex 
numbers! , awkward , frequently no PEEK and POKE , libraries 
available 

Compiled, structured for easier programming 
Like Pascal but US Department of Defense backing 
Like Pascal but corrects some weakneses 

Threaded , can be extended by user, originated for data acquisition 
and control , somewhat awkward reverse polish constructs 

Compiled, both low level and high level programming, structured , 
terse 
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9.6 Where to go from here 
A great deal of useful work can be done in the laboratory by 

applying the principles you have learned. For those interested, there are 
several areas of study which extend the topics discussed here. A laboratory 
course on digital and analog electronics would be useful in understanding 
sensors and their associated signal conditioning circuits as well as the 
electrical operation of the computer itself. An introductory course in signal 
processing and analysis would be useful for general data analysis. For those 
interested in process automation, a course in systems analysis would be 
helpful. To keep up on the latest hardware and software in this quickly 
changing field, consult trade journals . Also get on the mailing lists of 
suppliers. They will frequently send out product bulletins . But the best way 
to learn is the way you have learned in this laboratory ; that is by doing it. 



Appendix A 
Laboratory materials 
and resources 

The following is a detailed description of the equipment used in the 
laboratory at Cornell University together with possible sources for these 
parts. 

Each student work area (Figure A.l) has an APPLE lie computer with 
printer ar.d data acquisition cards, a 5 V power supply, and an oscilloscope. 
The APPLE lie has the following configuration: 

Slot 
1 
2 
4 
v 

7 

Device 
Practical Peripherals Microbuffer II+ 
John Bell Engineering A-D Converter (Figure A.2 right) 
John Bell Engineering 6522 Parallel Interface (Figure A.2 middle) 
APPLE disk controller 
John Bell Engineering EPROM Card (Figure A.2left) 

One of the computers in the laboratory has a John Bell Engineering 
EPROM Programmer attached to the 6522 interface so that EPROMs may 
be programmed. An ultraviolet EPROM eraser is also available. The 
Micro buffer II+ is attached to an Epson MX-80 printer. These may be 
changed to suit as long as the printer buffer/printer combination can print the 
high resolution graphics of the APPLE. 

The text is written for use with the DOS 3.3 operating system for the 
APPLE. Prodos would probably work too if the appropriate changes are 
made in the text. The text also assumes that the Mad West Software 
AMPERGRAPH package is being used . We have not seen comparable 
packages which could be substituted. For EPROM blasting , the program 
listed in Appendix J is useful. 

We use a B+ K Precision Model 1476A dual trace 10 MHz oscilloscope 
and a Power One model C5-6 power supply. Almost any oscilloscope will do 
and the only specification which needs to be met on the power supply is that 
it has a 5 V output at 5 A. Look in the back of BYTE magazine or in surplus 
catalogs for good prices . We have tied the computer and power supply 
grounds together permanently so as to minimize grounding problems for the 
students. 

The cables from the data acquisition boards are brought out to a proto­
board (Figure A .3) where connections may be made easily. We find that the 
Super Strip (available through Digi-Key or Jameco) to be versatile. 
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Fig. A.1. General setup in the 
laboratory. The computer, disk 
drive, and monitor are on one 
wooden stand; the printer is on 
another which sits over the 

1 oscilloscope. The power supply 
is between the two and the 
proto boards are on the top of 
the computer. 

Fig. A.2. Three John Bell 
Engineering circuit cards with 
cables removed. From left to 
right : the EPROM holder, the 
6522 VIA cad, and the ADC card . 

Fig. A.3. A view of the 
protoboardswherethe interface 
cables terminate. The ADCcable 
is to the left and the four 6522 
VIA cables are in the center and 
to the right. In the center the 
6522 VIA #2 Port B is wired to 
the LEOs and their drivers and 
Ports A and Bare wired to the 
DACs. 
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Fig. A .4. The push button and 
the potentiometer. 

Fig. A.S. View of the thermistor 
calibration/temperature 
controller apparatus. The 
aluminum block at the top holds 
the heater resistor, the 
thermistor and the 
thermometer; all emplaced with 
conductive grease and some 
glue to hold them in place. The 
circuit is constructed on a piece 
of protoboard. 

Fig. A.G. Stepping motor 
apparatus. The protractor is 
mounted to the left on the output 
shaft of the gearbox (center). 
The stepping motor (on the 
right) is mounted to the gearbox 
and coupled with a piece of 
rubber tubing. The circuit is 
constructed on a piece of 
proto board. 
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Fig. A.7. Heat flow apparatus. 
The copper wire is secured to 
the aluminum base plate and 
has three holes drilled for 
mounting the heater resistor 
and the two thermistors. These 
are emplaced into the copper 
with thermal grease and secured 
with glue. Their leads are 
supported with a piece of 
aluminum. The circuit is 
constructed on a piece of 
proto board attached to the base. 

Appendix A 

Fig. A.B. Viscometer. A glass 
tube, the four positions sensors 
and the electronics are mounted 
on a wooden base which can be 
leveled by adjusting three 
screws. 
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Laboratory Apparatus 

Potentiometer (Figure A.4) 
Almost any will do in the resistance range of 100 fl to 1 MD. 

Thermistor calibration apparatus (Figure A.5) 
A thermistor, thermometer, and heater resistor are mounted in an aluminum 
block about 2 em X 2 em X 2 em size. The thermistor we use is a Fenwall 
GB34P2 . Others may be substituted by adjusting the bias resistor depending 
on the room temperature resistance. Heat conductive grease is used in the 
holes so that the thermometer, thermistor and heater resistor make good 
thermal contact with the block. The circuit used is shown in Figures 3.5 and 
3.4. A standard laboratory mercury thermometer is used but others can be 
substituted. The HEXFET is an International Rectifier IRF 510. Almost any 
of that line can be substituted . 

Stepping motor (Figure A.6) 
The stepping motor apparatus consists of a stepping motor connected to a 
200:1 gear box by a rubber sleeve and controlled by a UCN-4202A controller 
(Sprague Electric Co.) which is mounted on a proto board. Figure 4.1 shows 
the circuit used. The stepping motor is a surplus item (A. W. Hayden Co. 
PIN B86138) which may be hard to find but the controller will work with 
Permanent Magnet stepping motors rated to 500 MA and 15 V. You may 
have to modify the wiring of the motor to suit the controller. BYTE 
magazine is a good place to look for surplus motors. The gearbox is from 
AST/SERVO Systems and again is a surplus item. The reduction ratio is not 
critical. 

LED Output Counter (Figure A.3) 
These are simple LEDs with 270 fl resistors and a 74LS04 driver. The circuit 
(Figure 4.4) is constructed on the protoboard where the cables from 6522 
VIA #2 are attached. 

Heat Flow Apparatus (Figure A.7) 
The apparatus for the heat flow experiment consists of a copper rod (#10 
copper wire , 2.59 mm diameter) mounted vertically on an aluminum base as 
shown in Figure 5.3 . An aluminum support runs parallel to the rod to 
support the wires to the heater resistor and thermistors. The! watt resistor 
is placed in a hole in the top of the rod. The thermistors (Fenwall GB32J2) 
are placed in small holes at 2.5 em and 5 em down from the resistor. Thermal 
grease is again used to ensure thermal contact. The standard amplifier circuit 
employed is shown in Figure 5.5. A protoboard is used to construct the 
circuit. The only special consideration is that the operational amplifier be 
able to run on 0--5 V supplies. 
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Digital to Analog Converter (Figure A.3) 
This circuit (Figure 6. 7) is constructed on the proto board where the LEOs 
and the 6522 VIA #2 cables are attached. The OAC used is a National 
Semiconductor OAC0808. Others may be substituted with some change in 
circuitry. The negative voltage necessary for running this chip can be 
obtained from the Apple buss by a slight modification of the 6522 VIA card . 

Viscometer (Figure A .8) 
As depicted in Figure 7.6, the viscometer apparatus consists of a glass tube 
about 5 em in diameter with a rubber stopper at one end mounted in a 
wooden frame to which the detectors and electonics are attached. The frame 
may be leveled by means of the three screws at its base. The light source for 
the position sensors are green LEOs mounted in 1 em aluminum tubes with 
a small focusing lens at one end. The light detectors are CdS photo-resistors 
(Claret 327-15) mounted in another 1 em aluminum tube . In front of the 
sensor is a 3 mm high 10 mm wide slit cut in cardboard. The circuit for one of 
the sensors is shown in Figure 7. 7. The balls used can be of a wide variety 
however the 'wall effect' becomes very evident for large ones. Table 7.1 
shows some we have found useful. 

Addresses 

John Bell Engineering 
400 Oxford Way 
Belmont , CA 94002 

MAO WEST Software 
PO Box9822 
Madison , WI 53715 

Oigi-Key 
PO Box677 
Thief River Falls , MN 56701 

Jameco Electronics 
1355 Shoreway Road 
Belmont , CA 94002 

Sprague Electric Co. 
115 Northeast Cutoff 
Worcester , MA 01606 

AST/SERVO Systems Inc 
930 Broadway 
Newark, NJ 07104 

Individual pieces or a kit of all the laboratory apparatus can be purchased 
from: 

Vector Magnetics Inc 
PO Box 127 
Ithaca, NY 14851 



Appendix 8 
Merging programs: use of 
the RENUMBER program 

An efficient method for writing programs is to complete one small piece at a 
time. Each piece should be tested and understood; even if you have to write 
another short program to do this. Only then, as a separate task, combine the 
pieces into larger and larger portions of the main program. It is best first to 
write out in words, block diagrams and flow charts what you are trying to do 
with the program and/or apparatus. By doing this the tasks involved become 
conceptually separated and can then be dealt with as pieces of the whole. 

If you follow the procedure outlined above, it will be necessary to store 
small program segments on the disk and then to put them together to form 
programs without having to retype all the pieces already tested. The 
APPLESOFf LOAD command is not satisfactory for this since it will first 
clear out the program in the machine. 

The program RENUMBER on the SYSTEM START disk enables you to 
merge and renumber BASIC programs. It works somewhat like the 
AMPERGRAPH program in that it appends some new instructions to 
BASIC. To use RENUMBER, place the SYSTEM START disk in the drive 
and type RUN RENUMBER CR. (At this time RENUMBER replaces 
AMPERGRAPH in memory.) A reminder of how to use it is displayed on 
the CRT screen. A print of this is given in Figure B .1. 

Figure B.2 shows a listing resulting from the use of RENUMBER. The 
command LOAD DEM01 was given to put the program DEM01 from the 
AMPERGRAPH disk into the machine; the LIST command displays the 
program. Figure B.2 then shows that the instruction 

$FIRST 1000,1NC 15,S10,E60 

was executed in the immediate mode; it renumbered the program state­
ments. The listing shows that the first statement numbered in the new 
numbering scheme is 1000; subsequent statement incrementing at 15 units. 
The statements in the original program to be renumbered started with 
instruction 10 and ended with statement 60. 

To merge a program in the machine with another, the two instructions &H 
and &Mare used as illustrated in Figure B.3. With the renumbered program 
of Figure B .2 in the machine , typing &H put it into 'HOLD'. Another 
program can now be loaded into the APPLE without affecting the program 
on HOLD. None of the instruction numbers of the two programs can be the 
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Fig. 8.1. RENUMBER screen. 

Appendix B 

same. Two programs are merged by typing &M CR. The subsequent LIST 
shows that the new program consists of the two programs put together as one. 

The RENUMBER program is thus an editing procedure which makes it 
possible to combine two programs conveniently into a single larger program. 
RENUMBER and AMPERGRAPH cannot be in the machine simultane­
ously. One replaces the other so after RENUMBERing AMPERGRAPH 
will need to be reloaded. RUN AMPERGRAPH LOADER or STARTUP 
with the SYSTEM START disk in the drive but be sure you have saved your 
merged program first! 

JPR#1 
]RUN RENUMBER 
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
& & 
& APPLESOFT RENUMBER & 
& & 
& COPYRIGHT APPLE COMPUTER, INC, 1978 & 
& & 
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

RENUMBER (DEFAULT VALUES) 

& [FIRST 10] [,INC 10] [,S OJ [,E 63999] 

MERGE 

&H PUT PROGRAM ON HOLD 
&M MERGE TO PROGRAM ON HOLD 

PRESS 'RETURN' TO CONTINUE ... RENUMBER IS INSTALLED 
AND READY IF YOU USE'FP', 'HIMEM', OR 'MAXFILES' 

YOU WILL HAVE TO RE-RUN RENUMBER 



Fig. 8.2. Example of a program 
renumbered . 

Fig. 8.3. Example of programs 
merged. 

Merging programs 

]LOAD DEM01 
JUST 

5 REM DEM01 
6 REM ELEMENTARY EXAMPLE 
7 REM 
10 HGR2 : HIMEM: 16383 
20 & SCALE,0,10, -1.2,1.2 
30 & AXES,0,0,2,.2 
40 FOR X = 0 TO 10 STEP .2 
so & DRAW ,X, COS (X) 
60 NEXT X 

J&FIRST 1000,INC1S,S10,E60 

J LIST 

5 REM DEM01 
6 REM 
7 REM 
1000 
1015 
1030 
1045 
1060 
1075 

JUST 

5 REM 
6 REM 
7 REM 
1000 
1015 
1030 
1045 
1060 
1075 

J&H 

ELEMENTARY EXAMPLE 

HGR2 : HIMEM: 16383 
& SCALE,0,10, -1.2,1.2 
& AXES,0,0,2,.2 
FOR X = 0 TO 10 STEP .2 
& DRAW ,X, COS (X) 
NEXT X 

DEM01 
ELEMENTARY EXAMPLE 

HGR2 : HIMEM: 16383 
& SCALE,0,10, -1.2,1.2 
& AXES,0,0,2,.2 
FOR X = 0 TO 10 STEP .2 
& DRAW ,X, COS (X) 
NEXT X 

Program in machine to be 

renumbered. 
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Type this in +CR to renumber 

program 

Program with new statement 

numbers. 

Program 1 in machine 

Type &H CR put 

continued 
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PROGRAM ON HOLD, USE "&M" TO RECOVER Program 1 on hold 

]10 REM THE PROGRAM LISTED ABOVE 

]20 REM WAS JUST CREATED UNSING 

]30 REM THE RENUMBER PROGRAM 

J40 REM AND PUT ON "HOLD" USING 

]50 REM THE IMMEDIATE INSTRUCTION 

]60 REM &H. I WILL NOW INSERT THE 

]70 REM PROGRAM I AM WRITING I.E. 

]80 REM INSTRUCTIONS 10 TO 80 INTO 

]90 REM THIS PROGRAM. 

J&M 

JUST 
5 REM DEM01 
6 REM ELEMENTARY EXAMP LE 
7 REM 
10 REM THE PROGRAM LISTED ABOVE 

20 REM WAS JUST CREATED UNSING 

30 REM THE RENUMBER PROGRAM 
40 REM AND PUT ON "HOLD" USING 
50 REM THE IMMEDIATE INSTRUCTION 
60 REM &H. I WILL NOW INSERT THE 
70 REM PROGRAM I AM WRITING I.E. 
80 REM INSTRUCTIONS 10 TO 80 INTO 
90 REM THIS PROGRAM. 
1000 HGR2 : HIMEM : 16383 
1015 & SCALE,0,10, -1.2,1.2 
1030 & AXES,0,0,2,.2 
1045 FOR X = 0 TO 10 STEP .2 
1060 & DRAW ,X, COS (X) 
1075 NEXT X 

Put Program 2 into 

machine- type or 

LOAD from disk 

Type &M CR to merge 

Programs 1 and 2 

Prog rams 1 and 2 

merged together 



Fig. C.1. APPLE lie memory map. 

Appendix C 
APPLE lie memory map 

Figure C.l shows how the address space of the APPLE lie is organized. Both 
the decimal and the hexadecimal representations of the addresses are given 
(hexadecimal representation is described in Section 4.3) . The main RAM 

ROM 1/0 RAM 

$FFFF 65535. Monitor 
INTEGER 

Bank BASIC 
APPLESOFT switched 

BASIC 
~ 

MINI-
Interpreter ASSEMBLER 

$0000 53248. 

$CFFF 53247. 

$COOO 49152. 

$BFFF 49151. 



130 

Fig. C.2. BASIC memory usage. 

Appendix C 

memory is in locations $0000-$BFFF . The addresses from $COOO to $CFFF 
are reserved for the 1/0 registers of peripheral devices like the disk drive and 
the printer. The APPLE lie also has a block of RAM at addresses $DOOO­
$FFFF which are the same as the ROM addresses and so would normally 
cause a conflict. But there is a register in the I/0 space that determines which 
memory is being used; it acts like a switch whose position is determined by 
the bits in the register (a soft-switch). The command INT switches to the 
RAM memory (called bank-switched RAM) and FP switched back to ROM. 
When the power is turned on to the computer , the ROM memory is switched 
on. 

Figure C.l also shows some of the normal memory usage in the APPLE. 
The monitor and APPLESOFT BASIC interpreter are in the ROM. The 
INTEGER BASIC interpreter and the MINIASSEMBLER are in the 
bank-switched RAM and are loaded into the memory by the program on the 
SYSTEM START disk . The start-up program also loads the DOS into the 
high addreses of the main memory. Memory locations from $4000 to $5FFF 
are reserved for HGR2. The text display memory is at locations $0400-
$07FF. A BASIC program entered from the keyboard or from a file is stored 
in memory beginning at $0800. The command HIMEM:16383 instructs the 
computer not to store any program or variables above this address (16383 
decimal is $3FFF hexadecimal). This protects HGR2 from being overwritten 
by the program . The address space for HGRl is from $2000 to $3FFF. The 
reason HGR2 is used instead of HGRl for graphics display is so that the 
BASIC program can have as large a memory space as possible by using the 
HGRl space for program use. 

Figure C .2 shows how BASIC uses the program space which is made 
available to it by the LOMEM and HIMEM settings. 

$3FFF 
16383. 

Boundary positions 
are variable 

$0800 
2048. 

Strings 

Free space 

Arrays 

Simple 
variables 

Program 

Start 

HIM EM 

Strings build from 
HIMEM down 

Variables build from the 
end of the program up 

- Start variables 
- End of program 



Fig. 0.1. ADC connections: DEV 
is high when address lines 
A 15 ... AO have $COAx, where x 
can be any number. DATAO ... 7 
is connected to the data buss 
when R/W and DEVare high and 
AO is low. EOC (End of 
Conversion) is bit 0 of the data 
when R/W and DEV and AO are 
high. 

