APPLE Ii
in the laboratory

A.F.KUCKES & B.G. THOMPSON

School of Applied and Engineering Physics, Cornell University

The right of the
University of Cambridge
to print and sell
all manner of books
was granted by

T 7 - h

Henry VIIL in 1534,

The University has printed

and published continuously
since 1584.

CAMBRIDGE UNIVERSITY PRESS
Cambridge
New York New Rochelle Melbourne Sydney

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

32 East 57th Street, New York, NY 10022, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1987
First published 1987
Printed in Great Britain at the University Press, Cambridge

British Library Cataloguing in Publication Data

Kuckes, A. F.

Apple ITin the Laboratory.

1. Physics — Experiments — Data processing
2. Apple II (Computer)

I. Title II. Thompson, B. G.
530".028'54165 QCs2

Library of Congress Cataloguing in Publication Data

Kuckes, Arthur F.

Apple IT in the Laboratory.

Bibliography:

Includes index.

1. Physical Laboratories — Data processing.

2. Apple II (Computer) I. Thompson, B. G. II. Title.
III. Title: Apple 2 in the laboratory. IV. Title: Apple
two in the laboratory.

QC52.K83 1987 004.165 8621531

ISBN 0 521 32198 0

Applesoft as referred to in this
book is a Registered Trademark of
Apple Corporation.

Achilles:

Crab:

Achilles:
Crab:

Before we start, I just was wondering, Mr. Crab—what are all
these pieces of equipment, which you have in here?

Well, mostly they are just odds and ends—bits and pieces of old
broken phonographs. Only a few souvenirs (nervously tapping the
buttons), a few souvenirs of—of the TC-battles in which I have
distinguished myself. Those keyboards attached to television
screens, however, are my new toys. I have fifteen of them around
here. They are anew kind of computer, a very small, very flexible
type of computer—quite an advance over the previous types
available. Few others seem to be quite as enthusiastic about them
as I am, but I have faith that they will catch on in time.

Do they have a special name?

Yes; they are called “smart-stupids”, since they are so flexible, and
have the potential to be either smart or stupid, depending on how
skillfully they are instructed.

From Gédel, Escher, Bach: an Eternal Golden Braid by Douglas R. Hofstadter.
Copyright© 1979 by Basic Books Inc, publishers. Reprinted by permission of the
publisher.

Contents

1.1
1.2

2.2

32

3.3

3.4

3.5

3:6

Introduction
How to use this book
Chapter summary

Instrumentation structures and using the APPLE II computer
Making graphs

Ex2.1.1 Starting out

Ex2.1.2 Simple graphing

Addresses and data, RAM and ROM

Thermistor experiments

Using the analog to digital converter

Ex3.1.1 Using the ADC

Ex3.1.2 Programming the ADC

Analog to digital converters

Ex3.2.1 ADC and sampling

Ex3.2.2 Audio digital sampling

Thermistor resistance vs. temperature characteristics
Ex 3.3.1 Thermistor mathematical models
Ex3.3.2 Specific heat and power

Ex3.3.3 Temperature lag

Ex3.3.4 Thermistor resistance measurement
Ex3.3.5 Data arrays

Making and retrieving sequential data files
Ex3.4.1 WRITE data file

Ex3.4.2 Testdata WRITE

Ex3.4.3 READ datafile

Ex3.4.4 Temperature and thermistor resistance data file
Plotting the experimental data

Ex3.5.1 Thermistor data plot

Ex3.5.2 Logarithmic plot

Ex3.5.3 Linearized thermistor data plot

A least squares fit to the data

Ex3.6.1 Leastsquares fit to data

Ex3.6.2 Plotof residuals

W W

O 00 O L

1
12
13
14
15
17
17
18
20
22
23
23
23
23
24
25
25
26
26
26
2/
27
28
29

viii

3.7
3.8

39
3.10

3.11
3.12

4.2

4.3

4.4

4.5

5.2

343

5.4

D:5

6.1
6.2

Contents

Data modeling

Errors in data and parameters

Ex3.8.1 Errors in thermistor data
Digital signal processing

Generation of output using basic
Ex3.10.1 Square wave output
Ex3.10.2 Square wave output on PB3
POKE and PEEK

Using a HEXFET to control the heater
Ex3.12.1 Temperature contoller
Ex3.12.2 Temperature controller with hysteresis

Timing

Timing loops in BASIC

Ex4.1.1 Square wave output (BASIC)
Stepping motors

Ex4.2.1 Single step of stepping motor
Ex4.2.2 Maximum stepping rate
Ex4.2.3 Positioner

Number systems

Ex4.3.1 LED binary number display
Generation of square waves by the 6522
Ex4.4.1 Square wave on PB7 VIA 6522
Making an interval timer

Ex4.5.1 TI1-T2 interval timer
Ex4.5.2 Beeper

Thermal diffusion

Heat flow equation

Ex5.1.1 Impulse heat diffusion solution

Ex5.1.2 Graphing the heat diffusion equation
Numerical integration of the heat diffusion equation
Ex5.2.1 Integration algorithm

Experimental setup and program development
Ex5.3.1 Heatimpulse to rod

Voltage amplifier

Ex5.4.1 Amplifier check

Ex5.4.2 Heat flow real-time plot

Data analysis

Ex5.5.1 The thermal conductivity and specific heat of copper
Ex5.5.2 Time shift of heat flow data

APPLE architecture and assembly language programming
Inside the APPLE
The 6502 Microprocessor

29
31
33
33
34
34
36
36
36
37
38

39
39
39
40
41
42
43
43
46
48
49
49
49
50

52
52
53
54
55
56
56
57
37
59
59
59
60
61

62
62
63

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

7.2

73

7.4

73
7.6

il

Contents

Writing machine language programs

Ex 6.3.1 Machine language square waves and BSAVE
Operation of a DAC

Ex6.4.1 DAC sawtooth wave (BASIC)

Ex 6.4.2 DAC sine wave (BASIC)

Indexed addressing

Ex 6.5.1 DAC output in machine language

The CALL and RTS connection

Ex 6.6.1 BASIC - machine language connection
Ex 6.6.2 DAC sine wave (BASIC and machine language)
An X-Y plotter

Ex 6.7.1 Lissajous figures on DAC X-Y plotter
Boolean algebra

Ex6.8.1 AND

Ex6.8.2 ORA

Ex6.8.3 EOR

Branching instructions

Ex 6.9.1 Masking and branching

Subroutines and use of the stack

Ex6.10.1 JSR

Assembly language timing loops

Ex6.11.1 Machine language timing loops
Indirect addressing

Viscosity measurement

Force required to move a solid body through a fluid

Ex7.1.1 Stokes’ law

Ex7.1.2 Approach to terminal velocity

The experimental apparatus

Ex7.2.1 Cadmium sulfide cell resistance and voltage changes

The need for using machine language

Ex7.3.1 Speed of a sphere in air

Machine language program to record fall of a sphere through
glycerine

Ex7.4.1 Lightbeam sensing and timing

Graphing scales

Double precision addition and subtraction

Ex7.6.1 Double precision addition

Ex7.6.2 Quadruple precision subtraction

The viscometer

Ex7.7.1 The viscometer and the viscosity of glycerine

Ex7.7.2 The wall effect

Ex 7.7.3 Temperature variation of the viscosity of glycerine

Ex7.7.4 The viscosity of aqueous solutions of glycerine

65
69
69
71
71
71
72
73
i)
73
73
74
74
75
76
77
s
77
79
81
81
83
83

84
84
87
88
88
90
90
o1

93
93
94
95
95
96
96
96
98
99
99

7.8

9.1
9.2

9.3

9.4
9.5
9.6

Contents

Using an EPROM
Ex 7.8.1 Blasting and using an EPROM

Interrupts

Interrupts and the CPU

User controlled interrupt

An ISR

Ex 8.3.1 Running an interrupt program
T2 generated interrupts

Ex 8.4.1 Writing an interrupt program

Other topics

Hardware for data acquisition and control

Serial data communication

Ex9.2.1 Serial communication

Parallel data communication

Ex9.3.1 Parallel communication via IEEE 488 protocol
Sensors and transducers

Software for data acquisition and control

Where to go from here

Appendix A Laboratory materials and sources

Appendix B Merging programs: use of the RENUMBER
program

Appendix C APPLE Ile memory map

Appendix D Connections and logic of the ADC

Appendix E VIA data sheets

Appendix F Solution for heat flow in one dimension

Appendix G Finite impulse heat flow in a rod

Appendix H Bootstrap sequence

Appendix I Machine language instructions

Appendix J EPROM blaster program

Appendix K Bibliography and sources

Index

Acknowledgements

100
100

102
102
105
106
106
111
111

112
112
112
114
114
116
116
133
118

119

125
129
131
135
156
159
162
164
191
203

205

We wish to thank the students who struggled with us through the first semester of this
course and Professor Bruce Kusse and Tom Hughes for their constructive comments
onthe notes. We also thank Helen Savey and Bonni Jo Davis for the hours of typing

and retyping of the drafts. Andy Draudt drew the pictures of the apparatus.

Introduction

The microprocessor has become commonplace in our technological society.
Everything from dish washers to astronomical telescopes have chips control-
ling their operation. While the development of applications for computers
has been in constant flux since their introduction, the principles of computer
operation and of their use in sensing and control have remained stable.
Those are the primary subjects of this course. Once a basic understanding of
the principles has been built, further detailed knowledge can be acquired
later as the need arises.

This book is designed to be acompanied by extensive laboratory work.
Over the years the engineering curriculum has focused more and more on
the lecture/recitation format. This has led to an ever increasing emphasis on
theoretical developments and a loss of contact with the physical basis of
engineering and science. The laboratory provides a vital experience in
linking theory with physical reality. It also provides the satisfaction of
building something and making it work.

Not all computers are suitable for laboratory use. Large mainframe
computers are fast and can handle large amounts of data but are awkward to
connect to laboratory equipment. At the other end of the scale, microproces-
sors are included in many laboratory devices but are programmed to
perform only a restricted set of duties. Mini and microcomputers have
enough speed and memory for all but the most demanding applications but
yet are small enough to be dedicated to individual projects and therefore are
widely used in the laboratory.

With the technological strides of recent years, microcomputers (or per-
sonal computers) have prodigious capabilities. Since they are also used in
business, many languages and programs are available; some of which are
even useful in a laboratory. With a single microcomputer, an engineer or
scientist can acquire data and control an experiment, analyze the data,
display the data and analysis as graphs or tables, and write a report or journal
article. Remember that it can’t do the thinking!

Microcomputers come with many built-in features. Those included
depend on the designers’ decisions as to what will sell the most computers.
Since the demands of the laboratory are so varied, no computer when taken
out of the box can hope to fulfill them. Hence to be useful, a computer must
be able to change its capabilities after manufacture. This is done in two ways.
One is provide a method of communication (serial or parallel) between the

Introduction

computer and the laboratory devices (analog to digital converters, voltmet-
ers, etc.) and rely on the devices to be intelligent enough to communicate.
Generally this means that the devices need a microprocessor built in which
is preprogrammed to communicate with a certain protocol. The other way is
to have slots (connectors) in the back of the computer so that circuit boards
can be inserted to perform the desired tasks such as analog to digital
conversion of serial communication. The computer can then be configured
exactly as needed for a particular application. Even the video display or
microprocessor can be changed when desired. Further, ‘slot machines’ are
generally the least expensive way to computerize the laboratory.

The APPLE Ile (upon which this book is based) and the IBM-PC (which
is the subject of a companion volume) are ‘slot machines’. The APPLE Ile
(and predecessors, the APPLE Il and APPLE II+) is of an older design but
has proved its usefulness in innumerable times. Its simple yet versatile
architecture makes the computer easy to use and understand but limits its
analysis and data volume capabilities. The IBM-PC is a newer design which
is faster and has more memory but is slightly more complicated internally.
They are both quite suitable for laboratory use. Beware of the APPLE Ilc
which is a slotless version of the Ile; it will not be able to accept the circuit
cards which are necessary for the exercises in this book. IBM-PC clones
(design copies) can be used instead of the IBM-PC as long as they have slots
where data acquisition boards can be placed.

A computer can be treated as a black box which responds in a predictable
way to an input; however, that type of use requires a complete knowledge of
the possible inputs and responses. An understanding of how it works inside
allows the user to figure out how the computer will respond to an input, or
even if it can respond. The capabilities and limitations become transparent.
Throughout the book a gradual understanding of what goes on inside a
computer will be developed.

Other devices which are used are various sensors, analog to digital
converters, digital to analog converters, timers, digital input and output
devices, optical encoders, stepping motors, and analog amplifiers. They
provide the interface between the computer’s digital world and the physical
phenomena being studied.

At first, APPLESOFT BASIC is used for programming. This allows
simple input and output to be done as one’s understanding of the computer
grows. Graphing and curve fitting is also dealt with. Later, when the
limitations of BASIC become restricting, programs are written in assembly/
machine language. The speed difference become evident very quickly.

All of this computer work is done in the context of doing physics
experiments. These experiments cover subjects not usually emphasized in
introductory courses but which have a wide applicability. They show that,
with computer control, conceptually sophisticated experiments can be
performed with simple apparatus. In particular, physics of activation tem-
perature, heat diffusion and motion in fluids are explored.

1.2 Chapter summary 3

1.1 How to use this book

In this book much of the programming material will be presented by
way of example. Programs will be given from which you will be expected to
deduce the essence of what is going on and thereby proceed to write your
own programs. After seeing and using programs, the more precise and legal
description of instructions given in the manuals become easier to com-
prehend.

This book is written in a tutorial manner in which the exercises and
experiments are distributed throughout the text. It would be nice to read up
to an exercise and then sit down at the computer to do it. However, the time
in the laboratory is short so that this becomes impossible. Before going to the
laboratory, read through the text you expect to cover and organize your
thoughts about what you will be doing. Also, jot down flow charts and write
out programs which you will enter in the computer at the laboratory. Even if
they do not run the first time they can be easily changed once the program is
in a file. The essence of learning is going through the struggle of getting
things to function properly, whether it be in writing programs, building
experimental apparatus, or understanding theoretical descriptions.

Many of the details of BASIC programming and machine operation can
be found in APPLE II User’s Guide by L. Poole, M. McNiff and S. Cook or
a complete set of APPLE manuals. Assembly language programming is not
covered. A source for that is 6502 Assembly Language Programming by L.
Leventhal or SY6500 Microcomputer Programming Manual by MOS
Technology.

The appendices contain reference material and extended discussions.
They are separated from the main text to improve the flow but contain
important information and so should be perused once in a while.

1.2 Chapter summary
Chapter 2 begins with an introduction to the operation of the
APPLE Ile computer. The AMPERGRAPH utility and APPLESOFT
BASIC are used to make some graphs. There is also a brief look inside the
APPLE at addresses, data and different types of memory.

Chapter 3 introduces the first Input/Output (I/O) device, the Analog to
Digital Converter (ADC). It is used to measure the temperature/resistance
characteristics of a thermistor. Further BASIC programming is used to do a
least squares fit to the data. The I/O capabilities of a 6522 Versatile Interface
Adapter (VIA) are used to control a HEXFET switch on a heater to make a
temperature controller.

In Chapter 4, simple BASIC timing loops are used to control a stepping
motor. The operating speed of BASIC statements is measured. Then the
more sophisticated counters of the 6522 VIA are used to make an accurate
interval timer.

Chapter 5 concerns an experiment in thermal diffusion. A heater at one
end of a copper rod is turned on for a set interval under program control. The

Introduction

flow of this heat pulse down the rod is then measured at two locations for
about 30 s. A theoretical model is fitted to these data to determine the
thermal conductivity and heat capacity of copper. An analog amplifier is
used to boost the signal from the thermistor to the ADC.

Chapter 6 is an introduction to assembly language programming and the
architecture of the APPLE. The increase in processing speed over BASIC is
vividly displayed by sending a square wave to the output port. A digital to
Analog converter (DAC) is used to make an X-Y plotter.

In chapter 7, an experiment is constructed which measures the viscosity of
glycerine by measuring the speed of a falling sphere. The physics of
turbulent as well as smooth fluid flow is discussed. LEDs and photocells are
used as position sensors to measure the speed of the sphere. The machine
language portion of the data acquisition program is blasted into an EPROM
(Erasable Programmable Read Only Memory), which is used to acquire
velocity data.

Chapter 8 introduces the concept of interrupt processing. A clock display
runs as other computer operations are performed. A modification of this
program rings the bell every two seconds while other programs are run.

Chapter 9 contains various topics which are important but do not have a
direct bearing on the experiments done in the previous sections.

Instrumentation
structures and using
APPLE Il computer

Fig. 2.1. Instrumentation
structures

Process: eg temperature as
function of time, position as
function of temperature.
Sensor: eg temperature or
position converted to voltage.
Signal conditioner: eg amplifier,
filter.

* Conversion: analog to digital.
* Storage/playback: eg silicon
memory, magnetic, papertape.
* Representation: eg numbers,
pictures (1000 words of
memory!).

* Modeling: mathematical fit to
data.

* Control: eg change
temperature or position.

The computer has a part in all
items with a *.

The purpose of an instrument is to make measurements of a particular
parameter in a physical process. This requires at least a sensor which
responds to the parameter and a display which lets the user record readings
which are in some way proportional to the parameter being measured. A
thermometer is an instrument which indicates the temperature by quantita-
tively showing the expansion of a liquid with a temperature increase. A more
complete description of the measurement process is shown in Figure 2.1.
The arrows show possible but not necessary routes for the flow of informa-
tion. The computer is able to do many of the tasks which were formerly done
by separate units of an instrument. This lets the designer reduce the number
of components required to a bare minimum as the experiments in this book
show. Many times all that is needed is a sensor to translate the process into
an electrical signal.

Another way to think of the computer is as an interface between the
experimenter and the experiment (or the user and the measurement). It is
able to translate the unintelligible signals from the sensor into a form which
is understandable using human senses. One of the best ways of communi-
cating information is by picture. ‘A picture is worth a thousand words.” (In
fact, it takes roughly a thousand words of computer memory to display a
video graphics screen.)