Appendix D 
Connections and logic 
of the ADC 

To use apparatus intelligently it helps to understand what is going on inside; 
the discussion below focuses on giving some insight into what occurs when 
you do an analog conversion. As with most things , such discussion has many 
layers of increasing depth and detail. This discussion will go only one veneer 
down. 

The analog to digital conversion is done by an ADC 0817 IC which is 
connected to the address and data busses and to the R/W (read/write) wire 
of the APPLE computer (Figure 0.1). Addresses 49312-49319 are devoted 
to doing analog to digital conversions for channels ~7 on the protoboard to 
which you have attached your thermistor and potentiometers for measuring 
voltages. 

The BASIC instruction 'POKE address, data' which you used to actuate a 
voltage conversion is an instruction which says: store the number 'data' in 
location specified by the number 'address'. The 6502 will write the data to 
memory by holding the R/W wire LO (Holding it at 0 V specifies a 'write ' 
operation to memory) , putting the specified address on the 16 wires of the 
address buss , and then putting the data on the data buss . An ordinary RAM 
location at the specified address would respond by storing the number which 
appears on the data buss. The ADC is not ordinary memory; it is an 110 
device connected to the computer. The 6502 uses a system of memory 

To bit 0 
of data 
buss 

D 
A 
T 
A 

Start 

R/W and DEY------' 
ADC 

AO AI A2A3 and DEY and R/W 

16: I Multiplexer (channel select) 

ChO 

Not 
connected 
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mapped I/0 which means that all input and output are handled through 
special memory locations . 

When the ADC 'hears' one of its addresses called , with the R/W line LO 
requesting it to store data , it disregards what is on the data buss . This makes 
the number in the data field of the POKE instruction irrelevant. Instead of 
storing data the ADC switches the analog channel specified by the lower four 
address bits to its analog to digital conversion section and then starts 
conversion . The conversion from analog to digital requires about 100 t-LS for 
the ADC 0817 which is much less than the time required for a single BASIC 
instruction . When the conversion is completed , the digital result is stored in 
a memory register in the ADC. This is located at the base address 49312. 

The BASIC instruction 'X=PEEK (address) , reads the number in the 
memory locations specified by 'address ' and sets the variable X equal to the 
data read . When the PEEK ( 49312) instruction is interpreted the 6502 CPU 
puts the address 49312 on the address buss , sets the RIW line HI to indicate 
a read and then takes the data off the data buss. By indicating a READ the 
CPU requests the memory location at 'address ' to place the data on the buss . 
Thus, in response to this request , ADC places on the data buss the data from 
the last analog to digital conversion which was carried out. 



Appendix E 
VIA data sheets 

Although cryptic, data sheets contain all of the detailed information about a 
particular device. But, be warned!, they are sometimes inaccurate due to 
typos, poor editing and even slight misrepresentation of the capabilities. 
These following data sheets for the 6522 manufactured by Rockwell seem to 
be accurate. 

© ROCKWELL INTERNATIONAL CORPORATION 
Semiconductor Products Division , 1984 
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R6522 
VERSATILE INTERFACE 

ADAPTER (VIA) 

DESCRIPTION 

The R6522 Versatile Interface Adapter (VIA) is a very flexible l/0 
control device. In addition, this device contains a pair of very 
powerful 16-bit interval timers, a serial-to-parallel/parallel-to 
serial shift register and input data latching on the peripheral 
ports . Expanded handshaking capability allows control of 
bidirectional data transfers between VIA's in multiple processor 
systems. 

Control of peripheral devices is handled primarily through two 
8-bit bidirectional ports. Each line can be programmed as either 
an input or an output. Several per ipheral 1/0 lines can be 
controlled directly from the interval timers for gP-nerating 
programmable frequency square waves or for counting exter­
nally generated pulses. To facilitate control of the many powerful 
features of this chip, an interrupt flag register, an interrupt enable 
register and a pair of function control registers are provided. 

ORDERING INFORMATION 
..---- ----- - --- ---------- ---

Part Number: 
R6S22 

L Temperature Range 
Blank = 0°C to + 70°C 

R = - 40°C to +85°C 

Package 
C = Ceramic 
P = Plastic 

Frequency 
No Letter = t MHz 

A = 2 MHz 

Document No. 29000D47 

FEATURES 

• Two 8-bit bidirectional 1/0 ports 

• Two 16-bit programmable timer/counters 

• Serial data port 

• TIL compatible 

• G~OS compatible peripheral control lines 

• Expanded " handshake" capability allows positive control of 
data transfers between processor and peripheral devices. 

• Latched output and input registers 

• 1 MHz and 2 MHz operation 

• Single + SV power supply 

Vss CAl 
PAO CA2 
PAl RSO 
PA2 RSl 
PA3 RS2 
PA4 RS3 
PAS RES 
PA6 DO 
PA7 01 
PBO 02 
PB1 03 
PB2 04 
PB3 OS 
PB4 06 
PBS 07 
PB6 02 
PB7 CSl 
CBl CS2 
CB2 RiW 
Vee IRQ 

R6S22 Pin Configuration 

Data Sheet Order No. D47 
Rev. 8, October 1984 
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INTERFACE SIGNALS 

RESET (RES) 

A low reset (RES) input clears all R6522 internal registers to logic 
0 (except T1 and T21atches and counters and the Shift Register). 
This places all peripheral interface lines in the input state, disa­
bles the timers , shift register, etc. and disables interrupting from 
the chip. 

INPUT CLOCK (PHASE 2) 

The input clock is the system ~2 clock and triggers all data 
transfers between processor bus and the R6522 . 

READ/WRITE (R/W) 

The direction of the data transfers between the R6522 and the 
system processor is controlled by the RIW line in conjunction 
with the CS1 and CS2 inputs. When RiW is low, (write operation) 
and the R6522 is selected, data is transferred from the processor 
bus into the selected R6522 register. When R/W is high , (read 
operation) and the R6522 is selected, data is transferred from 
the selected R6422 register to the processor bus . 

DATA BUS (DO-D7) 

The eight bidirectional data bus lines transfer data between the 
R6522 and the system processor bus. During read cycles, the 
contents of the selected R6522 register are placed on the data 
bus lines. During write cycles, these lines are high-impedance 
inputs and data is transferred from the processor bus into the 
selected register. When the R6522 is not selected, the data bus 
lines are high-impedance. 

D0-07 

02 

R6500 RtW 
MICROPROCESSOR 
BUS CS1, CS2 
INTERFACE 

RSO-RS3 

RES 

IRQ 

R6522 
VIA 

Versatile Interface Adapter (VIA) 

CHIP SELECTS (CS1, CS2) 

The two chip select inputs are normally connected to processor 
address lines either directly or through decoding. The selected 
R6522 register is accessed when CS1 is high and CS2 is low. 

REGISTER SELECTS (RSO-RS3) 

The coding of the four Register Select inputs select one of the 16 
internal registers of the R6522 , as shown in Table 1. 

INTERRUPT REQUEST (IRQ) 

The Interrupt Request output goes low whenever an internal 
interrupt flag is set and the corresponding interrupt enable bit is a 
logic 1 . This output is open-drain to allow the interrupt request 
signal to be wire-OR'ed with other equivalent signals in the 
system. 

PERIPHERAL PORT A (PAO-PA7) 

Port A consists of eight lines which can be individuallly pro­
grammed to act as inputs or outputs under control of Data Direc­
tion Register A. The polarity of output pins is controlled by an 
Output Register and input data may be latched into an internal 
register under control of theCA 1 line. All of these modes of oper­
ation are controlled by the system processor through the internal 
control registers. These lines represent one standard TIL load in 
the input mode and will drive one standard TIL load in the output 
mode. Figure 2 illustrates the output circuit. 

PAO-PA7 

CA1 

CA2 
PERIPHERAL 

CB1 INTERFACE 

CB2 

PBO-PB7 

Figure 1. R6522 VIA Interface Signals 
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PORT A CONTROL LINES (CA 1, CA2) 

The two Port A control lines act as interrupt inputs or as hand­
shake outputs. Each line controls an internal interrupt flag with a 
corresponding interrupt enable bit. In addition, CA1 controls the 
latching of data on Port A input lines. CA 1 is a high-impedance 
input only while CA2 represents one standard TIL load in the 
input mode. CA2 will drive one standard TIL load in the output 
mode. 

PORT B (PBO- PB7) 
Peripheral Port B consists of eight bidirectional lines which are 
controlled by an output register and a data direction register in 
much the same manner as the Port A. In addition, the polarity of 
the PB7 output signal can be controlled by one of the interval tim­
ers while the second timer can be programmed to count pulses 
on the PB6 pin. Port B lines represent one standard TIL load in 

Versatile Interface Adapter (VIA) 

the input mode and will drive one standard TIL load in the output 
mode. In addition, they are capable of sourcing 1 .0 mA at 1.5 Vdc 
in the output mode to allow the outputs to directly drive Darlington 
transistor circuits. Figure 3 is the circuit schematic. 

PORT B CONTROL LINES (CB1 , CB2) 

The Port B control lines act as interrupt inputs or as handshake 
outputs . As with CA1 and CA2, each line controls an interrupt 
flag with a corresponding interrupt enable bit. In addition, these 
lines act as a serial port under control of the Shift Register. These 
lines represent one standard TIL load in the input mode and 
will drive one standard TIL load in the output mode. CB2 can 
also drive a Darlington transistor circuit; however, CB1 cannot. 

Table 1. R6522 Register Addressing 

Register RS Coding 
Number R53 R52 RS1 RSO 

0 0 0 0 0 

1 0 0 0 1 

2 0 0 1 0 

3 0 0 1 1 

4 0 1 0 0 
5 0 1 0 1 

6 0 1 1 0 
7 0 1 1 1 

8 1 0 0 0 

9 1 0 0 1 

10 1 0 1 0 
11 1 0 1 1 
12 1 1 0 0 
13 1 1 0 1 

14 1 I 1 0 
15 1 1 1 1 

NOTE: 'Same as Register 1 except no handshake. 

1/0 CONTROL~ 
OUTPUT DATA~ 1 

I 

+SV 

INPUT DATA-----------' 

PAO-PA7, 
CA2 

Figure 2. Port A Output Circuit 

Register 
Des I g. 

ORB/IRB 

ORA/IRA 

DDRB 

DORA 

T1C-L 

T1C-H 

TIL-L 

T1L-H 

T2C-L 

T2C-H 

SR 

ACR 

PCR 

IFR 

IER 

ORA/IRA 

Register/Description 

Write (RiW = L) Read (R/W - H) 

Output Register B Input Register B 

Output Register A Input Register A 

Data Direction Register B 

Data Direction Register A 

T1 Low-Order Latches I T1 Low-Order Counter 

T1 High-Order Counter 

T1 Low-Order Latches 

T1 High-Order Latches 

T2 Low-Order Latches T2 Low-Order Counter 

T2 High-Order Counter 

Shift Register 

Auxiliary Control Register 

Peripheral Control Register 

Interrupt Flag Register 

Interrupt Enable Register 

Output Register A· Input Register A· 

+5V 

INPUT 
OUTPUT - ----..---\ 

CONTROL 

INPUT DATA----------- _j 

--

PBO-PB7, 
CB1, CB2 

'----- ----------------------· 

Figure 3. Port B Output Circuit 
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FUNCTIONAL DESCRIPTION 

The internal organization of the R6522 VIA is illustrated in Figure 
4. 

PORT A AND PORT B OPERATION 

The R6522 VIA has two 8-bit bidirectional 1/0 ports (Port A and 
Port B) and each port has two associated control lines. 

Each 8-bit peripheral port has a Data Direction Register (DDRA, 
DDRB) for specifying whether the peripheral pins are to act as 
inputs or outputs. A 0 in a bit of the Data Direction Register 
causes the corresponding peripheral pin to act as an input. A 1 
causes the pin to act as an output. 

Each peripheral pin is also controlled by a bit in the Output Regis­
ter (ORA, ORB) and the Input Register (IRA, IRS). When the pin is 
programmed as an output, the voltage on the pin is controlled by 
the corresponding bit of the Output Register. A 1 in the Output 
Register causes the output to go high , and a "0" causes the out­
put to go low. Data may be written into Output Register bits corre­
sponding to pins which are programmed as inputs. In this case, 
however, the output signal is unaffected. 

Versatile Interface Adapter (VIA) 

Reading a peripheral port causes the contents of the Input Regis­
ter (IRA, IRB) to be transferred onto the Data Bus. With input 
latching disabled, IRA will always reflect the levels on the PA 
pins. With input latching enabled , IRA will reflect the levels on the 
PA pins at the time the latching occurred (via CA 1 ). 

The tRB register operates similar to the IRA register. However, 
for pins programmed as outputs there is a difference. When 
reading IRA, the level on the pin determines whether a 0 or a 1 is 
sensed. When reading IRB, however, the bit stored in the output 
register, ORB, is the bit sensed . Thus, for outputs which have 
large loading effects and which pull an output "1" down or which 
pull an output " 0 " up, reading IRA may result in reading a " 0 " 
when a " 1" was actually programmed, and reading a "1" when 
a "0" was programmed. Reading IRB, on the other hand, will 
read the " 1" or " 0" level actually programmed, no matter what 
the loading on the pin. 

Figures 5 through 8 illustrate the formats of the port registers. 
In addition, the input latching modes are selected by the Auxiliary 
Control Register (Figure 14). 

INTERRUPT 
CONTROL 

r------------------------------------ IRQ 

DATA 
BUS 

RES 
R/W 
</>2 

DATA 
BUS 

BUFFERS 

CS1 CHIP 
CS2 ACCESS 
RSO - CONTROL 
RS1 
RS2 
RS3 

PERIPHERAL 
(PCR) 

AuxiLIARY 
(ACR) 

FUNCTION 
CONTROL 
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HANDSHAKE CONTROL OF OAT A TRANSFERS 

The R6522 allows positive control of data transfers between the 
system processor and peripheral devices through the operation 
of "handshake" lines. Port A lines (CA 1, CA2) handshake data 
on both a read and a write operation while the Port B lines (CB1 , 
CB2) handshake on a write operation only. 

Read Handshake 

Positive control of data transfers from peripheral devices into the 
system processor can be accomplished very eHectively using 
Read Handshaking. In this case, the peripheral device must gen­
erate the equivalent of a "Data Ready" signal to the processor 
signifying that valid data is present on the peripheral port. This 
signal normally interrupts the processor, which then reads the 

~-, REG 0-0RB/IRB 

I 
i 
i 

I 
L_-----~84 

OUTPUT REGISTER 
" B" (ORB)OR 
INPUT REGISTER 
" B" (IRB) ~------- PB5 
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:OF':B i BIT IN ORB PIN LEVEL HAS NO 

AFFECT 
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UI'Ofll ~UP.B CHANGED 
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Figure 5. Output Register B (ORB), Input Register B (IRB) 
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WHOSE LEVEl IS DETERMINED BY 
ORB REGISTER BIT 

Figure 7. Data Direction Register B (DDRB) 
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data, causing generation of a "Data Taken" signal. The periph­
eral device responds by making new data available. Th1s process 
continues until the data transfer is complete. 

In the R6522 , automatic "Read" Handshaking is possible on the 
Peripheral A port only. TheCA 1 interrupt input pin accepts the 
"Data Ready" signal and CA2 generates the "Data Taken" sig­
nal. The "Data Ready" signal will set an internal flag which may 
interrupt the processor or which may be polled under program 
control. The "Data Taken" signal can either be a pulse or a level 
which is set low by the system processor and is cleared by the 
"Data Ready" signal. These options are shown in Figure 9 which 
illustrates the normal Read Handshake sequence . 

REG 1-0RA/IRA 

I ' i•l•i'i ' i' 1·1'1 
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Figure 6. Output Register A (ORA), Input Register A (IRA) 
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¢
2 ~~~~ll__f"L__fl__fl_ 

~c~~~ READY I f/Z?:ZX0/Zl I II II: 

IRQ OUTPUT '1- _ '-------iL----

READ IRA OPERATION ==lll I 
" DATA TAKEN " ----------~·------' 
HANDSHAKE MODE 
(CA2) 

" DATA TAKEN " 
PULSE MODE -----------( 

11----+----

11'----J 
11------

(CA2) 

Figure 9. Read Handshake Timing (Port A Only) 

Write Handshake 

The sequence of operations which allows handshaking data from 
the system processor to a peripheral device is very similar to lhat 
described for Read Handshaking. However, lor Write Handshak­
ing, the R6522 generates the "Data Ready" signal and the 
peripheral device must respond with the "Data Taken" signal. 
This can be accomplished on both the PA port and the PB port on 
the R6522. CA2 or CB2 act as a "Data Ready" output in either 
the handshake mode or pulse mode and CA 1 or CB 1 accept the 
" Data Taken" signal from the peripheral device, setting the inter­
rupt flag and clearing the " Data Ready" output. This sequence 
is shown in Figure 10. 

REG 12-PERIPHERAL CONTROL REGISTER 

1>1•1'1 '1 3 1'1' ol 

Selection of operating modes for CA 1, CA2, CB1 , and CB2 is 
accomplished by the Peripheral Control Register (Figure 11 )-
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Figure 11. Peripheral Control Register (PCR) 
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Figure 10. Write Handshake Timing 
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COUNTER/TIMERS 

There are two independent 16-bit counter/timers (called Timer 1 
and Timer 2) in the R6522. Each timer is controlled by writing 
bits into the Auxi liary Control Register (ACR) to select the mode 
of operation (Figure 14. 

Timer 1 Operation 

Interval Timer T1 consists of two 8-bit latches (Figure 12) and 
a 16-bit counter (Figure 13). The latches store data which is to 
be loaded into the counter. After loading , the counter decrements 
at 02 clock rate. Upon reaching zero , an interrupt flag is set, 
and IRQ goes low if the T1 interrupt is enabled . Timer 1 then 

REG 6-TIMER 1 LOW-ORDER LATCH 

WRITE - 13 BITS LOADED !N"!O T1 i..OW-ORDEA 
:...t.fCHES rHtS OPERATION 1$ NO 
DIFFERENT rHAN A WAITE INTO 
PEG t, 

READ -8 BITS Fl=lOM T1 LOW-CRr1ER LATCHES 
TRANSFE AREO TG .._,?U UNUKE REG 4 
OPE.RATION THIS LOE ~ NOT CAUSE 
RESET OF Tl lf'I<,[PRliPT F\.~\G 
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disables any further interrupts. automatically transers the con­
tents of the latches into the counter and cont inues to decrement. 
In addition , the timer may be programmed to invert the output 
signal on peripheral pin PB7 each time it "times-out. " Each of 
these modes is discussed separaely below. 