2.1 Making graphs

Graphing experimental data and mathematical expressions is an
important aspect of the work you will do in this course; we will go through a

Modeling
—

conditioner

Data storage
& playback

Representation

Instrumentation structures

few programs which will show how such graphics programs are written. The
APPLESOFT BASIC interpreter, which you will be using for programming
the machine has only rudimentary plotting instructions incorporated in it;
the AMPERGRAPH utility appends to the usual APPLESOFT instructions
additional graphing instructions which are easy to use. AMPERGRAPH is
automatically linked to APPLESOFT BASIC at system start up time. Refer
to your AMPERGRAPH manual for descriptions of AMPERGRAPH
commands and to the APPLE BASIC programming manual or Poole for
APPLESOFT commands.

(b)

(¢)

(d)

Exercise 2.1.1 Starting out

To get started insert the SYSTEM START disk into the DISK
DRIVE unit and turn the computer power switch on. The machine
is set up so that it will ‘wake up’ in APPLESOFT BASIC whose
promptis |. The AMPERGRAPH utility and other programs are on
the SYSTEM START disk. To see what files are on this disk, type
CATALOG CR (CR means press the key labeled RETURN). On
the screen, a listing of the programs will appear. Up to 18 lines of the
catalog entries are presented. If this does not include all the files on
a particular disk, you can see more by pressing the space bar. The
entries marked with an ‘A’ are APPLESOFT programs.
AMPERGRAPH: you will now type into the computer memory a
sample APPLESOFT/AMPERGRAPH plotting program. First
clear out other programs which may be in the machine by typing
NEW CR. Then type in the Program 2.1.1 in Figure 2.2; each line
should be followed by CR. Be sure to read the comments in Figure
2.2 to understand each program step. HIMEM is particularly
important.

Listing: the LIST command will make the APPLESOFT program
which you have entered appear on the screen; check the program
for errors. The spacing may appear slightly changed but that is
normal. To correct any errors simply retype the line number and
statements which are incorrect; the old line will be erased. To delete
a line, simply type the line number followed by a CR. As you get
further along in writing programs, you will find it useful to go
through the APPLE manual to learn some further editing features
of the APPLE. Notice that the numbering of the statements is not
consecutive. This is a good practice in BASIC programs in case you
want to put additional program lines between existing lines. To
insert a new line between two lines simply type a line with a number
between the two line numbers.

Printing: next, print a listing of the program on the printer: first turn
the power switch to the printer on. Then to direct output to the

2.1 Making graphs

Fig. 2.2. An elementary graphing example.

wvi

10

20

25
27

30

40

50

60

REM PROGRAM 2.1.1
REM ELEMENTARY EXAMPLE

HIMEM: 16383

HGR?2

&SCALE,0,10,-1.2,1.2

L=
LY$="C08 X~
&LABELAXES,2,.2

for X=0 TO 10 STEP 0.2

&DRAW, X, COS(X)

NEXT X

LIST CR

REMark is a way of recording program
documentation, itis not an instruction
which is executed.

HIMEM will limit the usage of memory
for APPLESOFT programs to addresses
lower than 16383, You mustinclude this
before any executable (non-REM)
APPLESOFT statements in programs
using AMPERGRAPH statements to
insure that APPLESOFT doesn't write
over the AMPERGRAPH program in
memory. See Appendix C for the location
of AMPERGRAPH in memory.

HGR2 erases all 'dots’ stored on page 2
of high resolution graphics and switches
the screen to display that page. We will
use HGR2 instead of HGR1 in our
programs. (Appendix C)

Allinstructions beginning with a & are
AMPERGRAPH instructions, read manual
for details.

In BASIC all variables ending witha $ are
string variables which are used to
manipulate text. These variable names
(LX$ and LY$) are special to
AMPERGRAPH

An AMPERGRAPH instruction.

An ordinary APPLESOFT BASIC
instruction.

An AMPERGRAPH instruction.
An APPLESOFT BASIC instruction.

ADOS Command.

Instrumentation structures

(e)

()

printer, type PR#1 CR. This will direct subsequent output to the
printer as well as to the CRT. Now type LIST CR. To turn off output
to printer, type PR#0.

Running the program: to run the above program type RUN CR. If
the program is correct the graph of cos (x) should appear on the
screen. If not, find the errors and correct them (debug the program).
At this time memory locations devoted to high resolution graphics
are being displayed; to get back to displaying text on the screen,
type TEXT CR (type carefully since you won’t see what you are
entering). To get back to viewing the high resolution graphics
without wiping out what’s there (which the HRG2 instruction will
do), type POKE —16304,0: POKE —16299,0 CR.

To print out the graphics display, a control signal must be sent to

the printer (actually to the circuit card which controls the printer).
The details of this are discussed in the documentation for the printer
card you are using. Fora MICROBUFFER, to print out the graph
you have drawn, type TEXT CR (to see what you are typing),
PR#1 CR (to send output to the printer), PRINT CHR$(9)
“G2” CR (to print the graph).
Formatting a disk: throughout the course you will need to make use
of programs and data which you have written or obtained before.
The disk is the medium by which these are stored. To save APPLE-
SOFT programs, you first need to initialize a blank disk. Initializing
is like erasing the blackboard and then drawing lines on it where the
words or numbers will go. The command ‘INIT filename CR’ does
this and also places the program presently in memory into the first
part of the disk with the filename given in the command. Only use
this command the first time you store a program on a disk since it
erases all the existing files on the disk. Later programs are saved on
disk with the APPLESOFT command: ‘SAVE filename CR’. Place
your blank disk into the drive and save this first program on your
blank disk with the command: INIT PROGRAM 2.1.2 CR.

Exercise 2.1.2 Simple graphing

Write and run a program that plots the curve Y = X? — 1 from
X = —2 to +2 with the X and Y axes labeled and a grid super-
imposed on the plot with a grid line for every increment of 1 for X
and 2 for Y. In addition, plot on your graph the data points X, Y as
open circles for the points

X Y
=1.8 3.5
=e2, 140
=05 -1.0

0.0 =1.3

2.2 Addresses and data, RAM and ROM 9

0.5 0.3
1.2 0.5
2.0 3.3

The BASIC statements READ and DATA are useful in this
program. Save the program as an APPLESOFT program on
diskette; (SAVE filename) then load (LOAD filename) and RUN
it again. Print out the program and the graph on the printer.

For success in writing programs complete small pieces at a time and devise
methods so that each piece can be tested separately; then incorporate these
pieces into larger sections of the main program. It is also usually a good idea
to first write out in words and block diagrams what you are trying to do with
the program and/or apparatus. Apparatus B contains a description of
RENUMBER, a useful utility on the SYSTEM START disk for merging
separate program pieces to facilitate this process.

One note: if you get an error message which reads ‘SYNTAX ERROR IN
LINE Sxxxxx’ where the xs can be any number, the error is in your
AMPERGRAPH statements. Also certain programs are incompatible with
AMPERGRAPH. If you have used RENUMBER or INTEGER BASIC/
MINI-ASSEMBLER and you want then to use AMPERGRAPH, you will
need to RUN AMPERGRAPH LOADER on the SYSTEM START disk.
Be careful to save your program before you do this.

2.2 Addresses and data, RAM and ROM

Inside the APPLE there is an integrated circuit microprocessor
which controls the operation of the computer. Connected to it are 16 address
wires and 8 data wires which are used to communicate with other parts of the
computer. The 16 binary bits of the address wires allow the microprocessor
to specify 65536 unique locations. The information transfer is done on the
data wires. Eight wires allow 256 unique numbers (or characters) to be
represented at one time. It is like having a telephone system which has 65536
telephone numbers and in which the caller can choose from 256 words to
send a message. All the calls go through the central switchboard (the
MIiCroprocessor).

The address wires are connected to several different types of memory and
to devices which allow communication between the computer and the
outside world. The microprocessor first places the binary representation of
the location to be accessed on the address wires. Then after waiting for the
computer circuits to select the unique location to which this refers, it either
sends or receives a byte of data on the data wires. At the lowest level, this is
all that a computer does.

Modern computers usually have several types of memory; early computers
had only Random Access Memory (RAM). RAM is essential for any

10

Instrumentation structures

computer since the fundamental principles of computer operation require
the Central Processing Unit (CPU) to repeatedly store and retrieve program
instructions, data and memory addresses. The term ‘Random Access
Memory’ means that it may be written to or read from in any order. A severe
disadvantage of semiconductor RAM is that it doesn’t remember anything
after its power is turned off. Some computers have vital portions of their
RAM protected by having a battery to provide the power in case of a power
line failure.

Read Only Memory (ROM) has data stored in its memory cells at the time
of manufacture which it retains permanently. It can be randomly accessed
but that access is restricted to the read operation only. A ROM chip can be
moved from one place to another without the data being lost as no power is
needed to maintain data stored. There are several ROMs in the APPLE
computer. One contains the monitor routines which are activated when the
computer is turned on. Programs in the monitor initialize the computer and
load the Disk Operating System (DOS) and INTEGER BASIC into RAM.
The second ROM contains the APPLESOFT BASIC interpreter program
which interprets BASIC program instructions. Appendix C contains a
description of how the APPLE Ile memory is organized.

Thermistor experiments

In the first set of experiments you will make temperature measurements
using a thermistor and an ADC. A thermistor is a device whose resistance
varies with temperature. The ADC converts an analog voltage (continuous
voltage levels) to a digital representation (discrete voltage levels) which can
be read by the computer under program control.

3.1 Using the ADC

The ADC 0817 which is installed on the interface card in the APPLE
is an eight-bit converter, this means that the range 0-5 V will be divided into
2% = 256 parts. It also is able to select one of 16 input lines on which it will do
the conversion. To use the ADC from BASIC is quite easy: an instruction to
initiate a voltage conversion is given; a second instruction then reads the
result of that conversion. Of the 16 analog input lines (channels) of the
ADC, 8 have been brought out onto the prototyping board. Channels 0-7
are on pins 1-8 on the Dual Inline Plug (DIP) connector on the prototyping
board. Appendix D has a description of how the ADC works.

The 6502, which is the CPU in the APPLE, uses a system called memory
mapping for input and output. To initiate a conversion of the voltage on
channel 0 of the ADC you issue the BASIC instruction POKE 49312,0. This
instruction would normally mean: store the number 0 (‘data’) in memory
location 49312; however, in this case, the ADC ignores the data, and
initiates the conversion of voltage on channel 0. To initiate a conversion in
channel 1, the instruction POKE 49313,0 is used; for channel 2, POKE
49314,0 etc. Shortly after issuing the instruction (in considerably less time
than the APPLE takes to execute a single BASIC instruction), the result of
this conversion can be found in memory location 49312, regardless of which
channel was converted; thus POKEing and PEEKing access are completely
different functions for the ADC. To set a variable, eg, A, equal to the
converted value in the memory location 49312, use the instruction
A = PEEK(49312). PEEK will read the contents of memory location 49312
and will assign an integer in the range 0-255 to the variable A. It is good
programming practice to use variable names which resemble their meaning.
In this case, a better name for the variable A is ADC or ADCDATA.
However you must be careful; APPLESOFT BASIC will only look at the
first two letters and the suffix (% or $) to distinguish between variables. Thus
ADCI1 and ADC?2 are the same variable.

12

Fig. 3.1. Potentiometer
connectionsand protoboard DIP
plug.

Thermistor experiments

Power(5
supply

Exercise 3.1.1 Using the ADC

To get the idea of how to use the ADC connect a5 k() potentiometer
across the 5 V power supply on your bench (Figure 3.1) and observe
the voltage of the wiper (the center connection on the potentio-
meter) on the oscilloscope. NOTE: The ground lead of the oscillos-
cope probe should be connected to the ground of the system, ie, the
green wire of the potentiometer. Never connect the oscilloscope
probe ground to any point of a circuit which is not ground. Also, it
is extremely important that the negative output of the power supply
be connected to ground of the APPLE at all times.

Before connecting the wiper of the potentiometer to the APPLE
observe the voltage of the wiper on the oscilloscope: set the scope
trigger control to AUTO so that a continuous trace appears on the
screen; be sure the small switch on the probe tip is set to 1x; set the
vertical scale to 1.0 V/DIV and the VARIABLE knob to the
CAlLibrated position; set a 0 V baseline by using the ground switch
and vertical position knob on the scope.

Turn the knob of the test potentiometer back and forth, the
voltage output of the wiper should vary between 0 and 5 V. Now
connect the wire from the wiper arm of the potentiometer to the

Red Protoboard

Potentiometer GO0 re—

Grey e I e

Cable to
APPLE computer

Green I
s, To ground

on protoboard

A TR
T

Protoboard connection layout

3.1 Using the ADC 13

channel 2 ADC analog input on the protoboard; this is pin 3 of the
DIP connector. Clear the program currently in the computer (NEW
CR) and enter the following BASIC program:

5 REM PROGRAM 3.1.1
10 AD=49312
20 POKE AD+2,0
30 V=PEEK(AD)
40 PRINT V
50 FOR I=0 to 100: NEXT I: REM DELAY
LOOP
60 GO TO 20
RUN

Rotate the potentiometer shaft and note how the voltage on the
scope and the computer display changes. The program should print
integers in the range 0-255 on the video screen which are propor-
tional to the voltage on the potentiometer. Your particular ADC
may not show a count of 255 for 5 V. This is a calibration error which
can be corrected for by determining that the range of your ADC is
O—xxx rather than 0-255 for a 0—5 V input. The instructions on line
50 in the program are only there to use up time so that the repetition
rate between making measurements is sufficiently low to give a
readable output on the CRT. To stop the program, simultaneously
push the CONTROL key and C (CTL-C). Release them and press
RETURN (CR).

The potentiometer is an example of a zero-order instrument; that is, it is a
transducer whose output is in direct proportion to its input: V, ,, = KV,
where K is the static sensitivity or calibration factor. A perfect zero-order
instrument will produce at its output the exact replica of the input signal with
only a scale or units change. Of course no instrument or transducer can live
up to the perfect response represented by a mathematical formula; all
instruments have a range of input values over which tolerable errors occur.
It is the responsibility of the designer to determine this range and report the
tolerance in the instrument specifications and the responsibility of the user
to pay attention to them.

Exercise 3.1.2 Programming the ADC

(a) Modify the program and potentiometer connections so that the
voltage on channel 5 is read and displayed. Determine what the
ADC reading is for the maximum voltage, and what the maximum
voltage is.

14

Fig.3.2. Outputofathree bit ADC
with input range of 0-5 V.
Dashedlineistheideal, solid line
the actual response.

Thermistor experiments

(b) Modity the program and add a second potentiometer so that the
program reads the voltage on channel 0 and then, as soon as
possible, the voltage on channel 5, the two results should be
displayed on the CRT on a single line with a few spaces between the
two measurements. Look up the details of the PRINT statement in
the reference manuals. Make the program also compute the actual
voltage and print them too. The program should make 25 measure-
ments of this kind and then halt. When you get everything running,
print out the results on the printer. Also make a printed listing of the
program you have written and SAVE the program on your disk.

3.2 ADCs

ADCs come in many sizes and flavors each with a range of useful-
ness. The following is a description of the most important considerations for
choosing and using them.

An ADC has a defined range of input voltages (for example 0-5 V) which
it can accurately convert. This range is divided into a number of equal sized
pieces (voltages). The integer number output by the ADC corresponds to
the number of these which equal the input voltage at the time of the
conversion. Figure 3.2 shows how a three binary bit converter converts an
input signal to a digital number. Using an ADC is like using a ruler which is
graduated in say §” markings. All measurements are then made to the
nearest §”. Also it can only measure lengths which are less than the length of
the ruler. (You can hop-frog a ruler but you can’t do that with an ADC.)

The goal of digital measurements is to get an accurate representation of
the input signal. In order to do this the ADC must be able to resolve voltage
differences which are significant in the measurement being done. That is, the
input voltage range of the ADC must be divided into enough pieces by the
digitizer that the voltage change represented by each piece is smaller than
the accuracy needed. In the laboratory, the 8-bit converter breaks up the
input analog voltage range into 2° = 256 pieces so that the resolution of the
converter is 1/256 = 0.4% of the full range or (5 — 0)/256 = 0.019 V. Digital

111
110
101
100
011
010
001
000

ADC output (binary number)

Input voltage (volts)

3.2 ADCs 15

audio recording systems use 16-bit converters so that the digitization process
is not audible on playback. The ear is a very sensitive detector.

Most of the ADCs on the market are 8, 10, 12, or 16-bit converters. Those
above 12-bit require extra care in use since the digitization level is below 1
mV. Extraneous noise from computers or other circuits can creep into the
desired signal. Common input voltage ranges are (0to 5), (—=5to 5) and (—10
to 10). External electronics can be used to shift the voltage from a sensor into
the proper range.

Exercise 3.2.1 ADC and sampling

(a) The resolution in voltage of an ADC is AV/2" where AV is the total
input range and »n the number of bits of the digital output. What is
the resolution of a 13-bit ADC with input range of +5 to —5 volts?
Express your answer in millivolts.

(b) Since the amplitude of an analog signal can be adjusted by an
amplifier circuit to fill the input range of the ADC, the resolution
can be better described by the dynamic range; this is the ratio of the
maximum to the minimum voltage measurable by the ADC. The
maximum is the ADC input range and the minimum is the resolution
calculated above. What is the dynamic range of the 13-bit ADC?
The 8-bit used in class? The ratio is usually expressed in decibels
(dB), eg, DR = 20 log (ratio) in dB. Give your answers in both
forms; a ratio and in dB.

Another metnod of converir » an analog signal to digital is to input the
signal to an electronic circuit (a Veltage Controlled Oscillator or VCO)
whose output is a frequency which is proportional to the amplitude of the
input voltage, f,, = fo + K;V,,. The computer can then measure the
frequency of the signal by measuring the time for one cycle of the waveform.
To work properly the rate at which the analog input voltage varies must be
much less than the frequency output and so the VCO is used for slowly
varying signals. The accuracy of this method is also limited.

In order to measure a signal accurately, the rate at which the measure-
ments are taken (the sampling rate) must also be considered. This must be
fast enough that all the frequencies contained in the signal can be repro-
duced. As a quick illustration of the problem, the signal peak in Figure 3.3
will be totally missed if the sampling is done at the time marked with crosses.