Note that the processor does not write directly into the low-order 
counter (T1 C-L). Instead, this half of the counter is loaded 
automatical ly from the low order latch (T1 L-L) when the 
processor writes into the high order counter (T1 C-H). In fact , it 
may not be necessary to write to the low order counter in some 
applications since the timing operation is triggered by writing 
to the high order latch . 

REG 7-TIMER 1 HIGH-ORDER LATCH~l 
1,1·1 , I , I , I , I, I " I 
I I I LL=::: I 

l
l I~ ~ 

20
4
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Figure 12. Timer 1 (T1) Latch Registers 
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REG 11-AUXILIARY CONTROL REGISTER 
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Figure 14. Auxiliary Control Register (ACR) 

Timer 1 One-Shot Mode 

The Timer 1 one-shor mode generates a single interrupt for each 
timer load operation . As with any interval timer, the delay 
between the " write T1C-H " operation and generation of the 
processor interrupt is a direct function of the data loaded into 
the timing counter. In addition to generating a single interrupt, 
Timer 1 can be programmed to produce a single negative pulse 
on the PB7 peripheral pin . With the output enabled (ACR7 = 1) 
a " write T1C-H" operation will cause PB7 to go low. PB7 will 
return high when Timer 1 times out . The result is a single 
programmable width pulse . 

Timing for the R6522 interval timer one-shot modes is shown 
in Figure 15. 

02 

WRITE T1C-H 

IRQ OUTPUT 

PB7 OUTPUT 

N N-1 N-2 I N-3 I 

In the one-shot mode, writing into the T1 L-H has no effect on 
the operation of Timer 1. However, it will be necessary to assure 
that the low order latch contains the proper data before initiating 
the count-down with a "write T1 C-H" operation . When the 
processor writes into the high order counter (T1C-H), the T1 inter­
rupt flag will be cleared , the contents of the low order latch will 
be transferred into the low order counter, and the timer will begin 
to decrement at system clock rate . If the PB7 output is enabled , 
this signal will go low on the 02 following the write operation . 
When the counter reaches zero , the T1 interrupt flag will be set, 
the IRQ pin will go low (interrupt enabled), and the signal on 
PB7 will go high. At this time the counter will continue to decre­
ment at system clock rate . This allows the system processor to 
read the contents of the counter to determine the time since inter­
rupt. However, the T1 interrupt flag cannot be set again unless 
it has been cleared as described in this specification . 

N-1 N-2 I N-3 I 

f-------~ N + 1.5 CYCLES --------1 

Figure 15. Timer 1 One-Shot Mode Timing 
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Timer 1 Free-Run Mode 

The most important advantage associated with the latches in 
Tt is the ability to produce a continuous series of evenly spaced 
interrupts and the ability toproduce a square wave on PB7 whose 
frequency is not affected by variations in the processor inter­
rupt response time This is accomplished in the "free-running" 
mode. 

In the free-running mode, the interrupt flag is set and the signal 
on PB7 is inverted each time the counter reaches zero , at which 
time the timer automatically transfers the contents of the latch 
into the counter (16 bits) and continues to decrement from there. 
The interrupt flag can be cleared by writing Tt C-H, by reading 
TtC-L, or by writing directly into the flag as described later. 
However, it is not necessary to rewrite the timer to enable setting 
the interrupt flag on the next time-out. 

All interval timers in the R6522 are " re-triggerable." Rewriting 
the counter will always re-initialize the time-out period. In fact, 

~ 
I 
I 

OPERATION 

IRQ OUTPUT 

PB7 OUTPUT 
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the time-out can be prevented completely if the processor con­
tinues to rewrite the timer before it reaches zero . Timer 1 will 
operate in this manner if the processor writes into \he high order 
counter (TIC-H). However . by loading the :atches only , the 
processor can access the timer during each down-counting 
operation without affecting the time-out in process. Instead, the 
data loaded into the latches will determine the length of the next 
time-out period . Th1s capability is particularly valuable in the free­
running mode with the output enabled. In this mode, the signal 
on PB7 is inverted and the interrupt flag is set with each time­
out. By responding to the interrupts with new data for the latches, 
the processor can determine the period of the next half cycle 
during each half cycle of the output signal on PB7. In this 
manner, very complex waveforms can be generated. 

A precaution to take in the use of PB7 as the timer output con­
cerns the Data Direction Register contents for PB7. Both DDRB 
bit 7 and ACR bit 7 must be 1 for PB7 to function as the timer 
output. If one is 1 and the other is 0 , then PB7 functions as a 
normal output pin, controlled by ORB bit 7. 

~ N + 1.5 CYCLES - -+----- N + 2 CYCLES -----1 

L..-------------------------------- -----------------------" 

Figure 16. Timer 1 Free-Run Mode Timing 

Timer 2 Operation 

Timer 2 operates as an interval timer (in the "one-slot" mode 
only), or as a counter for counting negative pulses on the PB6 
peripheral pin A single control bit in the Auxiliary Con\rcl Register 
selects between these two modes. This timer is r.ompri<;;ed of a 
"write-only" lower-order latch (T2L-L), a "read-oniy' ' low-crder 
counter (T2C-L) and a read/write high order counter (T2C-H). 
The counter registers act as a 16-bit counter which decrements 
at 02 rate. Figure 17 illustrates the T2 Latch/Counter Registers. 

Timer 2 One-Shot Mode 

As an interval timer, T2 operates in the " one-shot" mode similar 
to Time 1. In this mode, T2 provides a single interrupt for each 
" write T2C-H " operation. After timing out, the counter will con­
tinue to decrement. However, setting of the interrupt ilag is 
disabled after initial timEHJut so that it will not be set by the counter 

decrementing again through zero. The processor must rewrite 
T2C-H to enable setting of the interrupt flag . The interrupt flag 
is cleared by reading T2C-L or by writing T2C-H. Timing for this 
operation is shown in Figure 18. 

Timer 2 Pulse Counting Mode 

In the pulse counting mode, T2 counts a predetermined number 
of negative-going pulses on PBO. This is accomplished by first 
loading a number into T2 . Writing into T2C·H clears the interrupt 
flag and allows the counter to decrement each time a pulse is 
applied to PB6. The interrupt tlag is set when T2 counts down 
past zero. The counter will then continue to decrement with each 
pulse on PB6. However, it is necessary to rewrite T2C-H to allow 
the interrupt flag tc set on a subsequent time-out. Timing for 
this mode is shown in Figure 19. The pulse must be low on the 
leading edge of 02 . 
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02 

REG 8- TIMER 2 LOW-ORDER LATCH/COUNTER 

COUNT 
VALUE 

WAITE - 8 BITS LOADED INTO T1LOW ORDER 
LATCH 

READ 8 BITS FROM T2 LOW ORDER COUNTER 
TRANSFERRED TOMPU T21NTEARUPT 
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REG 9-TIMER 2 HIGH-ORDER LATCH/COUNTER 
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16384 
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TRANSFERRED TO LOW ORDER 
COUNTER IN ADDITION . T2 INTERRUPT 
FLAG IS RESET 

R EAD - 8 BITS FROM T2 H IGH ORDER COUNTER 
TRANSFERRED TO MPU 

Figure 17. Timer 2 (T2) Latch/Counter Registers 
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Figure 18. Timer 2 One-Shot Mode Timing 

u u ;, u 

N N-1 N-2 I I 

Figure 19. Timer 2 Pulse Counting Mode 
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SHIFT REGISTER OPERATION 

The Shift Register (SR) performs serial data transfers into and 
out of the CB2 pin under control of an internal modulo-8 counter. 
Shift pulses can be applied to the CB1 pin from an external 
source or, with the proper mode selection , shift pulses generated 
internally will appear on the CB1 pin for controll ing external 
devices. 

The control bits which select the various shift register operating 
modes are located in the Auxiliary Control Register. Figure 20 
illustrates the configuration of the SR data bits and Figure 21 
shows the SR control bits of the ACR. 

SR Mode 0 - Disabled 

Mode 0 disables the Shift Register. In this mode the micropro­
cessor can write or read the SR and the SR will shift on each CB1 
positive edge shifting in the value on CB2. In this mode the SR 
interrupt Flag is disabled (held to a logic 0) . 

SR Mode 1 - Shift In Under Control of T2 

In mode 1, the shifting rate is controlled by the low order 8 bits of 
T2 (Figure 22). Shift pulses are generated on the CB1 pin to con­
trol shifting in external devices. The time between transitions of 
this output clock IS a function of the system clock period and the 
contents of the low order T2 latch (N). 

~---------REG 10-SHIFT REGISTER 

I [>[oJ+I+J 1 JoJ 
II II I!. I I ___ -, II 'L ... - 1 

I ~ ~------: 
I ; \. _______ 1 SHIFT 
1 ! I REGISTER 

l ~-~-=---== i BITS 

- - - ---- 1 

-------J 
N O": t:S 
1 WHEN SH t FTir..IG OUT BIT 7 15 THE FIRST BIT 

UU T AND SIMULTANE OUSLY 15 RO TATE <) BAC K 
INTO BIT 0 

2 WHEN SHIF rtNG ~- BITS INITIAL LY ENTEA 
BIT 0 .AND ARE SH IFTED TO WAR::>S B!T 7 

Figure 20. Shift Registers 

WRITE OR READ 
SHIFT REG 

---~1 
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The shifting operation is triggered by the read or write of the SR 
if the SR flag is set in the I FR. Otherwise the first shift will occur 
at the next time-out of T2 after a read or write of the SR. Data 
is shifted first into the low order bit of SR and is then shifted into 
the next higher order bit of the shift register on the negative-going 
edge of each clock pulse . The input data should change before 
the positive-going edge of the CB1 clock pulse. This data is shifted 
into the shift register during the '/!2 clock cycle following the 
positive-going edge of the CBi clock pulse. After 8 CBj.clock 
pulses, the shift register interrupt flag will set and IRQ will go low. 

SR Mode 2 - Shift In Under 02 Control 

In mode 2, the shift rate is a direct function of the system clock 
frequency (Figure 23). CB1 becomes an output which generates 
shift pulses for controlling external devices. Timer 2 operates as 
an independent interval timer and has no effect on SR. The shift­
ing operation is triggered by reading or writing the Shift Register. 
Data is shifted , first into bit 0 and is then sh1fted into the next 
higher order bit of the shift register on the trailing edge of each <i>2 
clock pulse. After 8 clock pulses , the shift register interrupt flag 
will be set, and the output clock pulses on CB1 will stop. 

REG 11-AUXILIARY CONTROL REGISTER 

I,I+I·H,I1H 
Jj_L 

L SHIFT REGISTER 
MODE CONTROL 

4 3 ' OPE RATION 

0 0 0 DISABLED 

0 0 1 SHIFT IN UNDER CONTROL OF T2 

0 1 0 SHIFT IN UNDER CONTROL OF l ·1 

0 1 1 SHIFT IN UNDER CONTROL OF EXT CLK 

1 0 0 SHIFT OUT FREE RU NN ING AT 12 RATE 

1 0 1 SHIFT OUT UNDER CON TROL O F 12 

I 
1 1 0 SHIFT OUT UNDER CONTR OL O F 1·2 

1 1 1 SH I FT OUT UNDER CONTROL OF EX T c u( 
J 

Figure 21. Shift Register Modes 

Figure 22. SR Mode 1 - Shift In Under T2 Control 
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SR Mode 3 - Shift In Under CB1 Control 

In mode 3, external pin CB1 becomes an input (Figure 24) . This 
allows an external device to load the shift register at its own pace. 
The shift register counter will interrupt the processor each time 
8 bits have been shifted in . The shift register stops after 8 counts 
and must be reset to start again . Reading or writing the Shift 
Register resets the lnterrrupt Flag and initializes the SR counter 
to count another 8 pu lses . 

Note that the data is shifted during the first system clock cycle 
following the posiive going edge of the CB1 shift pulse. For this 
reason, data must be held stable during the first full cycle follow­
ing CB1 going high . 

SR Mode 4 - Shift Out Under T2 Control (Free-Run) 

Mode 4 is very similar to mode 5 in which the shifting rate is 
set by T2 . However, in mode 4 the SR counter does not stop 

Versatile Interface Adapter (VIA) 

the shifting operation (Figure 25) . Since the Shift Register bit 
7 (SR7) is recirculated back into bit 0, the 8 bits loaded into the 
shift register will be clocked onto CB2 repetitively . In this mode 
the shift register counter is disabled . 

SR Mode 5 - Shift Out Under T2 Control 

In mode 5, the shift rate is controlled by T2 (as in mode 4) . The 
shifting operation is triggerd by the read or write of the SR if 
the SR flag is set in the IFR (Figure 26). Otherwise the first shift 
will occur at the next time-out of T2 after a read or write of the 
SR. However, with each read or write of the shift register the 
SR Counter is reset and 8 bits are shifted onto CB2. At the same 
time , 8 shift pulses are generated on CB1 to control shifting in 
external devices. After the 8 shift pulses , the shifting is disabled, 
the SR Interrupt Flag is set and CB2 remains at the last data 
level. 

02 

READSR~~--~--------------------~~-----------------
CB1 OUTPUT 

SHIFT CLOCK 

CB21NPUT""-~~""'~~~~~~~~v-~,,-~(]C)C2:)C~~~~~~~~~~~~ 
DATA 

Figure 23 . SR Mode 2 - Shift In Center 02 Control 

Figure 24. SR Mode 3 - Shift In Under CB1 Control 

02 

WRITE SR 

CB1 OUTPUT ------i 
SHIFT CLOCK ~ 

2 x~--=3-~~ 

Figure 25. SR Mode 4 - Shift Our Under T2 Control (Free-Run) 
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SR Mode 6 - Shift OUt Under 1/12 Control 
Interrupt Flag each time it counts 8 pulses but it does not disable 
the shifting function . Each time the microprocessor writes or 
reads the shift register , the SR Interrupt Flag is reset and the 
SR counter is initialized to begin counting the next 8 shift pulses 
on pin CB1. After 8 shift pulses, the Interrupt Flag is set. The 
microprocessor can then load the shift register with teh next by1e 
of data. 

In mode 6, the shift rate is controlled by the 02 system clock 
(Figure 27). 

SR Mode 7 - Shift Out Under CB1 Control 

In mode 7, shifting is controlled by pulses applied to the CB1 pin 
by an external device (Figure 28) . The SR counter sets the SR 
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1 I I ~ I I 
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CB1 OUTPUT -------i._ __ _:--..... , 2 I 3 ! I ! 8 
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02 

r---=--'x..____-=-----x..____-=---jl: ~8 · g:~~UTPUT ~~~~~~W:<:'('*~\%~*:<:'('®:<:'('~~~~\i:<:'\'0;~~~~~\§~i)X ..... __ ..;__ _ _,_- 2 . - 3 I , ____ j\_!! __ 

L. 

Figure 26. SR Mode 5 - Shift Out Under T2 Control 
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~~~~~~~~~~~ 7 X I 8 

_j 

L_ ________________________________________________________________________________ ~ 

Figure 27. SR Mode 6- Shift Out Under "2 Control 

~------------------ .. ---------------------------------------------------------------, 

02 

WRITE SA 

CB1 INPUT 
SHIFT CLOCK 

CB2 OUTPUT 
DATA 

Figure 28. SR Mode 7 - Shift Out Under CB1 Control 
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Interrupt Operation 

Controlling interrupts within the R6522 involves three principal 
operations. These are flagging the interrupts. enabling interrupts 
and signaling to the processor that an active interrupt exists 
within the chip. Interrupt flags are set in the Interrupt Flag Regis­
ter (IFR) by conditions detected within the R6522 or on inputs to 
the R6522. These flags normally remain set until the interrupt 
has been serviced. To determine the source of an interrupt, the 
microprocessor must examine these flags in order. from highest 
to lowest priority. 

Associated with each interrupt flag is an interrupt enable bit in 
the Interrupt Enable Register (I ER). This can be set or cleared 
by the processor to enable interrupting the processor from the 
corresponding interrupt flag. If an interrupt flag is set to a logic 1 
by an interrupting condition . and the corresponding interrupt 
enable bit is set to a 1, the Interrupt Request Output (I RQ) will 
go low. IRQ is an "open-collector" output which can be "wire­
OR'ed" with other devices in the system to interrupt the processor. 

Interrupt Flag Register (IFR) 

In the R6522 , all the interrupt flags are contained in one register. 
i.e .. the IFR (Figure 29). In addition, bit 7 of this register will be 
read as a logic 1 when an interrupt exists within the chip. This 
allows very convenient polling of several devices within a system 
to locate the source of an interrupt. 

The Interrupt Flag Register (IRF) may be read directly by the proc­
essor. In addition , individual flag bits may be cleared by writing 
a "1" into the appropriate bit of the IFR. When the proper chip 
select and register signals are appplied to the chip, the contents 
of this register are placed on the data bus. Bit ·; indicates the 

REG 13-INTERRUPT FLAG REGISTER 

r 7161 ~ 1·1 31 211 I 0 I SET BY CLEARED BY 

llcA
2 

r-C-A_2_A;_C_T 1-V-E -E-DG- E---,rR_E_A_D_O_R_W_R_IT- E---, 

REG l (ORA)• 
CAl- CAl ACTIVE EDGE READ OR WRITE 

REG 1 (ORA) 
SH IFT REG COMPLETE 8 SHIFTS READ OR WAITE 

SH IFT REG 
1 CB2 CB2 ACTIVE EDGE READ OR WAITE ORB• 

l
' C81 CB1 ACTIVE EDGE READ OR WRITE ORB 

TIMER 
2 
___ _, TIME OUT OF T2 READ T2 LOW OR 

~T~I~M7E~O~UT~OF~T1~~W~R:~~~~~·T~~27:~~W~GH~O~R--4 
TIME R 1 -----t;~.;;,:;.;;-.n---+~W~R~IT~E~T~1 ~H!SIG~H---~ 

ANY ENABLED CLEAR ALL 
IRQ -------jji~N~TE~R~R!.l!u~PTC _ _jl_;I~N£TE~R~R~U~PT~S~ _ __j 

·IF THE CA21CB2 CONTROL IN THE PCR IS SELECTED AS 
" INDEPENDENT" INTERRUPT INPUT . THEN READING OR 
WAITING THE OUTPUT REGISTER ORA/ORB WILL NOT 
CLEAR THE FLAG BIT INSTEAD. THE BIT MUST BE 
CLEARED BY WAITING INTO THE IFR , AS DESCRIBED 
PAEVIOUSL Y 

Figure 29. Interrupt Flag Register (IFR) 

Versatile Interface Adapter (VIA) 

status of the IRQ output. This bit corresponds to lhe logic func­
tion: IRO = IFR6 x IER6 + IFR5 x IER5 + IFR4 x IER4 + 
IFR3 x IER3 + IFR2 x IER2 + IFR1 x IER1 + IFRO x IERO. 