As Fourier (1768-1830) showed, any signal can be considered as a
superposition of sinusoidal signals of various frequencies. These frequencies
generally range from zero (DC) to some maximum frequency, f,.., which
depends on the physical characteristics of the system generating the signal.
The fundamental frequencies of piano range from 27 to 4200 Hz. But the
overtones (harmonics) go to much higher frequencies.

16

Fig.3.3.Sampling the signal with
an ADC at a rate which is too
slow. The peak is missed.

Fig. 3.4. The solid curve is the
input waveform. The dashed
curve is the waveform
reconstructed from the sampled
data; (a) 1 sample per cycle, (b)
1.5 samples per cycle, (c) 2
samples per cycle (the Nyquist
frequency).

Thermistor experiments

X
9 e
& x/
= et XX
2 %
s
X
| | | | | | | | | | | 1
i Sample
Time period

In order to accurately reconstruct the original signal from a sampled
signal, the ADC sample rate should be at least twice the highest frequency
in the input signal, f,,... This result is known as the Sampling Theorem and
was formulated by Shannon in 1949 building on earlier work by Nyquist
(1924). Note that it reads ‘the highest frequency in the input signal’ not ‘the
highest frequency of interest’. Even if you are not interested in higher
frequencies in the input signal, they must be sampled correctly. If they are
sampled at a rate which is less than 2f,,,, (the Nyquist frequency), they will
masquerade as lower frequency signals (Figure 3.4). This is called aliasing.
A good rule of thumb is use a sample rate of at least 2.5f,,,,. Electronic filters
(like the treble and bass controls on a stereo) can be used to limit the
frequency range of signals so that the sampling rate can be lowered.

As an example, in the digital recording of music, the audio frequency
range of 20-20000 Hz must be faithfully sampled. Since f,,,, = 20000 Hz,
the Nyquist frequency is 40000 samples/second. The actual rate used is
48000 Hz. An ADC which converts the signal in at least 20 us is needed.

®)

(c)

3.2 ADCs 17

ADCs come in a wide variety of speeds. From low-power devices which
convert in milliseconds to fast (less than 10 us) ones. The first are used in
battery operated equipment such as digital multimeters. The fast ones are
used in audio and video digital systems.

Exercise 3.2.2 Audio digital sampling

An eight channel digital recording studio wants to faithfully record
the audio spectrum from 20 to 20 000 Hz. What must be the sample
rate for each channel? The studio wants to use a single multiplexed
16-bit ADC to digitize the signals (the ear is a sensitive detector);
what is the maximum conversion time the ADC can have? It is
found that ADCs this fast are only available to the military (and at
military prices!), but there are some available which are three times
slower; how can the system be changed to accommodate slower
ADC:s and still have the full frequency capability?

There are various ouptut formats for the data coming from ADCs to the
computer. This is usually not a large concern when buying them since the
computer can convert any format into the one most suitable for its use. Table
3.1 shows some standard output codes for an eight-bit converter with an
input range of —10 to 10 V. One LSB (Least Significant Bit) represents
20256 = 0.078 V.

Table 3.1 Comparison of ADC numbering systems

Input volts 2s complement Offset binary Sign bit

+10 0111 1111 1111 1111 1111 1111
+10—-LSB 0111 1110 1111 1110 1111 1110
+1LSB 0000 0001 1000 0001 1000 0001
0 0000 0000 1000 0000 1000 0000
~1 L.SB 1111 111t GT1l 1111 0000 0001
—-10+LSB 1000 0001 0000 0001 011t 1110
-10 1000 0000 0000 0000 0111 1111

3.3 Thermistor resistance vs. temperature characteristics
The first real application to which the ADC will be put is to measure
the resistance variation of a thermistor with temperature. The electrical
resistance of conductors (metals) increases with increasing temperature.
This is a result of the change in the mean free rate between collisions of the
free electrons in the conductor with the lattice (stationary ions). As the

18

Thermistor experiments

system heats the increased amplitude of thermally generated lattice vibra-
tions (phonons) results in increased resistance. Yet for a thermistor, R
decreases with increasing temperature according to the relation
R = Ry exp(Ty/T). (You may want to make a quick plot of y = exp(1/x) to
see the rough behaviour of this function.) In this expression, R is resistance
(ohms); R, is a resistance value corresponding to infinite temperature; 7 is
an activation temperature (K); 7 is the absolute temperature (K)
(0°C = 273.16 K). The difference is that the thermistor is made from
semiconducting materials. In a conductor, every atom donates one or more
electrons to the conduction electrons and thus the number of conduction
electrons is fixed at a rather large number =~10%**/cm?. In a semiconductor the
electrons are more tightly bound to the atoms. The energy required to
liberate electrons from the atoms is E, = kg7, where kz = Boltzmann’s
constant. The probability of an electron being liberated from any given atom
by thermal agitation is p = exp(—E,/kgT) = exp(—T,/T). Thus the number
density of free electrons in a semiconductor varies as n = n, exp(—71,/T).
Note that for T < T, n goes to 0 and the semiconductor becomes an
insulator. Since the resistance of a conductor depends inversely on both the
number of charge carriers and the mean free path of the carriers the rapid
variation of n with T"dominates the resistance of a semiconductor over-riding
the temperature effect on the mean free path, which can be ignored to a good
approximation.

Exercise 3.3.1 Thermistor mathematical models
To show that this last statement is true consider two models of
thermistor behavior

R, = Ry exp(Ty/T)
and

R, = AT exp(T,/T)
where R, T, and A are constants, R, includes the effects of the
mean-free-path variation with temperature. Plot log(R,) vs. 1/T for
T = 3000 K and R, = 0.02 Q) in the temperature range 280-400 K.
Now plot log R, for the same 7;, and adjust A so that R, = R, at 300
K. Show mathematically that R, should and R, should not plot as a
straight line on this type of plot. Despite this R, does appear to be a
straight line in this temperature range and so it can be modeled with
the equation Ry = R exp(Ty/T). From the graph, find T;;. Where
does the behavior of R, start to differ significantly from R,, at low
temperatures or high?

The thermometer/thermistor protoboard, has the circuit diagramed in
Figure 3.5. NOTE: when any wiring is done or changed be sure to turn off

Fig. 3.5. Thermistor and heater
circuit.

3.3 Thermistor resistance vs. temperature 19

Vo
5082
6.7
Heater |+
LED
Push
button
switch Gnd
Yt Rp
Vo R,+tRp

the power supply. Even though the wiring is very simple it is still a good idea
to become accustomed to using wire color codes to help you. Red is used for
positive power supply connections, green for ground and the standard
electronic color code (Table 3.2) if there is an easy correspondence to data
line numbers. Taking the time to do this will make it easier to trace the
circuit to find errors when something doesn’t function correctly. In addition
it is much easier to find test points when a scope or other test instruments are
to be used. The voltage across the thermistor should be read into channel 0
of the ADC (ADCO0). The push button switch makes it possible to turn the
heater on and off manually.

Table 3.2 The standard electronic color
code and resistor identification

Color code

0 Black

1 Brown

) Red

3 Orange

4 Yellow

5 Green

6 Blue

7 Violet

8 Grey

9 White

5% Gold

Tolerance
10% Silver
G G G €

R = C,C;x 10% + C,%

20

Thermistor experiments

Exercise 3.3.2 Specific heat and power

This exercise is a warm up for Chapter 4 and uses the thermistor
circuit but not the computer. The specific heat of a substance is the
ratio of the amount of heat added (AQ) to the corresponding
temperature rise (A7) per unit mass (m):

C = AQ/mAT .31
The power P is defined to be the change in heat with a change in
time,

P = dQ/dt (3-3.2)

so the amount of heat added to the aluminum block by the heater is
the power times the time: AQ = PAt. Where the power is the
voltage drop v times the current i, P = (v or by using Ohm’s law
P = v*/R for a resistance R.

(a) While pushing the button, determine how rapidly the temperature
rises (degrees/second). By estimating the mass of the aluminum
block, estimate its specific heat. In the CRC Handbook of Chemistry
and Physics it lists the specific heat of aluminum as 0.215 cal/g °C
and the specific gravity as 2.702 g/cm®. Convert the specific heat to
ST (kg-m-s) units and compare with your rough results. Where does
error enter this estimate?

(b) Also measure the rate at which it cools and calculate the heat lost
per unit time (the power output) due to conduction and convection.
Is this result significant for the measurement made in part (a)?

(¢) When you release the button, why doesn’t the temperature stop
rising immediately?

The thermometer used to measure the temperature of the block has thus
far been considered a zero-order transducer (like the potentiometer in
Section 3.1). In reality it takes a finite amount of time for the mercury in the
glass bulb to heat up in response to the increase in temperature of the block.
It is thus a first-order instrument whose response is determined by the
differential equation: 7(d7,,/dt) + T,, = KT, where T, is the change in
the reading on the thermometer (output), 7;, is the change in the block
temperature (input), 7 is the characteristic response time, and K is the static
sensitivity or calibration factor. The solution of this equation for the case of
a sudden change in temperature of the block is T,,,, = KT;,[1 — exp(—1/7)]
whose graph is shown in Figure 3.6. This shows that if changes happen
quickly enough, the thermometer response does not keep up and the
readings will be in error. Notice that if t = 7, the temperature has risen to
(1 — exp(— 1))or about 3 of the step input change (see Figure 3.6). This
provides a quick way to estimate 7

Fig. 3.6. Graph of the time
response (dashed line) of a
thermometer (first-order
transducer) to a step
temperature change (solid line)
in the surroundings.