Note: 

x = logic AND. + = Logic OR. 

The IFR bit 7 is not a flag . Therefore. this bit is not directly cleared 
by writing a logic 1 into it. It can only be cleared by clearing all the 
flags in the register or by disabling all the active interrupts as dis­
cussed in the next section. 

Interrupt Enable Register (IER) 

For each interrupt flag in IFR, there is a corresponding bit in the 
Interrupt Enable Register (IER) (Figure 30). Individual bits in the 
IER can be set or cleared to facilitate controlling individual inter­
rupts without affecting others. This is accomplished by writing to 
the (IER) after bit 7 set or cleared to, in turn. set or clear selected 
enable bits. If bit 7 of the data placed on the system data bus 
during this write operation is a 0, each 1 in bits 6 through 0 clears 
the corresponding bit in the Interrupt Enable Register. For each 
zero in bits 6 through 0, the corresponding bit is unaffected. 

Selected bits in the IER can be set by writing to the IER with bil7 
in the data word set to a 1. In this case. each 1 in bits 6 through 0 
will set the corresponding bit . For each zero. the corresponding 
bit will be unaffected. This individual control of the setting and 
clearing operations allows very convenient control of the inter­
rupts during system operation . 

In addition to setting and clearing IER bits, the contents of this 
register can be read at any time. Bit 7 will be read as a logic 1, 
however. 

REG 14-INTERRUPT ENABLE REGISTER 

0 

L-------- TIMER 1 

L---------SET /CLEAR 

NOTES 

INTERRUPT 
DISABLED 

INTERRUPT 
ENABLED 

1. IF BIT 7 IS A .. o··. THEN EACH .. , ' IN BITS 0 - 6 DISABLES THE 
CORRESPONDING INTERRUPT 

2. IF BIT 7 IS A ' T ', THEN EACH ·· 1 ' IN BITS 0 - 6 ENABLES THE 
CORRESPONDING INTERRUPT . 

3 IF A READ OF THIS REGISTER IS DONE . BIT 7 WILL BE " 1" AND 
ALL OTHER BITS WILL REFLECT THEIR ENABLE / DISABLE STATE . 

Figure 30. Interrupt Enable Register (IER) 
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PERIPHERAL INTERFACE CHARACTERISTICS 

Symbol Characteristic Min. Max. Unit Figure 

t, , t, Rise and Fall Time for CA 1, CB1 , CA2 and CB2 Input Signals - 1.0 ~s -

tcA2 Delay Time, Clock Negative Transition to CA2 Negative Transition (read handshake or - 1.0 ~s 31a, 31b 
pulse mode) 

lAs t Delay Time, Clock Negative Transition to CA2 Positive Transition (pulse mode) - 1.0 ~ 31a 

tRS2 Delay Time, CA 1 Active Transition to CA2 Positive Transition (handshake mode) - 2.0 ~s 31b 

lwHS Delay Time, Clock Positive Transi tion to CA2 or CB2 Negative Transition 0.05 1.0 ~s 31c, 31d 
(write handshake) - · 

los Delay Time, Peripheral Data Valid to CB2 Negative Transition 0.20 1.5 ~s 31c, 31d 

1Rs3 Delay Time, Clock Positive Transition to CA2 or CB2 Positive Transition (pulse mode) - 1.0 ~s 31c 

IRS4 Delay Time, CAt or CBt Active Transition to CA2 or CB2 Positive Transition - - 2.0 ~s I 31d 
(handshake mode) 

-
n~ l 31d t21 Delay Time Required from CA2 Output to CA 1 Active Transition (handshake mode) 400 -

Ill Setup Time. Peripheral Data Valid to CA1 or CB1 Active Transition (input latching) 300 - I --;;-r-31~ 
tAL CA 1, CB 1 Setup Prior to Transition to Arm Latch 300 - ns 1 31e j 

tpoH Peripheral Data Hold After CA1 , CB1 Transition 150 - ns 3te J f---'sR~___._~hift-Out Delay Time - Time from <1>2 Falling Edge to CB2 Data Out - 300 ns 311 

, tsm Shift-In Setup Time - Time from CB2 Data In to <1>2 Rising Edge 300 - ns 31y I f-- .. 
tsRJ External Shift Clock (CB 1) Setup Time Relative to ¢ 2 Trailing Edge 100 Tcv ns 31g 

tiPW Pulse Width - PB6 Input Pulse 2 X Tcv - 31i 

t,cw Pulse Width --- CB 1 Input Clock 2 x Tcv - 31h 

t1ps ~lse Spacing - PB6 Input Pulse 2 x Tcv - 31i 

r~ _ Pulse Spacing - CBt . lnput Pulse 2 x Tcv - 3th 
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PERIPHERAL INTERFACE WAVEFORMS 

02 

READ IRA 
OPERATION 

CA2 
" DATA TAKEN " 

READ IRA 
OPERATION 

CA2 
" DATA TAKEN " 

O.BV 

Figure 31a. CA2 Timing for Read Handshake, Pulse Mode 

~rr---f.ov O.BV 
/ 

,~'"" 
~~~TA READY " ----------------------1,: .... : ---~8: 

WRITE ORA, ORB 
OPERATION 

CA2, CB2 
" DATA READY " 

PA, PB 
PERIPHERAL 
DATA 

Figure 31 b. CA2 Timing for Read Handshake, Handshake Mode 

O.BV 

1-- -- los---- 1 

2.0V 

O.BV 

Figure 31c. CA2, CB2 Timing for Write Handshake, Pulse Mode 

L ACTIVE 
TRANSITION 

2.0V 
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WRITE ORA, ORB 
OPERATION 

CA2, CB2 
" DATA READY " 

CA1 , CB1 

Versatile Interface Adapter (VIA) 

I ___ .. D_A_T_A_T_., •• _ .. _________________________________________ A_C_T_IV-E----------------------------~ L - TRANSITION 

Figure 31d. CA2, CB2 Timing for Write Handshake, Handshake Mode 

lll11poH 
CA1 , CB1 ~ iov 
INPUT LATCHING . 

CONTROL ------- f--:_-:_-:_-:_-:_-:_-,-AL---_-_-_-_-_.J--+-1 ~·::liVE 

02 

CB2 
SHIFT DATA 
(OUTPUT) 

CB1 
SHIFT CLOCK 
(INPUT OR 
OUTPUT) 

TRANSITION 

Figure 31e. Peripheral Data Input Latching Timing 

O.BV 

f------ ts R1 

Figure 31f. Timing for Shift Out with Internal or External Shift Clocking 



R6522 

02 

CB2 
SHIFT DATA 
(INPUT) 

CB1 
SHIFT CLOCK 
(INPUT OR 
OUTPUT) 

CB1 
SHIFT CLOCK 
INPUT 

PB6 
PULSE COUNT 
INPUT 

Versatile Interface Adapter (VIA) 

r---- t lsR2 -~ 

,,. i 
o.av 

I 

1.4V 1.4': 
I 

_ ,SR3 l 
SET UP TIME MEASURED TO THE FIRST 0 

~ RISING EDGE AFTER CB1 RISING EDGE. - -

Figure 31g. Timing for Shift in with Internal or External Shift Clocking 

\ f[.ov 2.ov t 
o.av o.av [I \ '-· ___ _ 

[ _ ,lew --- j ~-- l1es ---
Figure 31h. External Shift Clock Timing 

1 ~OV O.BV O.BV 

~-llpw --·-_j --
1 

COUNTER T2 
DECREMENTS 
HERE 

Figure 31i. Pulse Count Input Timing 

"l ,______ 
- ·1 

2 
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BUS TIMING CHARACTERISTICS 

Parameter Symbol 

READ TIMING 

Cycle Time Tcv 1 10 0.5 10 J!S 

Address Set-Up Time TACR 180 - 90 - ns 

Address Hold Time TeAR 0 - 0 - ns 

Peripheral Data Set-Up Time TPCR 300 - 150 - ns 

Data Bus Delay Time TcoR - 365 - 190 ns 

Data Bus Hold Time I THA 10 - 10 I - ns 

WRITE TIMING 

Cycle Time Tcv 1 10 0.50 ~~-t ;tS 

02 Pu lse Width Tc 470 - 235 ns 
-

1--· Address Set-Up Time TACW 180 - 90 - ns 

Address Hold Time TcAw 0 - 0 - ns 

R/W Set-Up Time Twcw 180 - 90 - ns 

R/W Hold Time Tcww 0 - 0 - ns r- --
Data Bus Set-Up Time Tocw 200 - 90 - ns 

Data Bus Hold Time THw 10 - 10 - ns 
1--· 

Peripheral Data Delay Time Tcpw - 1.0 - 0.5 J!S 

~Peripheral Data Delay Time TcMos - 2.0 - 1.0 J!S 
to CMOS Levels 

! Note: tR ar,d IF = 10 to 30 ns. 
-
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BUS TIMING WAVEFORMS 

02 
CLOCK 

CHIP SELECTS, 
REGISTER SELECTS, 
R/W 

PERIPHERAL 

DATA 

~2 

CLOCK 

CHIP SELECTS, 
REGISTER SELECTS 

R/W 

DATA 

BUS 

DERIPHERAL 

DATA 

Versatile Interface Adapter (VIA) 
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Read Timing Waveforms 

f-------- T cv ------1 

Write Timing Waveforms 
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ABSOLUTE MAXIMUM RATINGS* 

Parameter Symbol Value 

Supply Voltage Vee - 0.3 to + 7.0 

Input Voltage VIN -0.3 to + 7.0 

Operating Temperature 
Commercial TA o to + 70 
Industrial -40 to +85 

Storage Temperature Tsm -55 to + 150 

OPERATING CONDITIONS 

Parameter Symbol Value 

Supply Voltage Vee 5V ±5% 

Temperature Range TA 
Commercial o•c to 7o•c 

DC CHARACTERISTICS 

Unit 

Vdc 

Vdc 

•c 
•c 

•c 

Versatile Interface Adapter (VIA) 

*NOTE: Stresses above those listed under ABSOLUTE MAX­
IMUM RATINGS may cause permanent damage to the device. 
This is a stress rating only and functional operation of the device 
at these or any other conditions above those indicated in the 
other sections of this document is not implied. Exposure to abso­

lute maximum rating conditions for extended periods may affect 

device reliability . 

(Vee = 5.0 Vdc ±5%, Vss = 0 , TA TL to TH, unless otherwise noted) 

Parameter Symbol Min. Typ.3 Max. Unit Test Conditions 

Input High Voltage VIH 2.4 - Vee v 
Input Low Voltage VIL -0 .3 - 0.4 v 
Input Leakage Current I,N -- ±1 ±2.5 p.A V1N = OV to 5.25V 

RAN, RES, RSO, RS1 , RS2, RS3, CS1, CS2, CA1,~2 Vee = OV 

Input Leakage Current for Three-State Off lrs1 - ±2 ±10 p.A V1N = 0.4V to 2.4V 
DO-D07 v ee = 5.25V 

--
Input High Current l,y - tOO -200 - p.A VIN = 2.4V 

PAO-PA7, CA2, PBO·PB7, CB1 , CBS ---1- Vee = 5.25V 

Input Low Current I1L -· - 0.9 - 1.8 rnA VIL = 0.4V 
PAO-PA7, CA2, PBO-PB7, CB1 , CB2 Vee = 5.25V 

Output High Voltage I VoH - - Vee = 4.75V 
All outputs 2.4 - - v ILOAD = -100 p.A 
PBO·PB7, CB2 (Darlington Dnve) 1.5 - - v ILOAD = -1.0 rnA 

Output Low Voltage ==Vm - - 0.4 v Vee = 4.75V 

- --
ILOAD = 1.6 rnA 

Output High Current (Sourcing) l loH 
Logic -100 -1000 - p.A VoH = 2.4V 
PBO-PB7, CB2 (Darlington Drive) -1 .0 -2.5 -10 rnA VoH = 1.5V 

Output Low Current (Sinking) loL 1.6 - - rnA VoL = 0.4V 

Output Leakage Current (Off State) I oFF - 4 ±10 p.A VoH = 2.4V 
IRQ Vee = 5.25V 

Power Dissipation Po - 450 700 mW 

Input Capacitance CIN Vee = 5.0V 
RAN, RES, RSO, RS1 , RS2, RS3, CSt , CS2, - - 7 pF VIN = OV 
DO-D7, PAO-PA7, CAt , CA2, PBO-PB7 
CB1 , CB2 - - 10 pF f = 1 MHz 
~2 Input - - 20 pF TA = 25•c 

1 Output Capacitance Cour - - 10 pF 

! No1es: 
I 1. All units are direct current (DC) except for capacitance. 
I 2. Negative sign indicates outward current flow , positive indicates inward flow. 

3. Typical values shown for Vee = 5.0V and TA = 25°C. 
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PACKAGE DIMENSIONS 

40-PIN CERAMIC DIP 

[ MILLIMETER3 INCHES 

~ s~'~9 +-rAJ~ MIN MAX 

A 1 980 2 020 
B 14 86 IS 62 a sas a s1s 

_g_ 2 54 ' 19 0 100 0 165 
D 0 38 0 53 0 015 0 021 
F 0 76 I 40 0030 0 055 
G 2 5• sse o 100 sse 

~ ,_g.:s I 78 0 030_ 00?J' 

J 0 20 ~--33 0 ..JOB 1---o--Q;J 
~- 2 54 4 19 0100 0 165 
L 14 60 15 37 0 575 0605 
M 0 10' 0 10 

_'!_._Q_? I I 52 0 0 20 0 060 

40-PIN PLASTIC DIP 

MilliMETERS INCHES 

DIM MIN MAX MIN MAX 

~ ~-28 52 32 2 040 2 060 
B 13 72 14 22 0 540 0 560 
c 3 55 5 08 0 140 0 200 
D 0 36 0 51 0 014 c 020 
F I 02 I 52 0 040 0 060 
G 2 54 BSC 0 100 sse 

H I 65 2 16 0 065 0085 
J 0 20 0 30 0 008 0 012 
K 3 05 3 56 0 120 0 140 

L 15 24 BSC 0 600 BSe 

M 7 IQ• T 10 

N 0 51 1 02 0 020 0 040 

Information furnished by Rockwell International Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Rockwell 
International tor its use, nor any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication 
or otherwise under any patent or patent rights of Rockwell International other than for circuitry embodied in a Rockwell product. Rockwell International 
reserves the right to change circuitry at any time without notice. This document is subject to change without notice_ 

:S: Rockwell International Corporation 1984 
All Rights Reserved 
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Appendix F 
Solution for heat flow 
in one dimension 

The problem at hand is to solve the differential equation for heat flow in one 

dimension , vis 

aT!cJt = a 2(a 2Tiaz2
) (F.l) 

where a = k/s and where the rod extends to infinity on both sides. The initial 

condition is that the temperature at t = 0 is given, ie, T(z , I = 0) = f(z) 
wheref(z) is the given initial temperature distribution along the bar. 

To proceed , we try the method of separation of variables by writing 

T(z, t) = F(z)G(t). Equation (F.l) then becomes 

aG!a t a2Fiaz 2 

a 2G - F (F.2) 

Since the variables t and zvary independently , each side of Equation (F.2) 

must be equal to a constant , say q, giving two ordinary differential equations. 

dG /d t = qa2G 

d 2Fidz2 = qF 

The solution for the first is 

G(t) = K exp(qa2t) 

} (F.3) 

(F.4) 

where K is a constant. If q is positive, this so lut ion grows without limit and 

thus is not a physically realizable solution. So q :::::; 0 and we can write it as 
q = -p2 to force this condition. Equation (F.4) becomes 

G(t) = K exp( -p2 a 2t) (F.5) 

The second of equations (F.3) can now be recognized as a simple wave 

eq uation 

(d 2Fidz2
) + p2F = 0 (F.6) 

with the solution 

F(z) =A cos(pz) + B sin(pz) (F.7) 

So, the so lution to the differential equation has the form 

T(z , t ; p) = FG 
= [A cos(pz) + B sin(pz)] exp( -p2 a 2t) (F.8) 

where the constant K has been absorbed into A and B. Equation (F.8) is true 

for any p and any linear combination of solutions with differe nt p will also be 

a solution . In particular , a general solution is 

T( z, t) = r [A(p) cos(pz) + B(p) sin(pz)] exp( -p2a2r)dp 

(F.9) 



Fig. F.1.1nitial temperature 
distribution on the infinite rod. 

Heat flow in one dimension 157 

Using the initial condition that T(z , 0) = f(z), gives for Equation (F. 9) 

T(z, 0) = I"' [A(p) cos(pz) + B(p) sin(pz)]dp (F.lO) 
() 

The Fourier integral theorem gives the following expressions for A and B 

A(p) = (1!1r) !:1(~) cos(p~)d~ 

B(p) = (1!1r) I:!(~) sin(p~)d~ I (F.ll) 

Using these expressions, Equation (F.9) becomes 

T(z, t) = (ll1r) r {J:, f(~)[cos(pg) cos(pz) + sin(p~) sin(p~)] 

X exp( -p2a2t)d~}dp 

= (117T) I"' 
() 

{f:oo /(~) cos(pz - p~) exp( -p2a2t)d~}dp 
(F.l2) 

Exchanging the order of integration gives 

T(z, t) = (1/7T) J:, f(~){f~ cos(pz- p~) exp( -p2a 2t)dp }d~ 
The inner integral can be found in a table of integrals and is equal to 

7Tl/2 [ ( z - ~)2] 
2at112 exp - 4a2t 

Therefore 

T(z, t) = 2a(~t)I I2 r oo f(~) exp[ _(z4~2;)2Jd~ (F.13) 

In the physical situation of a very quick impulse of heat given to a rod at 

z = 0, the initial temperature distribution will be (Figure F .l) 

{

0 z < -.!lz 
f(z) = lim Tmax -.!lz < z < LlZ 

t.z~ 0 0 LlZ < Z 

Temperature, T 

T max .---+---, 

- f.z 0 t.z Distance, z 
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Equation (F.13) becomes 

1 J~z [ (z - {;f] 
T(z, t) = 2a( 7T!)112 - llz f({;) exp - 4a2t d{; (F.14) 

If llz is small , the exponential in the integral will not vary much across the 

interval - Llz to Llz and so may be evaluated at {; = 0 and be removed from 
the integral. 

1 ( 
2

2 ) J"'z T(z , t) = 2a( 7Tl)l /2 exp - 4a3t - ll z f({;)d{; (F.I5) 

The remaining integral is just a constant so 

B ( 
2

2 

) T(z, t) = (112 exp -
4

a 2t (F .16) 

where B has absorbed all the constants. Also any constant value, say A, is a 
solution to the differential equation, so 

T(z, t) = A + 172 exp --2-B ( 
2 2 

) t 4a t 
(F.17) 

as is stated as Equation (5.1.5) . 
That's all folks. 



Fig. G.1. Heat input pu lse with 
finite duration. 

Appendix G 
Finite impulse heat flow 
in a rod 

The Equation (5.1.9) describes the flow of heat in a rod when the heat is 
applied very quickly at one point. The term very quickly means that the ratio 
of the time that the heater is on (call it T) to the characteristic time of the 
system, t 1, is much less than one. 

Tltl «; 1 (G.1) 

Physically , this means that the heat was put into the rod much faster than it 
flowed away from the point where it was added. 

In doing the experiment, equation (G .1) does not always strictly hold. An 
impulse of0.5 s gives a T!t 1 of about 0.4. In that case, the input of heat can be 
considered to be made up of a series of heat impulses. each of which has a 
width 11T such that 

11Titl «; I 

See Figure G .1 . 
Thus for each of these smaller intervals 11T, Equation (5.1. 9) will hold but 

must be rewritten with a change of origin: 

T, = r:(-'1-\ 112 

cxp(-=!.!_) 
1+1) I+T 

(G .2) 

where 

TJ = 2q/AZS7T112 

and q = PD.T is the heat put in during one interval and P is the power 
(assumed to be constant). The total temperature change will be given by the 
sum of the individual Ti: 

Power of ~-,.,rr.-ro• 
heat 
input 

0 
T 

Time, I 
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and the total heat input is 

If !:::.T goes to 0 then the sum goes to an integral: 

T(t) = JT T;(-t-1 )'
12 

exp(----=!J_)dT 
0 t+T t + T 

(G.3) 

with T; = 2PIAzs7T 112
• 

By a suitable change in variable and integration by parts, this integral can 

be evaluated giving 

where 

T = 2T1 ; [ (x + y)"
2 

exp(x ~\) - x
112 exp(-"~n 

+ 7Tl/2 erf(x ~ y r2 

_ 7r
112 

erfG) J 

T, = __1_Q_ 
Azs7T112 

as in Equation (5.1.9) 

y = Tit, 

X = tlt 1 

and 

erf('YI) = ~ J11 

exp(-g2)dg 
7T () 

(G.4) 

is the error function which can be evaluated using a table or a computer 
program. 

Figure G.2 is a plot of TIT1 vs. tlt1 for y = 0.01-1.5 and shows the error 

Fig. G.2. Heat f low fo r a f inite 0.500 
heat pu lse of length y= T!t1 w ith 
t = 0 at th e end ofthe pul se . 
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which is made when modeling an experiment with the impulse solution 

(Equation (5.1.9) when Equation (G.4) is actually more correct. The curve 

withy= 0.01 is essentially equal to the impulse solution Equation (5.1.9). 
For ratios of y > 0.1 an appreciable error is made. 

If t = 0 is measured from the center of the finite input pulse , a better fit is 
obtained. Equation (G.4) can be translated to this new origin by the 
substitution t ~ t - Tl2 giving 

T = 2T1 ~ [ (x + y/2)
112 

exp(x ~ \ 12 ) 

- (x - y/2) 112 exp( -l ) 
X- y/2 

+ 1r
112

erf( 
1 

) - 1r
112

erf( 
1 

) ] (G.5) 
X + y/2 X - y/2 

A plot of Equation (G .5) is given in Figure G.3 . Ratios of up toy= 1 can 
be tolerated without appreciable error with this time origin. 

Fig. G.3. As in Figure G.2 but with 0.500 
t = 0 in the middle of the pulse. 
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Appendix H 
Bootstrap sequence 

A whole series of programs is run automatically when the APPLE computer 

is turned on. This is called the 'bootstrap' since the computer begins in a state 
where it is not usable and pulls itself up by its own bootstraps (programs) to 
a state where it can be programmed or operated via commands from the 
keyboard. 

After the power is turned ON, the RESET sequence begins. The CPU 
looks in $FFFC, $FFFD (the RESET vector) for an address and begins 
executing the program at that address. In the APPLE the address in the 
RESET vector is $FF62 which is in the monitor ROM. Among other 
housekeeping chores, the monitor program looks for an installed disk drive 
controller card in slot 6. (If it does not find it, the monitor jumps to 
APPLES OFT BASIC in ROM.) If it finds it, the drive is turned on (red light 
on) and the disk is searched for the DOS file. This program file is loaded into 
RAM (see the memory map of Appendix C) and control is transferred to the 
DOS program . The DOS program (1) links itself to APPLESOFT BASIC so 
that disk commands can be used , (2) checks the size of RAM and sets 
HIMEM to an initial value, and (3) looks for an APPLESOFT program file 
on the disk called 'HELLO'. If it finds this file, it is loaded and run. On the 
SYSTEM START disk used in the laboratory, there is a HELLO program 
which does the following: (1) loads INTEGER BASIC/MINIASSEMBLER 
into the RAM of the language card. (2) Loads and runs AMPERGRAPH 
LOADER which links AMPERGRAPH to APPLESOFT BASIC (see 
memory map, Appendix C). (3) Returns to APPLESOFT BASIC. At this 
time the APPLE is waiting with the cursor blinking for you to type a 
command or program line. 

The following HELLO Program is used on the SYSTEM START disk so 
that AMPERGRAPH is automatically linked to BASIC when the computer 
is turned on. It requires the following files to be on the disk as well: 

INT BASIC From DOS3.3 
LOADER .OBJO From APPLE DOS3.3 
RENUMB ER 
CHAIN 
AMPERGRAPH LOADER 
AMPERGRAPH 

From APPLE DOS3.3 
From APPLE DOS3.3 
From AMPERGRAPH disk 
From AMPERGRAPH disk 
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10 TEXT : HOME 
20 D$ = CHR$ (4): REM CTRL-D 
30 VTAB 2:A$ = "APPLE II": GOSUB 1000 
40 VTAB 4:A$ = "DOS VERSION 3.3 SYSTEM 

MASTER": GOSUB 1000 
50 VTAB 7:A$ = "JANUARY 1, 1983" : GOSUB 1000 
60 PRINT D$;"BLOAD LOADER.OBJO" 
70 CALL 4096: REM FAST LOAD IN INTEGER BASIC 
80 VTAB 10: CALL - 958:A$ = "COPYRIGHT 

APPLE COMPUTER, INC. 1980,1982": 
GOSUB 1000 

90 C = (- 1101): IF C = 6 THEN PRINT 
INVERSE :A$ = "BE SURE CAPS LOCK IS 
DOWN": GOSUB 1000: NORMAL 

95 
100 
1000 
1010 

PRINT CHR" (4);"RUN AMPERGRAPH 
PRINT CHR$ (4);"FP" 

REM CENTER STRING A$ 
B = !NT (20- ( LEN (A$) /2)): 
IF B = < 0 THEN B = 1 

1020 HTAB B: PRINT A$: RETURN 

LOADER" 



Fig. 1.1. Block diagram of the 
6502 microprocessor (from MCS 
6500 Microcomputer 
Programming Manual, MOS 
Technology, Norristown, PA, 
1976). 

Appendix I 
Machine language 
instructions 

This appendix contains information about several aspects of machine 
language programming. Figure I.l shows a bird's-eye-view of the internal 
architecture of the 6502 microprocessor chip . T he next few pages describe 