3.3 Thermistor resistance vs. temperature 21

1.20 -
B ————
[\'45 0.80 H ///
B e
z »”
3 0.60 | 7
« Fd
g rd
E /
= 0.40 - ;
7
4
o2} /
/
]
0.00 | | i | | | - | | |
0.00 0.50 1.00 1.50 2.00 2.50 3.000 350 400

Time (¢/7)

Higher-order instrument response characteristics are also common in
instrumentation systems. For example, a damped spring used for weighing
objects or as an accelerometer is usually modeled by a second-order
differential equation. Three parameters are then needed to predict the
response to a particular input: the calibration K, the damping constant 8,
and the resonant frequency f;. Each frequency of the input signal is affected
in a different way as it passes through the system. In systems of order two or
higher a graph of the gain or calibration factor as a function of frequency is
useful for designing instruments using a particular transducer. The fre-
quency response characteristics of cassette tape or a stereo phonograph are
many times displayed in their advertising literature. The frequency and
phase vs. frequency for a second-order transducer is shown in Figures 3.7(a)
and (b). Note that at the resonant frequency a large response can occur if the
damping is weak.

In the laboratory, both the thermometer and the thermistor are first-order
transducers and so have finite time reponses to a change in temperature.
However, the time constant of the thermometer is much larger and so it
dominates the response of the system. The time constant of the thermometer
can be estimated to be about 1.5 s by watching the temperature reach
equilibrium after the power input is stopped (the button is released). In the
following, the purpose is to estimate the temperature lag of the thermometer
behind the block temperature for a constant power input (ie when the button
is kept pushed down, how far behind the actual temperature is the measured
temperature?)

As before, the differential equation of the response of a first-order
temperature transducer is

tdT,/dt+ T, = T,

22

Fig. 3.7. Frequency response of
a second order transducer for
the damping constant 6 = 0.1
(solid line) and for the damping
constant 6 = 1.0 (dashed line).
(a) Amplitude vs. frequency: (b)
phase vs. frequency.

Thermistor experiments

6.00 —

5.00

Amplitude
W
=)
=)

0.00 | |]~§—l-——l—-_T |
0.00 0.40 080 1.20 1.60 2.00 2.40 2.80 3.20
(a) Frequency (f/fo)

0.0

-30.0

—60.0

Phase

-90.0

-120.0

—150.0

_180.0 | | | | I I T J
0.00 0.40 080 1.20 1.60 2.00 2.40 280 3.20

() Frequency (f/fo)

where T, is the temperature measured minus the initial temperature of the
system and T; is the temperature change input to the system. The power
input to the block is P = AV?R with R the heater resistance. The power is
also the amount of heat energy per unit time which goes into the block
P = dQ/dt. Since the heat capacity of the block is C, = dQ/VdT, then
Cy = Pdt/VdT or the change in temperature of the block with time is
dT/dt = p/CyV. Since dT/dt = dT,/dt, substituting into the differential
equation above gives
T,—T,=tPIC,V

Exercise 3.3.3 Temperature lag

For the experimental apparatus used in the laboratory, estimate the
lag of the thermometer temperature behind the block temperature

Fig. 3.8. Flow chart for Exercise

3.3.4.

Manually input
temperature
from thermometer
reading

l

Convert thermistor

voltage

|

Compute
thermistor
resistance

Print temperature,
voltage and resistance

3.4 Sequential data files 23

for a constant power input. Assume 7 = 1.5 s for the thermometer
and estimate the block volume. Do the same estimate for the
thermistor using 7 = 0.4 s for the time constant. What is the
difference between the thermometer lag and the thermistor lag?

Exercise 3.3.4 Thermistor resistance measurement
Write a program which will allow you to enter manually a tempera-
ture reading you observe on the thermometer using an INPUT
statement and which will then read the thermistor voltage by using
the ADC. Check the voltage readings printed out on the CRT
screen with those which you get with the oscilloscope. Make a
printout of the program when it works. Once you get this working
write a few additional statements so that the actual resistance of the
thermistor is computed and printed. Follow the flow diagram in
Figure 3.8. This can be calculated from the voltage divider relation-
ship shown on Figure 3.5:

Vi__Rr (3.3.3)

Make a quick check of the computer code by doing a calculation by
hand.

Exercise 3.3.5 Data arrays

Modify the program in Exercise 3.3.4 so that the computer makes a
series of measurements and stores them in arrays, ie, 7(I), R(I).
These symbols mean that measurement number I had a thermome-
ter reading of 7'(I) and a resistance measurement of R(I). Print the
whole array after the last measurement is made. To get out of the
input loop use some absurd value of the temperature 7T (say 0 or
1000) as a flag that no more inputis desired. (Make sure that this last
value is not included in the data.) Shortly, you will add additional
steps so that these data can be stored on the disk as a data file.

3.4 Making and retrieving sequential data files

A subroutine which will produce a data file of temperature and

resistance data (7°(I) and R(I)) is given below. Please read the sections in the
reference manuals on subroutines and on data files to supplement the
discussion.

Exercise 3.4.1 WRITE data file
Enter the following program and save it on your disk.

1000 REM WRITE DATA FILE
1005 REM PROGRAM 2.3.1

24

Thermistor experiments

1010 PRINT CHR$(4) "OPEN"F$

1020 PRINT CHR$(4) "WRITE"F$

1030 PRINT N : REM NUMBER OF DATA
POINTS

1040 FORI=1 TO N

1050 PRINT T(I)

1060 PRINT R(I)

1070 NEXT I

1080 PRINT CHR$(4) '"CLOSE"F$

1090 RETURN

CHRS$(4) is a control character which the disk operating system of
the APPLE will interpret to mean that disk instructions follow. The instruc-
tion “OPEN"F$ means open the file whose title is stored in the variable F$.
The print statement following (line 1020) will also be interpreted as an
instruction by the DOS because of the CHR$(4); it says that subsequent
print statements are to be interpreted as writing data to the disk.

Each PRINT statement following these two will record a piece of data, eg,
one number; multiple pieces of data cannot be incorporated in a single
PRINT instruction (hence the two lines 1050 and 1060). Since the data will
be recorded sequentially, it is the programmer’s responsibility to know the
order and amount of the data recorded. In this case the first data value put in
the file (line 1030) is the number of pairs (7, R) to follow. The program
reading this data file can then use this value so that it doesn’t read past the
end of the file and stop with an error message (OUT OF DATA).

The final PRINT statement (line 1080) has a CHR$(4) so that it will be
interpreted as containing a DOS instruction to CLOSE the file F$. It is vital
that every OPEN instruction have a CLOSE instruction. The CLOSE
instruction will also have the effect of restoring the PRINT instruction so
that it will send data to the screen and/or the printer.

In APPLESOFT BASIC, the computer can only send or receive data from
one source at a time. While it is set up to write to or read from the disk do not
try to input data from the keyboard or output to the screen. Always make the
disk access a separate part of your program.

Exercise 3.4.2 Test data WRITE
Test the subroutine with the following program:

10 REM RECORD TEMP/RES DATA

15 REM PROGRAM 3.4.2

20 INPUT "OUTPUT FILENAME: ";F$
30 REM CREATE SOME DUMMY DATA
40 DIM T(100>, RC100)

3.4 Seque

50
60
70
80
90
100
110

ntial data files 25

N=20

FOR I =1 TO N
T(I) =1

R(I) = Ix*I
NEXT I

GOsuB 1000

END

Remember to merge this program with the subroutine (Program
3.4.1) before you RUN it. After running the program, type
CATALOG CR and look for the filename you entered.

The critical (and useful!) part of making files is being able to read them
back. The following subroutine will do this for this data file:

2000 REM READ DATA FILE

200

5 REM PROGRAM 3.4.3

2010 PRINT CHR$(4) '"OPEN"F$

2020 PRINT CHR$(4) "READ"F$

2030 INPUT N : REM GET NUMBER OF DATA
2040 FOR I = 1 TO N

2050 INPUT T(I)

2060 INPUT R(I)

2070 NEXT I

2080 PRINT CHR$(4) "CLOSE"F$

2090 RETURN

Asyoucansee, its formis quite similar to the previous WRITE subroutine.

Exe

rcise 3.4.3 READ datafile

A program which uses this subroutine follows; use it to test the
READ subroutine.

10
15
20
30
40
50
60

REM OBTAIN TEMP/RES DATA FROM DISK
REM PROGRAM 2.3.4

INPUT "INPUT FILENAME: "; F$

DIM T(1000), R(100)

GOSuUB 2000

REM MAYBE PRINT TO THE SCREEN HERE
END

Exercise 3.4.4 Temperature and thermistor resistance
data file

Modify your thermistor program (Exercise 3.3.5) so that tempera-

ture

and thermistor resistance arrays are recorded on a diskette. Do

26

Thermistor experiments

enough tests to be confident that the program you have written
generates a disk file and that you are able to read it back.