the details of what the 6502 does at each clock cycle for various address 
modes and instructions and is taken from the MOS Technology Micro­
computer Programming Manual (used with permission). Then follows a 
summary of the 6502 instruction set. For more information about individual 
instructions , refer to Leventhal's 6502 Assembly Language Programming or 
the MOS Technology 6502 Programming Manual. 

Some MINIASSEMBLER tips: 
Remember to use the # sign to designate immediate mode addressing. 

Without it the instruction is translated as an absolute address mode calling 
an ac'dress on the first page of memory (in the firs t 256 bytes). 

You can BLOAD a machine language program from APPLESOFT 
BASIC as well as from the MINIASSEMBLER. It is sometimes convenient 
to include it as a program statement eg, PRINT CHR$(4) ; "BLOAD . .. " 
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MCS6501-l\IC36505 MICROPROCESSOR INSTRUCTION SET - \LPHABETIC SEQUENCE 

ADC Add Memory to Accumulator with Carry JSR Jump to New Location Saving Return Address 

AND "AND" Memory with Accumulator 

ASL Shift Left One Bit (Memory or Accumulator) LOA Load Accumulator with Memory 

LOX Load Index X with Memory 

BCC Branch on Carry Clear LOY Load Index Y with Memory 

BCS Branch on Carry SPt LSR Shift Right One Bit (Memory or Accumul3tor) 

BEO Branch on Result Zero 

BIT Test Bits in Memory 1uith Accumulator NOP No Operation 

BMI Branch on Result Minus ORA "O R" Memory with .A.cc•Jr,.,lator· 
BNE Branch Jn Resuit r.ot Zero 

BPL Branch on Result Plus PHA Push Accumulator on Stack 
BRK Force Break PHP Push Processor St<Jtus on Stack 
BVC Bran-:h on Overflow Clear PLA Pull Accumulator from Stack 
BVS Branch on Overflow Set PLP Pull Processor Status from Stack 

CLC Clear Carry Flag ROL Rotate One Bit Leh (Memory or Accumulator) 

CLD Clear Decimal Mode ROR Rotate One Bit Right (Memory or Accumulator) 

CLI Clear Interrupt Disable Bit RTI Return from Interrupt 

CLV Clear Overflow Flag RTS Return from Subrout ine 

CMP Compare Memory and Accumulator 

CPX Compare Memory and Index X SBC Subtract Memory from Accumulator with Borrow 

CPY Compare Memory and Index Y SEC Set Carry Flag 

SED Set Decimal Mode 

DEC Decrer1!'nt M~mory by One SEI Set Interrupt Disable Statu s 

DEX Decrement Index X by One STA Store Accumulator in Memory 

DEY Decrement Index Y by One STX Store Index X in Memory 

STY Store Index Yin Memory 

EOR " Excl usive :J r " Merrory with AccumcJiat or 
TAX Transfer A ccumulator to Index X 

INC Increment Memory by One TAY Transfer Accumulator to Index Y 

INX Increment Index X by One TSX Transfer Stack Purrr,er to l •1dex X 

trw Increment Index Y by One TXA Transfer Index X to Accumulator 

TXS Transfer Index X to Stack Pointer 

JMP Jwnp to New Location TYA Transfer Index Y to Accumul atcr 



166 Appendix I 

PROGRAMMING MODEL MCS650X 

15 7 0 
r-- - -------- ,--------------, 
L ___________ L __________ j 1/0 REGISTERS 

15 7 0 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r~----A--------, ACCUMULATOR 

15 7 0 

INDEX REGISTER Y 

0 

INDEX REGISTER X 

15 7 0 

PCH PCL PROGRAM COUNTER 

15 7 0 

~ ~ ~ ~ ~ ~ ~ ~ ~~ ._ _o_1__J~ ___ s ____ ---;} STACK POINTER 

PROCESSOR STATUS REGISTER. "P" 

...__ __ CARRY 
..__ ____ ZERO 

..__ _____ INTERRUPT DISABLE 
.._ ______ DECIMAL MODE 

.._ ________ BREAK COMMAND 
.___ ________ FORTHCOMING FEATURE 

L------------ OVERFLOW 
.___ ___________ NEGATIVE 

• Solid line indicates currently available features 
Dashed line indicates forthcoming members of family 



Machine language instructions 

The following notation applies to this summary: 

A 

X, y 

M 

p 

s 
I 

+ 
A 

v 

PC 

PCH 

PCL 

OPER 

II 

Accumulator 

Index Registers 

Memory 

Processor Status Register 

Stack Pointer 

Change 

No Change 

Add 

Logical AND 

Subtract 

Logical Exclusive Or 

Transfer from Stack 

Transfer to Stack 

Transfer to 

Transfer to 

Logical OR 

Program Counter 

Program Counter High 

Program Counter Low 

OPERAND 

IMMEDIATE ADDRESSING MODE 

Note: At the top of each table is located in parentheses a 

reference number (Ref: XX) which directs the user to 

that Section in the MCS6500 Microcomputer Family 

Programming Manual in which the instruction is defined 

and discussed. 

167 
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ADC 
Operation: 

Add memory to accumulator with carry 

A + M + C ~ A, C 

(Ref: 2.2.1) 

Addressing Assembly Language OP 
Mode Form CODE 

Immediate ADC II Oper 69 

Zero Page ADC Oper 65 

Zero Page, X ADC Oper, X 75 

Absolute ADC Oper 6D 

Absolute, X ADC Oper, X 7D 

Absolute, y ADC Oper, y 79 

(Indirect, X) ADC (Oper, X) 61 

(Indirect), Y ADC (Oper), Y 71 

* Add 1 if page boundary is crossed. 

AND "AND" memory with accumulator 

Logical AND to the accumulator 

Operation : A AM~ A 

(Ref: 2.2.3.0) 

Addressing Assembly Language 
Mode Form 

Immediate AND II Oper 

Zero Page AND Oper 

Zero Page, X AND Oper, X 

Absolute AND Oper 

Absolute, X AND Oper, X 

Absolute, y AND Oper, y 

(Indirect, X) AND (Oper, X) 

(Indirect), Y AND (Oper), Y 

* Add 1 if page boundary is crossed. 

OP 
CODE 

29 

25 

35 

2D 

3D 

39 

21 

31 

ADC 
Ni!:-CIDV 

III - -I 

No. No. 
Bytes Cycles 

2 2 

2 3 

2 4 

3 4 

3 4* 

3 4* 

2 6 

2 5* 

AND 

N c C I D V 

1 1 - - --

No. No. 
Bytes Cycles 

2 2 

2 3 

2 4 

3 4 

3 4* 

3 4* 

2 6 

2 5 



Machine language instructions 

ASL ASL Shift Left One Bit (Memory or Accumulator) 

(Ref: 10.2) 

Addressing Assembly Language 
Mode Form 

Accumulator ASL A 

Zero Page AS L Oper 

Ze r o Page, X ASL Oper, X 

Absolute ASL Oper 

Absolute, X ASL Oper, X 

BCC BCC Branch on Carry Clear 

Operation: Bran ch on C 0 

(Ref: 4.1.1.3) 

Addressing Assembly Language 
Mode Form 

Relative BCC Oper 

* Add 1 if branch occurs to sa~e page. 

* Add 2 if branch o~curs to diffe rent page. 

BCS BCS Branch on carry set 

Operation: Branch on C 1 

(Ref: 4.1.1.4) 

Addressing Assembly Language 
Mode Form 

Relative BCS Oper 

* Add 1 if branch occurs to same page. 

* Add 2 if branch occurs to nex t page. 

N.OC IDV 

!//---

OP No. 
Ct)J ,E Bytes 

IJA 1 

06 2 

16 2 

0E 3 

lE 3 

N l- C I D V 

OP No. 
CODE Bytes 

90 2 

N t. C I D V 

OP No. 
CODE Bytes 

B0 2 

169 

ASL 

No . 
Cycles 

2 

5 

6 

6 

7 

BCC 

No. 
Cycles 

2* 

BCS 

No. 
Cycles 

2* 
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BEQ BEQ Branch on result zero 

Operation: Branch on ~ = 1 
(Ref : 4.1.1.5) 

Addressing Assembly Language 
Mode Form 

Relative BEQ Oper 

* Add 1 if branch occurs to same page . 

* Add 2 if branch occurs to next page . 

N~CIDV 

OP No. 
CODE Bytes 

F0 2 

BIT BIT Test bits in memory with accumulator 

Operation: A (\ M, M
7

-> N, M,, > V 

BiL 6 and 7 are transfern ·d to the sta tus register. 

lf 'ne result of A(\ M is zero then Z = 1, otherwise 

z 0 (Ref: 4 . 2 .1. 1) 

Addressing Assembly Language 
Mode Form 

Zero Page BIT Oper 

Absolute BIT Oper 

BMI BMI Branch on result minus 

Operation : Branch on N 1 

(Ref: 4 .1.1.1 ) 

Addressing Assembly Language 
Mode Form 

Relative ilHI O:>er 1 
Add 1 if branch occurs tc same page. 

* Add 2 if hranch occurs to different page. 

Ni!CIDV 

M/--- M
6 

OP No. 
CODE By tes 

24 2 

2C 3 

Ni!CIDV 

OP No. 
CODE Bytes 

3i.l 2 

BEQ 

No. 
Cycles 

2* 

BIT 

No. 
Cycles 

3 

4 

BMI 

No. 
Cycles 

2* 
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INE BNE Branch on result not zero 

Operation: Branch on Z 0 

(Ref: 4.1.1.6) 

Addressing Assembly Language 
Mode Form 

Relative BNE Oper 

* Add 1 if branch occurs to same page. 

* Add 2 if branch occurs to different page. 

IPL BPL Branch on result plus 

Operation: Branch on N 0 

(Ref: 4 .1.1.2) 

Addressing Assembly Language 
Mode Form 

Relative BPL Oper 

* Add 1 if branch occurs to same page. 

* Add 2 if branch occurs to different page. 

IRK 
Operation: Forced Interrupt 

BRK Force Break 

PC + 2 t P t 

(Ref: 9.11) 

Addressing Assembly Language 
Mode Form 

Implied BRK 

1. A BRK command cannot be masked by setting I. 

N 1!- C I D V 

OP No. 
CODE Bytes 

D0 2 

N T. C I D V 

OP No. 
CODE Bytes 

10 2 

N ;?. C I D V 

1--

OP No. 
CODE Bytes 

00 1 

171 

INE 

No. 
Cycles 

2* 

IPL 

No. 
Cycles 

2* 

IRK 

No. 
Cycles 

7 
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BVC BVC Branch on overflow clear BVC 
Ope r a tion : Branch on V 0 Nl! CIDV 

(Ref: 4.1. 1. 8) 

Addressing As s embly Language OP No. No. 
Mode Form CODE By t es Cyc l es 

Re l ative BVC Ope r 50 2 2* 

* Add 1 i f branch occurs to s ame page. 

* Add 2 i f branch oc cu r s to diff e r en t page. 

BVS BVS Branch on overflow set BVS 
Opera tion: Branch on V l Nl! C IDV 

(Ref : 4 . 1. 1. 7) 

Addres s ing Assembly Language OP No. No . 
Mode Form CODE Bytes Cycles 

Re l a t ive BVS Oper 70 2 2* 

* Add if br anch occurs t o same page . 

* Add 2 i f bran ch occurs t o different page. 

CLC CLC Clear carry flag CLC 
Operation : 0 ~ C N~CIDV 

(Ref : 3.0 .2) --0-- -

Addressing Assembly Language OP No . No. 
Mode Form CODE Bytes Cycles 

Implied CLC 18 l 2 



Machine language instructions 

CLD C LD Clear decimal m ode 

Operation : 0 ~ D 

(Ref : 3 . 3 . 2) 

Address ing Assembly Language 
Mo de Form 

Implied CLD 

CLI CLI Clear interrup t disable bit 

Operation : 0 + I 

(Ref: 3.2 . 2) 

Addressing Assembly Language 
Mode Form 

I mplied CLI 

CLV CL V Clear overflow flag 

Ope ration: 0 ~ V 

(Ref: 3 .6.1) 

Addressing Assemhly Language 
Mode Form 

Implied CLV 

N i': C I D V 

- - --0-

OP No. 
CODE By t es 

::>8 l 

Ni!CI D V 

---0 

OP No. 
CODE By t es 

58 l 

N i':-CIDV 

-- ---0 

OP No . 
CODE Bytes 

88 1 

173 

CLD 

No . 
Cyc l es 

2 

CLI 

No. 
Cyc l es 

2 

CLV 

No. 
Cyc les 

2 
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• 

Appendix I 

CMP CMP Compare memory and accumulator 

Operation: A- M 

(Ref: 4.2.1) 

Addressing Assembly Language 
Mode Form 

Immediate CMP *Oper 

Zero Page CMP Oper 

Zero Page, X CMP Oper, X 

Absolute CMP Oper 

Absolute, X CMP Oper, X 

Absolute, y CMP Oper, y 

(Indirect, X) CMP (Oper, X) 

(Indirect), Y CMP (Oper), Y 

* Add 1 if page boundary is crossed. 

CPX CPX Compare Memory and Index X 

Ope rat ion, X - M 

(Ref: 7 .8) 

Addressing I Assembly Language 
Mode Form 

Immediate CPX #Oper 

Zero Page CPX Oper 

Absolute CPX Oper 

CPY CPY Compare memory and index Y 

Operation: Y - M 

(Ref: 7. 9) 

Addressing Assembly Language 
Mode Form 

Immediate CPY *Oper 

Zero Page CPY Oper 

Absolute CPY Oper 

NeCIDV 

Ill---

OP No. 
CODE Bytes 

C9 2 

cs 2 

DS 2 

CD 3 

DD 3 

D9 3 

Cl 2 

Dl 2 

Ni!CIDV 

Ill---

OP No. 
CODE Bytes 

E0 2 

E4 2 

EC 3 

Ni!CIDV 

Ill---

OP No. 
CODE Bytes 

C0 2 

C4 2 

cc 3 

CMP 

No. 
Cycles 

2 

3 

4 

4 

4* 

4* 

6 

s• 

CPX 

No. 
Cycles 

2 

3 

4 

CPY 

No. 
Cycles 

2 

3 

4 



Machine language instructions 

DEC DEC Decrement memory by one 

Operation: M- 1 + M 

(Ref: 10. 7) 

Addressing Assembly Language 
Mode Form 

Zero Page DEC Oper 

Zero Page, X DEC Oper, X 

Absolute DEC Oper 

Absolute, X DEC Oper, X 

DEX DEX Decrement index X by one 

Operation: X - 1 +X 

(Ref: 7.6) 

Addressing Assembly Language 
Mode Form 

Implied DEX 

DEY DEY Decrement index Y by one 

Operation: Y - 1 + Y 

(Ref: 7. 7) 

Addrt>ssing Assembly Language 
Mode Form 

Implied DEY 

N I! C I D V 

11----

OP No. 
CODE Bytes 

C6 2 

D6 2 

CE 3 

DE 3 

N I! C I D V 

11----

OP No. 
CODE Bytes 

CA 1 

N e C I D V 

11----

OP No. 
CODE Bytes 

88 1 
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DEC 

No. 
Cycles 

5 

6 

6 

7 

DEX 

No. 
Cycles 

2 

DEY 

No. 
Cycles 

2 
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EOR EOR "Exclusive - Or" memory with accumulator 

Operation: A¥ M ~ A 

(Ref: 2.2.3.2) 

Addressing Assembly Language 
Mode Form 

Immediate EOR #Oper 

Zero Page EOR Oper 

Zero Page, X EOR Oper, X 

Absolute EOR Oper 

Absolute, X EOR Oper, X 

Absolute, y EOR Oper, y 

(Indirect, X) EOR (Oper, X) 

(Indirect) , Y EOR (Oper), Y 

* Add 1 if page boundary is crossed. 

INC INC Increment memory by one 

Operation: M + 1 ~ M 

(Ref: 10.6) 

Addressing Assembly Language 
Mode Form 

Zero Page INC Oper 

Zero Page, X INC Oper, X 

Absolute INC Oper 

Absolute, X INC Oper, X 

INX INX Increment Index X by one 

Operation: X+ 1 ~X 

(Ref: 7.4) 

Addressing Assembly Language 
Mode Form 

Implied INX 

N i! C I D V 

11----

OP No. 
CODE Bytes 

49 2 

45 2 

55 2 

4D 3 

5D 3 

59 3 

41 2 

51 2 

N i! C I D V 

11----

OP No. 
CODE Bytes 

E6 2 

F6 2 

EE 3 

FE 3 

Ni!CIDV 

11----

OP No. 
CODE Bytes 

E8 1 

EOR 

No. 
Cycles 

2 

3 

4 

4 

4* 

4* 

6 

5* 

INC 

No. 
Cycles 

5 

6 

6 

7 

INX 

No. 
Cycles 

2 



Machine language instructions 

INY 
Op e ratinn:Y + J > Y 

Addres s in g 
Mode 

I mpli ed 

JMP 
Ope rat i on : (PC + 1) -+ PCL 

(PC + 2) -+ PCH 

Add ressing 
Mo de 

Absolut e 

I ndi rec t 

INY ill crcmellt Index Y b.v one 

(Ref: 7 . 5) 

As sembly Language 
Form 

I NY 

JMP Jump to new location 

(Ref : 
( Ref: 

4 . 0. 2) 
9. 8 . l ) 

Assembly Language 
Fo rm 

JMP Oper 

JMP (Op e r) 

177 

INY 
N i!ClDV 

//- -- -

OP No. No. 
CODE Bytes Cyc les 

C8 1 2 

JMP 
N i! C I D V 

OP No. No. 
CODE Bytes Cy c les 

4C 3 3 

6C 3 5 

JSR JSR Jump to new location saving return address JSR 
Operation: PC+ 2 ~. (PC+ 1) -+ PCL N Z C I D V 

(PC + 2) -+ PCH 
(Ref: 8.1) 

Addressing Assembly Language OP No . No. 
Mode Form CODE Bytes Cycles 

Absolute JSR Oper 20 3 6 
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LDA LDA Load accumulator with memory 

Operation: M +A 

(Ref: 2.1.1) 

Addressing Assembly Language 
Mode Form 

Immediate LDA #Qper 

Zero Page LDA Oper 

Zero Page, X LDA Oper, X 

Absolute LDA Oper 

Absolute, X LDA Oper, X 

Absolute, y LDA Oper, y 

(Indirect, X) LDA (Oper, X) 

(Indirect), Y LDA {Oper), Y 

* Add 1 if page boundary is crossed. 

LDX LOX Load iwle.\· X with memurv 
Operation: M ~ X 

(Ref: 7.0) 

Addressing Assembly Language 
Mode Form 

Immedi.Jte LDX II Oper 

Zero Page LDX Oper 

Zero Page, y LDX Oper, y 

Absolute LDX Oper 

Absulute, y LDX Oper, y 

* Add 1 when page boundary is crossed. 

Ni!CIDV 

11----

OP No. 
CODE Bytes 

A9 2 

A5 2 

BS 2 

AD 3 

BD 3 

B9 3 

Al 2 

Bl 2 

N !! C 1 lJ V 

11----

OP No. 
CODE Bytes 

A2 2 

A6 2 

Il6 2 

AE 3 

BE 3 

LDA 

No. 
Cycles 

2 

3 

4 

4 

4* 

4* 

6 

5* 

LDX 

No. 
Cycles 

2 

3 

4 

4 

4* 
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LDY LOY Load index Y with memory LDY 
Operation: M ~ Y N ;! C I D V 

1/----
(Ref: 7.1) 

Addressing Assembly Language OP No. 
Mode Form CODE Bytes 

Immediate LDY #Oper A0 2 

Zero Page LDY Oper A4 2 

Zero Page, X LDY Oper, X B4 2 

Absolute LDY Oper AC 3 

Absolute, X LDY Oper, X BC 3 

* Add 1 when page boundary is crossed. 

LSR LSR Shift right one bit (memory or accumulator) 

(Ref: 10 .1) 

Addressing Assembly Language 
Mode Form 

Accumulator LSR A 

Zero Page LSR Oper 

Zero Page, X LSR Oper, X 

Absolute LSR Oper 

Absolute, X LSR Oper, X 

NOP NOP No operation 

Operation: No Operation (2 cycles) 

Addressing Assembly Language 
Mode Form 

Implied NOP 

N i! C I D V 

011---

OP No . 
CODE Bytes 

4A 1 

46 2 

56 2 

4E 3 

SE 3 

N i! C I D V 

OP No. 
CODE Bytes 

EA 1 

No. 
Cycles 

2 

3 

4 

4 

4* 

LSR 

No. 
Cycles 

2 

5 

6 

6 

7 

NOP 

No. 
Cycles 

2 
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ORA ORA "OR·· 111cmory with accumulator ORA 
Operati on: A V M- A N i! C I D V 

(Ref: 2 . 2.3 .1) 11-- - -

Addressing Asse mbly Language OP No . No. 
Mode Form CODE Bytes Cycles 

Immediat e ORA #Oper 09 2 2 

Zero Page ORA Ope r 05 2 3 

Zero Page, X ORA Oper, X 15 2 4 

Absolute ORA Oper 0D 3 4 

Absolute, X ORA Oper , X lD 3 4* 

Absolute, y ORA Oper, y 19 3 4* 

(Indirect, X) ORA (Oper, X) 01 2 6 

(Indirect), y ORA (Oper), y ll 2 5 

* Add 1 on page c r ossing 

PHA PHA Push accwnulatur on stack PHA 
Operati on: A .f Ni! CIDV 

(Ref: 8 . 5) 

Add r essing Assembly Language OP No. No. 
Me de Form CODE Bytes Cycles 

Implied PHA 48 1 3 

PHP PHP Push processor status on stack PHP 
Operation: P.f N I! C I D V 

(Ref: 8.11) 

Addressing Assembly Language OP No. No. 
Mode Form CODE Bytes Cycles 

Implied PHP 08 1 3 
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PLA PLA Pull accumulator from stack 

Operation: At 

(Ref: 8.6) 

Addressing Assembly Language 
Mode Form 

Implied PLA 

PLP PLP Pull processor status from stack 

Op erat i on: P l 

(Ref: 8.12) 

Addressing Assembly Language 
Mode Form 

Implied PLP 