Using the manual on/off switch on the heater, make a series of
measurements of temperature and resistance (about 10-15) of the
heater block between room temperature and about 100 °C. Record
them as a disk file. Read the data back and print them so that you
know you have them.

3.5 Plotting the experimental data

Exercise 3.5.1 Thermistor data plot

Using your knowledge of the AMPERGRAPH instructions and the
program examples given in the AMPERGRAPH documentation,
write a program to get the data from the disk file and plot as open
circle data points the thermistor resistance on the ordinate (y) and
the temperature on the abscissa (x). Use degrees Kelvin. Be sure to
read about the problems in using RENUMBER and AMPER-
GRAPH in Appendix D.

The value of graphical plots is that they are capable of displaying and
conveying much information very quickly. One obvious weakness of the
linearly scaled display of the resistance vs. temperature plot which you have
made is that it is difficult to get a good display of the lower values of
resistance. When the numerical value of a parameter to be plotted spans a
large range, scaling the axis logarithmically is very useful. On a linearly
scaled axis each increment of length is proportional to an increment of the
parameter being plotted. On a logarithmically scaled axis each increment of
length is proportional to the fractional change in the value of the parameter.
(If y = log(R), then dy = dR/R.) Often it is more significant to note the
fractional change in a parameter than the change in the value of the
parameter itself. For example, when plotting stock exchange prices and their
change in time, it is much more useful to plot the stock prices on a
logarithmic ordinate scale than a linear one.

Exercise 3.5.2 Logarithmic plot

Modify your plot to use an appropriate logarithmic scale on the
ordinate. To use a logarithmic scale you must use the &LOGY
instruction before the &LABELAXES instruction. Details are
given in the AMPERGRAPH documentation. Note that using a
logarithmic scale is different than plotting logarithmic values on a
linear scale.

3.6 Least squares fit to the data 27

This logarithmic plot is a very useful one to display the resistance of a
thermistor vs. temperature for purposes of manually detemining the resis-
tance for a given temperature. However, for comparison with mathematical
theory it is better to use a different plot. The form of the plot is determined
by the particular phenomena being studied. As shown in Section 3.3, the
variation of the resistance of a thermistor can be written as:

R = R, exp(T,/T) (3:5:1)
where R, (1) and T, (K) are constants. To display graphically the extent to
which the measured dependence conforms to this theoretical dependence, it
is useful to plot the resistance vs. temperature using a scale such that the
resulting plot becomes a straight line. This is easily done by taking the
natural logarithm of the resistance for the ‘linear’ ordinate length and 1/7 for
the ‘linear’” abscissa length scale. Taking the logarithm of Equation (3.5.1)
gives

In(R) = In(Ry) + (T,/T) (3.5.2)
and by setting

y = In(R) A=T, x=1UT B=In(R) (3:5:3)
Equation (3.5.2) becomes

y=Ax+b (3.5.4)

which is a straight line. (You’ll notice, on close inspection, that the previous
plot in Exercise 3.5.2 is not a straight line.)

Exercise 3.5.3 Linearized thermistor data plot

Make a plot of your resistance vs. temperature measurements using
a logarithmic scale for R (as in Exercise 3.5.1) and 1/T for the
abscissa. T'is the absolute temperature in degrees Kelvin. Check to
see if your data conforms to the model equation (Equation 3.5.1).

3.6 A least squares fit to the data

Finding good values for the parameters R, and 7, in Equation
(3.5.1) are important in their own right for investigating the physics of the
device; having good values for them is also important for making the
temperature controller which you will be shortly called upon to do. By
finding values for A and B from the linear plot of Exercise 3.5.3, values for
R, and T, can be easily calculated via Equation (3.5.3). This can be done
graphically or by a least squares fit of the data.

In doing the experiment, you have acquired data at a sequence of values
of temperature 7; or alternatively X; = 1/T;. Each of these temperatures T;
yielded an experimental resistance value R; or alternatively Y{* = In(R;).
Equation (3.5.1) yields a theoretical resistance value R{" for each tempera-
ture, ie, for each X; a theoretical value Y'" = In(R'") is given. The task is to
find values for A and for B to minimize the error between the experimental

28

Thermistor experiments

and theoretical values, E; = YI" — Y. A common type of analysis
minimizes the sum of the squares of the individual errors. Calling the total
square of the error Et, we get

ET:EE%

Er=3 (Y - YPP = 3 (AX, + B — Y9) (.6.1)

To minimize this error with respect to the parameters A and B we take
derivatives with respect to A and B and set them to zero:

0E/0A = 0 = 3 2X,(AX; + B — Y¥)

JEr/OB = 0 = E 2(AX; + B — Y¢) (3.6.2)

Taking A and B out of the summations and collecting terms gives

ASXX + BSX = SXY

ASy + BS = 8 3:6:3)

where

Spe= XX g= 51 (3.6.4)
Sxr =3 X X7

SXX=ZX% SyzEY?X

Then solving for A and B
D = S8Syx — S%

_ SSxy — SxSy

a D (3.6.5)

_ SxxSy = SxvSx
D

A

B

Exercise 3.6.1 Least squares fit to data

Write a program to find values for A and B using a least squares fit
and plot this theoretical fit as a line together with your experimental
values for temperature and resistance as open circles. Use a
logarithmic scale for R and 1/T for the x scale. Also obtain the
corresponding values for T and R.

The least squares fit assumes that the measured data will be randomly
scattered about the theoretical fit. The plot in Exercise 3.6.1 does not show
this clearly. A quick visual test of this assumption is to make a plot of the
difference between the data and the fit ie, plot the errors E;. These are the
residuals.

3.7 Data modeling 29

Exercise 3.6.2 Plot of residuals

Make a plot of the difference between the measured data and the
theoretical fit for the data of Exercise 3.6.1. By inspection determine
if the assumption of random errors is satisfied.

3.7 Data modeling

The purpose of data modeling is to obtain a mathematical model
which represents a set of experimental data. First a model is chosen either on
the basis of a theory of the physical process or by guessing the mathematical
form which approximates the data. The model will have some parameters
which can be adjusted to give a best fit. For example, the model may be a
straight line y = mx + b with the slope m and y intercept b as parameters.
These can be varied so that the line fits a set of data points.

Many times a model can be fitted to data to sufficient accuracy by hand
plotting. The best fit is then subjective to some degree. More accurate
determinations of model parameters can be obtained mathematically and
computationally. The first step is to form a mathematical estimate of how
well the model fits the data. One common measure of the total error in the
fit is the sum of the squares of the difference between the y value predicted

model data

by the model, y; and the y data value, y;
N

Total error = g5 = 3 (pfoe — ylaey (3.7.1)
i=1

where N is the number of data points. The difference is squared so that it is
always positive. A negative error (point above the curve) adds as much to the
total error as an equal positive error. Another measure of the error which is
sometimes used is the sum of the absolute values of the difference:

N
o= 5 Lyt — ypo 372

The total error can be calculated for a set of model parameters. The best
fit will be that set which leads to the smallest total error. A brute force way
to find the smallest error is to calculate the total error for a wide variety of
parameters. The search can be narrowed to smaller parameter variations as
the minimum is approached.

This method is sometimes the only possible way to proceed. However for
many models, the minimum error can be found by mathematically rather
than computationally varying the parameters. Since the model is a function
of the parameters y™ = f(p,, ..., p,; x;) soisthe errore = f(py, ...,
P Xis ydata) The minimum of a function of a variable is found by solving
the equation given by differentiating the function and setting the result equal
to zero. In this case the minimum with respect to changes in the parameters
is wanted so g equations are formed:

30

Thermistor experiments

deldp; = 0; de/dp, = 0; .. .; deldp, = 0
These can then be solved simultaneously for the parameters py, p,, ..., p,
that give the minimum. (Here it is assumed there is only one minimum and
no maximum as is generally the case for physically real models.)
For example: consider the case of the simplest one parameter model,
y = p;;thatthis, the data canbe represented by a constant. The total erroris

N
€ = Zl (P — yi)
With its derivative
N
delopy = > 2(py —y) =0
i=1

So
pr=2y/21 =% y/N
where the sums go from 1 to N. This is just the average value (mean) of the
Y data.
As a second example: consider the case where the data is to be fit to a
straight line y = p, + p,x where p, is the slope and p, the y intercept. Then
e =Y (pxi+ p — yi)?
derop =pr XX+ pr X X — X Xy =0
delfips = Ex+p X 1=3 =10
These equations can be solved directly or by forming a matrix representation

(2 5 3 xi)(P]) _ (2 Xi)’i)
2x; Z1/\p, 2 i
and using Cramer’s rule from linear algebra to obtain the solution
D=NY xt- (2){,)2
= (Nzxiyf_ inEyi)/D
P3 = (EXIZE yi — ExiEXiyi)/D
which are equivalent to Equations (3.6.5). A three parameter polynomial fit
y = p1 + p.x + p3x* (parabolic) can be treated in the same way.
As a final example: consider again a one parameter fit to the data but this
time use the absolute value total error

N
€ = 21 |P1 _yi|

Then
N

de/dp; =) sgn(p; — y;) =0

i=1

1 x>0
sgn(x) = 0 x=0

—1 x <0

where

3.8 Errorsin data and parameters 31

This means that p, is adjusted to balance the number of y values which are
greater than p; with the number less than p; (the number of +1s and —1s
must be equal to make the sum zero). Thus p; = median(y;. .. yy). The
median can be calculated by sorting the y;; then, p; = y,/2N. In some
situations the median is a better average than the mean value. If an
experiment took two days to produce one number and after six days these
numbers came out to be 42, 33 and 377, would you believe the mean value of
151 or the median of 42?