N ;1; C I D V 

11----

OP No. 
CODE Bytes 

68 1 

N i! C I D V 

From Stack 

OP No. 
CODE Bytes 

28 1 

ROL ROL Rotate one bit left (memory or accumulator) 

Operation : 

(Ref : 10. 3) 

Addressing Assembly Language 
Mode Form 

Accumulator ROL A 

Zero Page ROL Oper 

Zero Page, X ROL Oper, X 

Absolute ROL Oper 

Absolute, X ROL Oper, X 

Ni!CIDV 

Ill---

OP No. 
CODE Bytes 

2A 1 

26 2 

36 2 

2E 3 

3E 3 

181 

PLA 

No. 
Cycles 

4 

PLP 

No. 
Cycles 

4 

ROL 

No. 
Cycles 

2 

5 

6 

6 

7 
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ROR 

Operation: 

ROR Rotate one bit right (memory or accumulator) 

Addressing Assembly Language 
Mode Form 

Accumulator ROR A 

Zero Page ROR Oper 

Zero Page,X ROR Oper,X 

Absolute ROR Oper 

Absolute,X ROR Oper,X 

OP 

N i'i C I D V 

II I-

No . 
CODE Bytes 

6A 1 

66 2 

76 2 

6E 3 

7E 3 

ROR 

No. 
Cycles 

2 

5 

6 

6 

7 

Note: ROR instruction will be available on MCS650X micro­
processors after June, 1976. 

RTI RTI Return from interrupt RTI 
Operation: Pt PCt N i! C I D V 

(Ref: 9.6) 
From Stack 

Addressing Assembly Language OP No. No. 
Mode Form CODE Bytes Cycles 

Implied RTI 40 1 6 

RTS RTS Return from subroutine RTS 
Operation: PCt , PC + 1--+ PC N i'i C I D V 

(Ref: 8.2) 

Addressing Assembly Language OP No. No. 
Mode Form CODE Bytes Cycles 

Implied RTS 60 1 6 
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SBC SBC Subtract memory from accumulator with burrow 

Operation: A- M- C ~A 

Note: C = Borrow 

Addressing 
Mode 

Immediate 

Zero Page 

Zero Page, X 

Absolute 

Absolute, X 

Absolute, y 

(Indirect, X) 

(Indirect), Y 

(Ref : 2. 2. 2) 

Assembly Language 
Form 

SBC # Oper 

SBC Oper 

SBC Oper, X 

SBC Oper 

SBC Oper, X 

SBC Clper, y 

SBC (Oper, X) 

SBC (Oper), Y 

* Add l when page boundary is crossed. 

SEC SEC Set carry flag 

Ope rat ion: 1 -> C 

(Ref: 3.0.1) 

Addr~s sing Assembly Language 
Hade Form 

Implied SEC 

SED SED Set decimal mode 

Operation: 1 ~ D 

(Ref: 3.3.1) 

Addressing Assembly Language 
Mode Form 

Implied SED 

N i! C I D V 

III--I 

OP No. 
CODE Bytes 

E9 2 

E5 2 

F5 2 

ED 3 

FD 3 

F9 3 

El 2 

Fl 2 

N e C I D V 

1---

OP No. 
CODE Bytes 

38 l 

N i! C I D V 

----1-

OP No. 
CODE Bytes 

F8 1 

183 

SBC 

No. 
Cycles 

2 

3 

4 

4 

4* 

4* 

6 

5* 

SEC 

No. 
Cycles 

2 

SED 

No. 
Cycles 

2 
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SEI SEI Set interrupt disable status SEI 
Operation : 1 + I N g C I D V 

-- -1 - -
(Ref: 3 .2 .1) 

Addressing Assembly Language OP No. No. 
Mode Form CODE Bytes Cycles 

Implied SEI 78 1 2 

ST A ST A Store accumulator in memory STA 
Ope r ation: A+ M N g C I D V 

(Ref: 2. 1. 2) 

Addr essing Assembly Language OP No. No. 
Mode Form CODE Bytes Cyc l es 

Ze r o Page STA Oper 85 2 3 

Zero Page, X STA Oper, X 95 2 4 

Absolute STA Oper 8D 3 4 

Abso l ut e, X STA Oper, X 9D 3 5 

Absolute, y STA Oper, y 99 3 5 

(Indi r ec t , X) STA (0-,>e r, X) 81 2 6 

(Ind i rec t ), Y STA (Oper), Y 91 2 6 

STX STX Store index X in memory STX 
Ope rat ion: X+ M N i! CIDV 

(Ref: 7.2) 

Addressing Assemb l y Language OP No. No. 
Mo de Form CODE Bytes Cyc l es 

Ze r o Page STX Ope r 86 2 3 

Zero Pa ge , y STX Ope r, y 96 2 4 

Absolute STX Ope r BE 3 4 
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STY STY Store index Y in memory 

Operation: Y ~ M N i! C I D V 

(Ref: 7 .3) 

Addressing Assembly Language OP No. 
Mode Form CODE Bytes 

Zero Page STY Oper 84 2 

Zero Page, X STY Oper, X 94 2 

Absolute STY Oper 8C 3 

TAX TAX Transfer accumulator to index X 

Operation: A~ X 

Addressing 
Mode 

Implied 

JAY 
Operation: 

Addressing 
Mode 

Implied 

(Ref : 7 .11) 

Assembly Language 
Form 

TAX 

TA Y Transfer accumu/atur to index Y 

(Ref: 7 .13) 

Assembly Language 

N i! C I D V 

11----

OP No. 
CODE Bytes 

AA 1 

N l C I D V 

11 ----

OP No . 
Form CODE Bytes 

TAY AS 1 

185 

STY 

No. 
Cycles 

3 

4 

4 

TAX 

No. 
Cycles 

2 

JAY 

No. 
Cyc les 

2 

JY A TY A Transfer index Y to accumulator JY A 
Operation: Y ~ A N i! C I D V 

(Ref: 7 .14) 
1 1 - -- -

Addressing Assembly Language OP No. No. 
Mode Form CODE Bytes Cycles 

Implied TYA 98 1 2 
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TSX TSX Transfer stack pointer to index X TSX 
Operation: S + X N ~ C I D V 

(Ref: 8.9) 

Addressing Assembly Language 
Mode Form 

Implied TSX 

TXA TXA Transfer index X to accumulator 

Opera tion : X + A 

(Ref: 7.12) 

Addressing Assembly Language 
Mode Form 

Implie d TXA 

11----

OP No. 
CODE Bytes 

BA 1 

N~CIDV 

11----

OP No. 
CODE By t es 

8A 1 

No. 
Cycles 

2 

TXA 

No. 
Cycle~ 

2 

TXS TXS Transfer index X :o stack pointer TXS 
Operation: X+ S N ~ C I D V 

( Ref: 8.8) 

Addressing Assembly Language OP No. No. 
Mode Form CODE By t es Cycles 

Implied TXS 9A 1 2 
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5.5 ABSOLUTE ADDRESSING 

Absolute addressing is a 3-byte instruction. 

The first byte contains the OP CODE for specifying the operation and 

address mode. The second byte contains the low order byte of the effective 

address (that address which contains the data), whil~ the third byte con­

tains the high order byte of the effective address. Thus the programmer 

specifies the full 16-bit address and, since any memory location can be 

specified, this is considered the most normal mode for addressing. Other 

modes may be considered special subsets of this 16-bit add ressing mode. 

Example 5.5: Illustration of absolute addressing 

Clock 
Cycle Address Bus Program Counter Data Bus 

1 PC PC + 1 OP CODE 

2 PC + 1 PC + 2 ADL 

3 PC + 2 PC + 3 ADH 

4 ADH, ADL PC + 3 Data 

5 PC + 3 PC + 4 New 
OP CODE 

Comments 

Fetch OP CODE 

Fetch ADL, 
Decode OP CODE 

Fetch ADH, 
Hold ADL 

Fetch Data 

Fetch New 
OP CODE, 
Execute Old 
OP CODE 

The basic operation of the microprocessor in an Absolute address mode 

is to read the OP CODE in the first cycle while finishing the previous 

operation. In the second cycle, the microprocessor automatically reads 

the first byte after the OP CODE (in this case the address low) while 

interpreting the operation code. At the end of this cycle, the microproces­

sor knows that it needs a second byte for program sequence; therefore, 1 

more byte will be accessed using the program counter while temporarily 

stori.ng the address low. This occurs during the third cyc le. In the 

fourth cycle, the operation is one of taking the address low and address 

high that were read during cycles 2 and 3 to address the operand. For ex­

ample, in load A, the effective address is used to fetch. from memory the 

data which is going to be loaded in the accumulator. In the case of stor­

ing, data is transferred from the accumulator to the addressed memory. 

As was illustrated in the review of pipelining, depending on the in­

struction, it is possible for the microprocessor to s tart the next instruc­

ti on fetci' cycle after the effective address operation and independent of 

how many more internal cycles it may take to complete the OP CODE . The 

only exception to this is t he case of "Jump Absolute" in which the address 

l ow and address high that are fetched in cycle 2 and cycle 3 are used as 

the 16-bit addresa for t!.e next OP CODE. The jump absolute therefore only 

requires 3 cycles. In all other cases, absolute addressing takes 4 cycles, 

3 to fetch the full i nstruction including the effe~tive address, the fourth 

to perform the memory transfer called for in the instru~tion. 
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5.4 !MMt.DIA TE ADDR ESSING 

Immedi ate addressing is a 2-byte instruction. 

The first byte contains the OP CODE specifying the operation and ad­

dress mode. The second byte conta i ns a constant value known to the pro­

gramme r . It is often necessary to compare load a nd /o r test against ce r­

tain known values. Rather than requiring the user to define and load con­

stants into some auxiliary RAM, the microprocessor allows the user to 

specify values which are known to him by the immediate addressing mode. 

Example 5.4 : Illustration of immediate addressing 

Clock 
Cycle Address Bus Program Counter Data Bus Comments 

l PC PC + 1 . OP CODE Fetch OP CODE 

2 PC + PC + 2 Data Fetch Data, 
Decode OP CODE 

3 PC + PC + 3 New Fetch New 
OP CODE OP CODE, 

Execute Old 
OP CODE 

6.1 ABSOLUTE JNDEXED 

Absolute indexed add ~ess i s absolute addressing with an index 

register added to the absolute address. The sequences that occur for 

indexed absolute addressing without page crossing are as follows: 

Example 6.6: Absolute Indexed; With No Page Crossing 

Address 
Cycle Bus 

1 0100 

2 0101 

3 0102 

Data 
Bus 

OP CODE 

BAL 

BAH 

4 BAH,BAL+X OPERAND 

5 103 Next OP 
CODE 

External 
Operation 

Fetch OP CODE 

Fetch BAL 

Fetch BAH 

Put Out 
Effective 
Address 

Fetch Next 
OP CODE 

Internal 
Operation 

Increment PC to 101, 
Finish Previous 
Instruction 

Increment PC to 102, 
Interpret In­
struction 

Incr~ment PC to 103, 
Calculate BAL + X 

Finish Operations 

BAL and BAH refer to the low and high order bytes of the base address, 

respectively. While the index X was used in Example 6.7, the index Y 

is equally appl icable. 
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Address Bus Data Bus 

1 0100 OP CODE 

0101 New ADL 

3 OlFF 

4 OlFF PCH 

5 OlFE PCL 

6 0102 ADH 

ADH, ADL New 
OP CODE 

* 5 denotes "Sta .:. k Pointer. 11 

External 
Operations 

Fetch 
Instruction 

Fet c h 
New ADL 

Store PCH 

Store PCL 

Fetch ADH 

Fetch New 
OP CODE 

Internal 
Operations 

Finish Previous 
Operation; [ncre­
ment PC to 0101 

Decode JSR; 
Increment PC to 0102 

Store ADL 

Hold ADL, Decre­
ment S to OlFE 

Hold ADL, Decre­
ment S to OlFD 

Store Stack Pointer 

ADL 
ADH 

PCL 
PCH 

In this example, it can be seen that during the first cycle the micro­

processor fetches the JSR instruction. During the second cycle, address 

low for new program counter low is fetched. At the end of cycle 2, the 

microprocessor has decoded the JSR instruction and holds the address low 

in the microprocessor until the stack operations are complete. 

NOTE : The stack is always stored in Page 1 (Hex address 0100-0lFF) . 

The operation of the stack in the MCS650X microprocessor is such that 

the stack pointer is always left pointing at the next memory location into 

which data can be stored . 

Return from Subroutine (Example) 

External Internal 
Cycle Address Bus Data Bus Operations Qperations 

1 0300 OP CODE Fetch Finish Previous 
OP CODE Operation, 0301 

2 0301 Discarded Fetch Dis- Decode RTS 
Data carded Data 

3 OlFD Discarded Fetch Dis- Increment Stack 
Data carded Data Pointer to OlFE 

4 OlFE 02 Fetch PCL Increment Stack 
Pointer to OlFF 

5 OlFF 01 Fetch PCH 

+ PC 

6 0102 Dis carded Put Out PC Increment PC by 1 
Data to 0101 

0103 Nex~ Fetch Next 
OP CODE OP CODE 

As we can see, the RTS instruction effectively unwinds what was done 

to the stack in the JSR instruction. 
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The action and events are as follows: The microprocessor user 

pushes the panic button; the panic switch sensor causes an external 

device to indicate to the microprocessor an interrupt is desired ; the 

microprocessor checks the status of the internal interrupt inhibit 

signal; if the internal inhibit is set, then the interrupt is ignored. 

However, if it is reset or when it becomes reset through some program 

reaction, the following set of operations occur: 

Example 9.2: Interrupt Sequence 

Cycles Address Bus Data Bus External OEeration Internal 0Eeration 

1 PC OP CODE Fetch OP CODE Hold Program Counter, 
Finish Previous 
Operation 

2 PC OP CODE Fetch OP CODE Force a BRK 
Instruction, Hold 
P-Counter 

3 OlFF PCH Store PCH on Stack Decrement Stack 
Pointer to OlFE 

4 OlFE PCL Store PCL on Stack Decrement Stack 
Pointer to OlFD 

5 OlFD p Store P on Stack Decrement Stack 
Pointer to OlFC 

6 FFFE New PCL Fetch Vector Low Put Away Stack 
FFFF New PCH Fetch Vector High Vector Low -+ 

PCL and Set I 
8 Vector OP CODE Fetch Interrupt Increment PC to 

PCH PCL Program PC + 1 

As can be seen in Example 9.2, the microprocessor uses the stack to 

save the reentrant or recovery code and then uses the interrupt vectors 

FFFE and FFFF, (or FFFA and FFFB), depending on whether or not an interrupt 

request or a non maskable interrupt request had occurred. It should be 

noted that the interrupt disable is turned on at this point by the micro­

processor automatically. 

ExamEle 9.3: Return from InterruEt 

Cycles Address Bus Data Bus External O~e rati on Internal Oeeration 
1 0300 RTI Fetch OP CODE Finish Pre vious 

Operati on,Increment 
PC t o 0301 

0301 Fetch Next OP CODE Decode RTI 
3 01FC Discarded Stack Increment Stack 

Fetch Pointer to OlFD 
4 01FD p Fetch p Register Increment Stack 

Pointer to OlFE 
s OlFE PCL Fetch PCL Increment Stack Point-

er to OlFF, Hold 
6 OlFF PCH Fetch PCH M-+PCL, Store 

Stack Pointer 
PCH PCL or CODE Fetch OP CODE Increment :-lew PC 

Note the effects of the extra cycle (3) necessary to read data from 

stack which causes the RTI to take six cycles. The RTI has restored the 

stack, program counter and sta tus register to the point they were at 

before the inter rupt was acknowledged. 

PCL 
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EPROM blaster program 

This listing is here so that you might get some tips from it on how to write 
BASIC and assembly language programs. 

JPR#O 
]LIST 

10 

30 
40 
50 
60 
100 
105 
110 

120 
130 
132 
135 
140 

150 

160 
200 
210 
220 

Basic program for EPROM blaster 

:-. EM EPROM.BLASTER 
REM A PROGRAM TO PROGRAM 2716 EPROMS 
REM USING A J.BELL PROGRAMMER 
REM B. THOMPSON 
REM 15 NOV 83 
REM 
REM MACHINE PROG ENTRY 
ON ERR GOTO 9000 
BA = 28672: REM $7000 

RE = BA + 3 j 
WR = BA + 6 
CL = BA + 9 
ER = BA + 13 
BU = 24576: REM BUFFER 
AT $6000 
PRINT CHR$ (4);"BLOAD 
EPR.ASS" 

CALL BA 
HOME 
VTAB 3: HTAB 10 
PRINT "EPROM BLASTER 
PROGRAM" 

ADDRESSES 
This sets up error trap (see 9000) 

Position of EPROM machine 
language program in memory 

Entry locations 

Buffer for your program 

Load EPROM machine language 
program 
Run initialization part 
Clear screen 
Position cursor 

230 VTAB 6: HTAB 10 
240 PRINT "FOR TYPE 2716 EPROM'S" 
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250 GOSUB 6100 ) 
260 GOSUB 6200 Print menu 
270 GOSUB 6300 
280 GOSUB 6400 
330 INVERSE Reverse video! 
340 VTAB 20: HTAB 10 
350 PRINT " SELECT A NUMBER; 
355 NORMAL 
360 GET S Get a character from keyboard 
370 IF (S > 0 AND s < 5) Checkforoutofrange 

GOTO 400 
380 VTAB 22: HTAB 10 
390 PRINT CHR$ (7); "SELECTION 

OUT OF RANGE" 
395 PRINT TAB( 10) ; "TRY AGAIN": 

GOTO 330 
400 ON S GOTO 2000,3000, 

4000,420 
420 HOME 
430 VTAB 10: HTAB 19 
439 FLASH 
440 PRINT "BYE" 
441 NORMA L 
445 VTAB 24: HTAB 1 
450 END 
2000 REM CHECK ERASED EPROM 
2100 GOSUB 6020 

} 2110 GOSUB 6100 
2130 GOSUB 6700 
2165 PRINT 
2170 INVERSE 
2180 PRINT : PRINT 

"NOW PRESS CR 
EPROM "; 

2185 NORMAL 
2190 INPUT II ";D$ 
2200 CALL RE 
2210 GOSUB 6020 
2220 GOSUB 6100 

TAB( 5); 
TO CHECK 

2225 VTAB 13: HTAB 10 
< > 255 

Go to selected part of program 

If selection#, say goodbye 

Start erased check 

Set up screen 

Call read program 

If CL location= 255 then EPROM 
is cleared 

2230 IF PEEK (CL) 
GOTO 2300 

2240 PRINT "EPROM 
2250 GOSUB 6500 

FULLY ERASED" 
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2270 GOTO 200 
2300 PRINT CHR$ ( 7); II EPROM"; 
2310 FLASH 
2320 PRINT "NOT";: NORMAL 
2330 PRINT "FULLY ERASED"; 

CHR$(7) 
2335 PRINT 
2340 GOSUB 6500 
2350 GOTO 200 

3000 REM BLAST EPROM 
3100 GOSUB } 
3110 GOSUB 6200 
3120 GOSUB 6600 
3130 INVERSE 
3130 PRINT "HAVE YOU CHECKED 

THAT YOUR" 
3144 HTAB 10 
3145 PRINT "EPROM IS FULLY 

ERASED? 
3150 GET A$ 
3160 IF A$ = "Y" GOTO 3200 
3165 GOSUB 6020 
3170 VTAB 12: HTAB 15 
3175 FLASH 
3180 PRINT "YOU SHOULD": 

NORMAL 
3185 PRINT : PRINT ; PRINT 

PRINT 
3190 GOSUB 6500 
3195 GOTO 200 

l 

3200 GOSUB 6600 
3210 INVERSE 
3220 PRINT "IS YOUR 

THE HOLDER?" 
3230 NORMAL 

EPROM IN I 
3240 GET A$: IF A$ 

GOTO 3200 
3250 GOSUB 6600 
3260 INVERSE 

< > "Y" 

3270 PRINT "ENTER THE FILENAME 
OF THE" 

Go back to menu 

If CL not 255 then EPROM not 
erased 

Back to menu 

W rite EPROM 

Set up screen 

Check up on operator 

Check up agai n 

Wait unti l "Y" 

193 
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3275 HTAB 10 
3276 PRINr 1"PROGRAM YOU WISH TO 

RECORD" 
3277 HTAB 15 
3280 NORMAL 
3290 INPUT " " ;F$ Getfilenameofyourprogram 

3300 VTAB 14: HTAB 10: GOSUB 
6000 

3305 GOSUB 6600 
3310 PRINT "LOADING" 
3320 PRINT CHR$ (4);"BLOAD"; Goget fil e(iffi lenotfounderror 

F $; ", A$6000" occurs here, control switches to 

9000) 
3400 GOSUB 6600 
3410 PRINT " PRESS CR TO BLAST 

EPROM"; 
3420 INPUT " ";D$ 
3430 GOSUB 6600 
3440 FLASH : PRINT "BLASTING": 

NORMAL 
3500 CALL WR 
3510 GOSUB 6600 
3520 E = PEEK CER) + PEEK 

CER +1)*256 
3530 IF E < > 0 GOTO 3600 
3540 PRINT CHR$ (7);"A 

SUCCESSFUL BLAST" 
3550 GOSUB 6500 
3560 GOTO 200 
3600 PRINT CHR$ (7); "THE 

BLAST WAS"; 
3610 FLASH:PRINT"NOT";: 

NORMAL 
3620 PRINT " SUCCESSFUL"; 

CHR$ (7) 
3630 PRINT 
3640 PRINT TAB( 5);"DO YOU 

WANT TO TRY AGAIN?"; 
3650 GET A$ 
3660 IF A$ = "Y" GOTO 3400 
3670 GOTO 200 
4100 GOSUB 6020 
4110 GOSUB 6300 
4120 GOSUB 6700 

Call blasting routine 

Check that it was succcessful 

Report success 

Read EPROM 
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4210 GOSUB 6500 
4215 CALL RE 
4220 GOSUB 6600 
4225 HTAB 1 
4230 PRINT "DATA AVAILABLE IN 

MEMORY $6800 TO $6FFF" 
4240 GOSUB 6500 
4250 GOTO 200 

6000 CALL - 958: RETURN 

6010 CALL - 868: RETURN 
6020 VTAB 10: HTAB 10 
6030 GOSUB 6000 
6040 RETURN 
6100 VTAB 10: HTAB 10 
6110 PRINT "1 CHECK ERASED 

EPROM" 
6120 RETURN 
6200 VTAB 12 : HTAB 10 
6210 PRINT "2 WRITE TO EPROM 

(BLAST) II 

195 

Return to menu 

This wil l clear screen from cursor 

to end of screen 

Clear to end of li ne 

Posit ion cursor to V1 O,H 10 and 

clear 

6220 RETURN 
6300 VTAB 14: HTAB 10 
6310 PRINT "3 READ FROM 
6320 RETURN 
6400 VTAB 16: HTAB 10 
6410 PRINT "4 EXIT TO 

EPROM"~ Etc 

APPLESOFT BASIC" 
6420 RETURN 
6500 HTAB 10: INVERSE 
6510 PRINT "CR TO CONTINUE"; 
6515 NORMAL 
6520 INPUT II ";D$ 
6530 RETURN 
6600 VTAB 16: HTAB 10: GOSUB 

6000 
6610 RETURN 

} Etc 

1 Position and print M SG, wa it for 

J CR 
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6700 VTAB 16: HTAB 5 
6710 PRINT "PLACE THE EPROM 

IN THE HOLDER AND" 
6720 PRINT TAB( 5) ;"LOCK THE 

LEVER" Position and print 

6730 PRINT TAB( 5);"BE SURE 
THAT THE NOTCH" 

6740 PRINT TAB( );"IS 
ORIENTED CORRECTLY!" 

6750 RETURN 
9000 POKE 216,0 
9010 EC = PEEK (222) 
9020 IF EC < > 6 THEN 9100 
9030 VTAB 14: HTAB 10: FLASH 
9039 PR I NT CHR$ (7); 
9040 PRINT "FILE "F$;" NOT 

FOUND" 
9041 PRINT CHR$ (7); 
9045 NORMAL 
9050 CALL - 3288 
9060 ONERR GOTO 9000 
9070 GOTO 3250 
9100 RESUME 

This routine checks for " fi le not 

found" error (no 6) . If th is error 

occu rs control is returned to the 

program else if a different error stop 

program 
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Assembly language program EPR.ASS 
0010 , Eprom Blaster for 2716s 
0020 , Using the John Bell eprom blaster and memory-mate 

, interface. 
0030 , 
0040 ; This version is for the Apple IIe with a 6522 
0050 . interface in slot 5 , 
0060 , 
0070 VIA addresses: 

0080 PORT1 .DE $C500 
0090 PORT2 .DE $C580 
0100 J 1 .DE PORT1+1 
0110 J1DD .DE PORT1+3 
0120 J2 .DE PORT1+0 
0130 J2DD .DE PORT1+2 
0140 J3 .DE PORT2+1 
0150 J3DD .DE PORT2+3 
0160 J4 .DE PORT2+0 
0170 J4DD .DE PORT2+2 
0180 , 
0190 ECONTROL .DE J2 
0200 EDATA .DE J 1 
0210 EADDL .DE J3 
0220 EADDH .DE J4 
0230 , 
0240 Control bits for 2716s (information only) 

0250 PGM .DE %0001 Pin 18, % indicates binary 

0260 \OE .DE %0010 Pin 20, \ indicates negative (bar). 

0270 \POWER .DE %0100 Pin 24 

0280 \V24 .DE %1000 Pin 21 

0290 . , 
0300 Parameters . 

0310 PROGDATA .DE $6000 
0320 EPROMDATA .DE $6800 
0330 ; 
0340 Zero page. 

0350 ADDR .DE $06 
0360 ADDS .DE $08 
0370 , 
0380 , 
0390 .BA $7000 
0400 ; 

7000- 4C OF 70 0410 JMP I NIT 
7003- 4C 42 70 0420 JM P READ 
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7006- 4C 91 70 0430 JMP WRITE 
0440 ; 

7009- 0450 CLEAR .DS 2 
7008- 0460 TIME .DS 2 
7000- 0470 ERROR .DS 2 

0480 , 
700F- A9 60 0490 !NIT LOA #H,PROGDATA I nit indirect pointer 
7011- 80 07 DO 0500 STA ADDR+1 
7014- A9 00 0510 LDA #L,PROGDATA 
7016- 80 06 00 0520 STA ADDR 

0530 ; 
7019- A2 DO 0540 LOX #0 Put FF in all of program buffer. 
7018- AD DO 0550 LDY #0 
701D- A9 FF 0560 LOA #$FF 
701F- 91 06 0570 A STA (ADDR),Y 
7021- C8 0580 INY 
7022- DO F8 0590 8NE A 
7024- EE 07 DO 0600 INC ADDR+1 
7027- E8 0610 INX 
7028- EO 08 0620 CPX #$08 
702A- DO F3 0630 8NE A 

0640 . , 
702C- A9 FF 0650 LOA #$FF Set up VIAs. 
702E- 80 02 C5 0660 STA J2DD 
7031- 80 83 C5 0670 STA J3DD 
7034- 80 82 C5 0680 STA J4DD 
7037- A9 00 0690 LOA #0 
7039- 80 03 C5 0700 STA J1DD Input for now. 
703C- A9 OF 0710 LOA #%1111 
703E- 80 00 C5 0720 STA ECONTROL Turn EPROM off. 

0730 , 
7041- 60 0740 RTS 

0750 ; 
0760 ; 
0770 READ 

7042- A9 FF 0780 LDA #$FF I nit clear flag. 
7044- 80 09 70 0790 STA CLEAR 
7047- A9 68 0800 LOA #H,EPROMDATA I nit indirect pointer. 
7049- 80 07 DO 0810 STA ADDR+1 
704C- A9 00 0802 LOA #L,EPROMDATA 
704E- 80 06 00 0830 STA ADDR 

0840 . , 
0850 Set up VIAs for read. 

7051- A9 00 0860 LOA #$00 
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7053- 8D 81 cs 0870 STA EADDL 
7056- 8D 80 cs 0880 STA EADDH 
7059- 8D 03 cs 0890 STA J1DD 
705C- A9 08 0900 LDA #%1000 +24off, +5on. 
705E- 8D 00 cs 0910 STA ECONTROL 

0920 ; 
7061- AD 01 cs 0930 RLOOP LDA EDATA Set data from EPROM. 
7064- C9 FF 0940 CMP #$FF Check if EPROM data cleared. 
7066- FO 03 0950 8EQ OKFF 
7068- 8D 09 70 0960 STA CLEAR 
7068 AO 00 0970 OKFF LDY #$00 Store EPROM data in memory pointed 

to by ADDR. 
706D- 91 06 0980 STA (ADDR),Y 
706F- EE 06 DO 0990 INC ADDR 
7072- AD 06 DO 1000 LDA ADDR 
7075- 8D 81 cs 1010 STA EADDL 
7078- C9 00 1020 CMP #$00 Test end of page. 
707A- DO ES 1030 8NE RLOOP 
707C- EE 07 DO 1040 INC ADDR+1 Go to next page. 
707F- AD 07 DO 1050 LDA ADDR+1 
7082- 29 07 1060 AND #$07 Strip high bits. 
7084- 8D 80 cs 1070 STA EADDH 
7087- EA 1080 NOP 
7088- EA 1081 NOP 
7089- DO D6 1090 8NE RLOOP 

1100 ; 
1110 Done. 

7088- A9 OF 1120 LDA #%1111 Turn off EPROM . 
708D- 8D DO cs 1130 STA ECONTROL 
7090- 50 1140 RTS 

1150 . , 
1160 ; 
1170 , 
1180 ; 
1190 WRITE 

7091- A9 60 1200 LDA #H,PROGDATA I nit indirect pointer. 
7093- 8D 07 00 1210 STA ADDR+1 
7096- A9 00 1220 LDA #L,PROGDATA 
7098- 8D 06 00 1230 STA ADDR 

1240 ; 
1250 Set up ports 

7098- A9 00 1260 LDA #$00 
709D- 8D 80 cs 1270 STA EADDH 
70AO- 8D 81 cs 1280 STA EADDL 
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70A3- A9 02 1290 LDA #%0010 
70A5- 8D DO C5 1300 STA ECONTROL 
70A8- A9 FF 1310 LDA #$FF All outputs 
70AA- 8D 03 cs 1320 STA J1DD 

1330 . , 
1340 ; 

?DAD- AD DO 1350 WLOOP LDY #$00 Set data from memory. 
?OAF- 81 06 1360 LDA (ADDR ) ,Y 
7081 :.. C9 FF 1370 CMP #$FF No need to do FFs. 
7083- FO 27 1380 8EQ NEXT ADD 
70B5- 8D 01 cs 1390 STA EDATA 

1400 Start hot blast. 
7088- A9 03 1410 LDA #%0011 
708A- 8D 00 cs 1420 STA ECONTROL 

1430 Start timer, 50 ms. 
70BD- A9 80 1440 LDA #$80 
70BF- 8D DB 70 1450 STA TIME 
70C2- A9 FO 1460 LDA #$FO 
70C4- 8D OC 70 1470 STA TIME+1 
70C7- EE 08 70 1480 TLOOP INC TIME 
?DCA- AD DB 70 1490 LDA TIME 
70CD- DO FB 1500 BNE TLOOP 
70CF- EE oc 70 1510 INC TIME+1 
70D2- AD oc 70 1520 LDA TIME+1 
70D5- DO FO 1530 8NE TLOOP 

1540 End timer. 
70D7- A9 02 1550 LDA #%0010 Stop hot blast. 
70D9- 8D 00 cs 1560 STA ECONTROL 

1570 , 
70DC- EE 06 00 1580 NEXT ADD I NC ADDR Next data . 
70DF- AD 06 00 1590 LDA ADDR 
70E2- 8D 81 C5 1600 STA EADDL 
?DES- DO C6 1610 BNE WLOOP 
70E7- EE 07 00 1620 INC ADDR+1 
70EA- AD 07 00 1630 LDA ADDR+1 
?OED- 29 07 1640 AND #$07 Strip high bits. 
70EF- 8D 80 C5 1650 STA EADDH 
70F2- EA 1660 NOP 
70F3- EA 1661 NOP 
70F4- DO 87 1670 8NE WLOOP 

1680 ; 
1690 Done. 

70F6- A9 OF 1700 LDA #%1111 Turn off EPROM . 
70F8- 8D 00 C5 1710 STA ECONTROL 
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70FB- A9 00 1720 LDA #$00 
70FD- 8D 03 C5 1730 STA J1DD 
7100- 20 42 70 1740 JSR READ 

1750 ; 
1760 Memory compare. 

7103- A9 60 1770 LDA #H,PROGDATA 
7105- 8D 07 00 1771 STA ADDR+1 
7108- A9 00 1772 LDA #L,PROGDATA 
710A- 8D 06 00 1773 STA ADDR 
710D- A9 68 1780 LDA #H,EPROMDATA 
710F- 8D 09 00 1781 STA ADDS+1 
7112- A9 00 1782 LDA #L,EPROMDATA 
7114- 8D 08 00 1783 STA ADDS 
7117- A9 00 1790 LDA #0 
7119- 8D OE 70 1791 STA ERROR+1 
711C- 8D OD 70 1792 STA ERROR 
711F- A2 00 1800 LDX #$00 
7121- AO 00 1810 LDY #$00 
7123- 81 06 1820 CLOOP LDA (ADDR),Y 
7125- D1 08 1830 CMP (ADDS),Y 
7127- FO 08 1840 BEQ OKDATA 
7129- EE OD 70 1850 INC ERROR 
712C- DO 03 1860 BNE OKDATA 
712E- EE OE 70 1870 INC ERROR+1 
7131- C8 1880 OKDATA !NY 
7132- DO EF 1890 BNE CLOOP 
7134- E8 1900 INX Next page . 

7135- EE 07 00 1910 INC ADDR+1 
7138- EE 09 00 1920 INC ADDS+1 
7138- EO 08 1930 CPX #$08 End for 2716s. 

713D- DO E4 1940 BNE CLOOP 
713F- 60 1950 RTS 

1960 .EN 

LABEL FILE: [ I =EXTERNAL J 

/PORT1=C500 /PORT2=C580 /J1=C501 
/J1DD=C503 /J2=C500 /J2DD=C502 
/J3=C581 /J3DD=C583 /J4=C580 
/J4DD=C582 /ECONTROL=C500 /EDATA=C501 
/EADDL=C581 /EADDH=C580 /PGM=0001 
/\OE=0002 /\POWER=0004 /\V24=0008 
/PROGDATA=6000 /EPROMDATA=6800 /ADDR=0006 
/ADDS=0008 CLEAR=7009 TIME=7008 
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ERROR=700D 
READ=7042 
WRITE=7091 
NEXTADD=70DC 

//0000,7140,7140 
> 

Appendix J 

INIT=700F 
RLOOP=7061 
WLOOP=70AD 
CLOOP=7123 

A=701F 
OKFF=7068 
TLOOP=70C7 
OKDATA=7131 



Appendix K 
Bibliography and sources 

General APPLE and 6502 programming 
Apple 1/e Reference manuals , Apple Computer. 

These are quite good and contain the fine detai ls and all APPLE hardware and 
software. 

Poole, L. , McNiff, M. & Cook , S., Apple If User's Guide, Osborne/McGraw-Hi ll , 
Berkeley, 2nd edn ., 1983. 
Good general reference on BASIC programming and the use of the 
MINIASSEMBLER. 

SYNERTEK 6502 Programming Manual, Publication No. 6500-50, Santa Clara , 
CA 95051 
Details of op-codes and their uses. 

Leventhal , L. , 6502 Assembly Language Programming , Osborne/McGraw-Hill , 
Berkeley , 1979. 
Easier to find than the SYNERTEK book. 

General computing 
BYTE Magazine. 

Good genera l overview of microcomputing with frequent references to laboratory 
applications . 

General numerical analysis 
Press , W. , Flannery, B ., Tenkolsky , S. & Vetterl ing , W. Numerical Recipes, The Art 

of Scientific Computing, Cambridge Univ . Press, New York, 1986. 

General electronics 
Horowitz , P. & Hill , W. , The Art of Electronics , Cambridge Univ. Press, New York 

1980. 
The best reference for design ing laboratory electron ics. 

Physical data 
Handbook of Chemistry and Physics, ed. R. Weast , 52nd edn, Chemica l Rubber Co, 

Cleveland , OH , 197 1. 

A merican Institute of Physics Handbook , ed . D . E. Gray, McGraw-Hi ll , New York, 
1957. 

Mark 's Standard handbook for Mechanical Engin eers , eds. T. Beaume iste r, E. A. 
Abalone & T. Baird, 8th edn , McGraw-Hill , New York, 1978 

Physics 
Any general introductory physics text will provide a good background. 

Sensors and transducers 
Doebelin , E. 0. , Measurement Systems, McGraw-Hill , New York , 1983. 

A thorough overview of general design and specific devices. 
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Specific hardware 
Witten , I. H., Welcome to the Standards Jungle, BYTE, pp . 146--78, February, 1983. 

This a close look at se ri al data communication. 

Leibson , S., The Input/Output Primer , Part 3: The Paralle l and HPIB (IEEE-488) 
Interfaces, BYTE, pp . 186--208, April , 1982. 

Clune, T. R. , Interfacing for Data Acquisition , BYTE, pp. 269-82, February , l985. 
These two articles provide a good background in how the IEEE-488 works. 

Hallgreen , R . C., Putting the Apple II to Work , Part l: The Hardware, BYTE, pp. 
152-64 , April , 1984. 
This and a succeeding article in BYTE in May 1984 describe a particular data 
acquisition system. 

General signal analysis 
Bendat , J. S. & Piersol , A. G., Random Data , Wiley, New York , 1971. 

Otnes , R. K. & Enochson, L. ,Applied Time Series Analysis, Wiley , New York , 1978 . 

Papoulis , A . , Signal Analysis, McGraw-Hill , New York , 1977. 

Specific signal analysis 
Monforte , J ., The Digital Reproduction of Sound, Scientific American , pp. 78-84, 

December , 1984. 
A good description of the sampling problem and di gitization. 

Cacerci , M.S. & Cacheris, W. P. , Fitting Curves to Data, BYTE, pp. 340-62, May, 
1984. 
A description of the Simplex algorithm. 

Report writing 
Porawn, J. F., A Student Guide to Engineering Report Writing , United Western 

Press, Saloma Beach , 1985. 

Hofstaedter , D ., Default Assumptions in Metamathecal Themas , Scientific 
American , November , 1983. 
For those interested in exo rcising the spectre of maleness from their writing. 

Sources 
John Bell Engineering , Inc. , 400 Oxford Way , Belmont , CA 94002 

ADC board 
6522 interface board 
EPROM programmer. 

MAD WEST Software, P .O. Box 9822, Madison , WI 53715 
AMPERGRAPH, for drawing graphs 
AMPERDUMP , for printing graphs. 

E lectronic chips , stepping motors , etc. 
Look in the back of BYTE mgazine for numerous sources for these items. 
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absolute addressing 68 
accumulator , CPU 64 
ACR (auxiliary control register) 48 
ADC 11ff, 17ff, 13lff 
address lines 63 
address storage 67 
addressing 

absolute 68 
index 71 , 72 
indirect 83 

AMPERGRAPH 6 
amplifier 57ff 
analog to digital conversion 11 
AND operation 74 
APPLE architecture 62 
APPLESOFr BASIC 6 
arrays 23 
ASCII 110, 111 , 113 
assembly language programming 65, 164ff 

base address 6522 48 
BEEP 50 
binary number system 46, 47 
Boltzmann factor 18 
Boolean algebra 74 
bootstrap 162, 163 
branching instructions 72 , 77 
BRK instruction 93 
buss 63 

CA3140 amplifier 58 
calibration of ADC 13 
calling machine language programs from 

BASIC 72 
carry 96 
CATALOG 6 
clock 63 
clock registers 93 
coefficient of drag 86 
coefficient of viscosity 84 
control C 13 
control character 24 
control lines 63 
correcting programs 6 
CPU 11 , 62 

DAC 69ff 
data errors 31ff 
data lines 63 
data modeling 29ff 

data smoothing 33 
digital to analog converters (DAC) 69ff 
DIM 24 
DIP connector 11 
double precision arithmetic 95 
drag 86 
ORA, ORB 35 

EPROM. BLASTER 100, 183ff 
EPROMS 100 

files 23ff 
fi les 

reading 25 
writing 23, 24 

fluids forces 84 

graphics viewing 8 

heat capacity 52 
heat flow 52ff 
heat flow equation 53, 54, 156ff, 159ff 
hexadecimal number system 44 
HEXFET 36 , 57 
HGR2 7 
HIM EM: 16383 7 

IC 2716 100 
IC 6502 75 , 81 , 102 
IC 6522 48 , 49, 70, 93 , 147 
IC 74LS04 45 
IC LM339 89 , 90 
IEEE--488 114ff 
index addressing 71, 72 
indirect addressing 83 
initializing disks 8 
INPUT 21 
INTEGER BASIC 65 
interrupt enable register (IER) 105 
interrupt flag register (IFR) 105 
interrupts 102ff 
IRQ (interrupt request) 102 
ISR (interrupt service routine) 104 

JMP 68 

Kelvin temperature 18 
kinetic fluid pressure 86 

latching 90 
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least squares fit 27ff 
LED 44 , 45 , 88 
LIST 7 
LOAD9 
logarithm scale 26 
LOW-ORDER/HIGH-ORDER registers 49 

machine language programming 67, 164ff 
memory, types 62 
memory map 129 
merging programs 9, 125ff 
MICROBUFFER 8 
Microprocessor 6502 62 
microprocessor execution 64 
MINIASSEMBLER 65 
monitor 65 
mother board 62 

negative numbers 46 
NEW6 
NOP93 
Nyquist frequency 16 

operational amplifier 58 
OR exclusive (EOR) 76 
ORA operation 76 
oscilloscope trigger 12 
output generation 34 
overflow 46 

PA (PORT A) 35 
parallel data 114ff 
PB (PORT B) 35, 44 
PEEK 11 , 36 
photoresistor 88 
plotting 6 
POKE 11,36 
potentiometer 12ff 
PR#1, PR#O 8 
pressure 86 
printer 8 
printing graphics 8 
process status register 64 
program counter 64 
prompts 65 
proto board 11 , 12 

RAM 100 
read/write line 63 
reading binary files 69 
REM7 
RENUMBER 9, 123 
resetting registers 77 
Reynolds number 10 
ROM , 10, 100 

RTI (return from interrupt) 104 
RTS 73 
RUN 8 

sample rate 15 
saving machine language 68, 69 
scaling, computer generated 94 
Schmidt trigger 90 
SED instruction 106 
serial data 114ff 
smoothing 33 
specific heat 20 
stack 79 
stack memory 64 
stack pointer 64, 80 
stepping motors 40, 42 
Stokes law 85 
stop program loop 13, 67 
storing programs 8 
string variables 7 
subroutines 79 
system start disk 6 

temperature control 37ff 
TEXTS 
thermal conductivity 52 
thermal diffusion 52ff 
thermistor 11 , 118ff 
timing 48ff 
timing loop (BASIC) 39 
timing loops, machine language 81 
transducer 

first-order 20 
second-order 21 
zero-order 13 

triple precision 83 
truth table 74 
turbulence 84 

UART 113 

vco 15 
ve locity gradient 85 
VIA (versatile interface adapter) 35 , 48, 49, 

93 , 145 
VIA timers 48 
viscosity 84 
voltage divider 19, 23 

WAJT91 
wire color codes 19 

X, Y registers 64 
X-Y plotting 73 