The model equations used in calculating the total error need not be as
simple as those considered so far. An example would be the resistance
variation with temperature of a thermistor R = R, exp(7,/T). In this case
by taking the logarithm and a change of variables, it can be expressed as a
linear model:

y=ax+b
where

y = In(R), a=T,, x = 1T, b = In(Ry)
However, the model equation may not linearize. For example the expres-
sion for the heat flow inarod T = Ty(t,/t)"* exp(t,/t) has this characteristic.
You must start from the error expression, differentiate and solve the
equations.

For some expressions not even this is possible; the trial and error method
can be used. However, by using the computational speed of the computer,
there is a more elegant way of searching for the best parameters. The
Simplex algorithm is an iterative procedure which systematically explores
the parameter values of the model. It has the virtue that any computable
function can be used as a model and that no derivatives are needed. Another
method commonly used is the Levenberg-Marquardt method which
requires the use of error function derivatives. A good description of these
algorithms can be found in the References.

3.8 Errorsin data and parameters

In fitting data to a theoretical model in the least squares method
used in Section 3.6, the implicit assumption has been made that each data
point has been measured with the same reliability. This is often not the case
and it is then important to include a measure of the data reliability when
fitting a model to these data. Another result of frequent interest which is not
obtainable by the simple least squares fit is to determine how much the fitted
parameters can vary without straining the fit to the data (how good is the
fit?).

To make a statement of how good a measurement is we usually quote the
value measured together with an expected error; for example a voltage is
V + AV volts. An accepted definition of AV is that it is the root mean square
(rms) value of the random error inherent in the measurement.

32

Fig. 3.9. Plot of experimental
data together with a theoretical
fitand errors bars inherent to
each data point: Y5 —
experimental data points,
e;—error in experimental data
points, Y(X)— proposed
theoretical fit.

Thermistor experiments

Y(X)
¥
X
"l I |
! L
Y (X))

—)l(_« Y& & .

L I

| | |

X5 X X s

Consider the plot of experimental data and of a proposed theoretical fit
indicated in Figure 3.9. It shows the results of a series of measurements
which yield the values Y; * ¢, at a series of parameter values X;. Assume the
X;are well determined. The true variation of Y (X) is given as some function
of X. For sake of discussion assume that Y is of the form Y(X) = AX + B
where the parameters A and B are to be determined.

The total error can now be written as

Er=YS [(AX,- — B) — Y}

(3.8.1)
i ¢

where ¢, is the error in the data point Y;. A small error ¢; at data point Y; will
cause the difference between the model and the data point to be weighted
heavily in the sum. Thus the points with small errors have a stronger affect
on the fit. Proceeding as in Section 3.6 gives the same formula for A and B
(Equation 3.6.5) except that now

SXX = 2 X%/e%
SX = E X,'/@%
SXY = IE XIY§‘/€7 r (382)

Sy =S Yee?

Szzl/e% |

By means of error propagation analysis, the errors in the estimates of A
and B are determined to be

es = SID

gl e BT } (3.8.3)

Where D = SSyx — S as before (Equation 3.6.5). The goodness of fit of

the data to the model can also be calculated:
N =2 &)

6:1—P<—

— (3.8.4)

3.9 Digital signal processing 33

where P(a, x) is the incomplete gamma function which is tabulated in most
statistics books. If G is greater than (.1, the fit is good; if less than 0.001 then
your model does not fit the data very well. Please see Press et al. Numerical
Recipes for further information.

Keep in mind that the estimation of the parameters A + e, and B £ ezby
the least squares method is a statistical one. That is, given the data and the
model function, the calculated parameters A and B are the most likely ones
for the system. The method assumes that the errors made in the measure-
ments are random. It does not consider any systematic errors which may be
lurking in your data. These last need to be ferretted out by careful thought
and experimentation.

Exercise 3.8.1 Errors in thermistor data

Make an evaluation of the error in your resistance determinations
with the ADC and reanalyze the thermistor data with error con-
siderations. To simplify the error analysis, assume some reasonable
constant error (AR; = AR for all /) and simplify the error equations
by factoring the error out of the sums.

3.9 Digital signal processing
Proper use of the ADC requires analog signal conditioning before
the ADC samples the data as described in Section 3.2. Once in the computer,
a series of samples can then be analyzed to emphasize various features of the
data.

If the data has some noise mixed in with a broad trend, a smoothing
process can be used to suppress the noise. One common method is to apply
an averaging scheme as shown in Figure 3.10. The new point z; is a weighted
average of the old point y; with its neighbors. Specifically,

z = (1 + 2 ¥ i) (3.9.1)
Equation (3.9.1) can be extended to more points if more smoothing is
required.

This way of smoothing data is one example of a digital low-pass filter; it
suppresses the high frequency components of the time series. Another way
of making a digital filter is by the recursive procedure:

z = (1 — a)y, + oz (3.9.2)
When applied to a time series, Equation (3.9.2) approximates a low-pass
analog resistor—capacitor filter with the parameter « setting the frequency
cut-off. Again, more smoothing can be done by including more terms in the
recursion. Both recursive and non-recursive filters can be constructed which
will act as high-pass filters if the interesting part of the signal is not the trend
but the time varying part.

34

Fig. 3.10. Data smoothing
example.

Thermistor experiments

120/
10.0 —
8.0 |-
6.0 -
4.0 -

20

0.0 | I | | | | 1 |
0.0 2.0 4.0 6.0 8.0 100 12.0 140 16.0

X
+ y =[-0.08 (x —10)%+ 8]+ noise
-y =i T2t i)

A reminder: digital filtering in no way replaces analog filtering before
sampling the signal. Aliasing occurs when the data is sampled and cannot be
remedied later.

Much more elaborate signal processing is often required to analyze a set
of data. The references contain further information.

3.10 Generation of output using BASIC

The next task you will work on is to use the thermistor in a
temperature controller. The computer will not only be measuring the
temperature of the block but will turn the heater on and off to maintain the
predetermined temperature. To get a feeling of how to send output from the
computer you will use a program written in BASIC to generate square waves
at an output port of the 6522 VIA interface.

Exercise 3.10.1 Square wave output

Connect the oscilloscope probe of CH 1 to the terminal marked PBO
of port B of the APPLE interface board. Set the switch on the scope
probe to lx, the oscilloscope triggering to AUTO and the CH 1
amplifier to 2.0 VOLTS/DIV. The sweep time should be set to move
atarate of 1 DIV every2ms (2 X 107%s). Also set the MODE switch
to CH 1.

Type in the following program; the program and comments are
explained after the program.

3.10 Generation of output using BASIC 35

5 REM EX 3.10.1
10 POKE 50178,1 Send1toDDRB,setsupDRB foroutputonPBO.
20 POKE 50176,1 Send1toDRB, makes PBOgo HI.
30 POKE 50176,0 Send0toDRB, makesPBOgo LO.
40 GO TO 20 Loop back to instruction 20.
Run the program; on the oscilloscope you should see two parallel
lines, which are really square waves. To see them more clearly push
the TRIGGERING LEVEL switch in on the oscilloscope and
adjust the triggering level to get a steady picture. Measure and
record the time the output is HI (ie, +5 V) and the time which it is
LO (0 V). Be sure that the VARIABLE potentiometer knob on the
SWEEP TIME/CM control (the red one) is in the CAL(ibrated)
position.

Line 10 of the program instructs the machine to store the data value 1 in
memory location 50178; line 20 to store 1 in memory location 50176, etc. The
6502 CPU uses a memory-mapped system of 1/O. This means that certain
memory addresses may not really be memory locations but may be con-
nected to the outside world. In this case, memory address 50176 is Port B to
which the oscilloscope is connected. The ADC registers at locations 49312—
49320, which you used before, are another example.

Inside the APPLE a circuit board has been inserted on which is mounted
a 6522 1C which is referred to as a VIA (Versatile Interface Adapter). This
IC controls two output ports sometimes referred to as Port A and Port B.
Port A is memory location 50177, Port B is 50176. The 6522 controlling
Port A and Port B can do many things (therefore the name ‘versatile’). For
example, the wires from Port B can be programmed to be used either as
inputs or as outputs. Line 10 of the program stores a 1 in location 50178. This
sets up line PB0 as an output line; storing a 0 in this location would have set
up PBO as an input line. Location 50178 is referred to as DDRB (Data
Direction Register B). It is a memory location which controls the direction
of data flow of Port B. Port B is sometimes referred to as DRB (Data
Register B).

The 6502 is an eight-bit CPU. This means that each operation in the CPU
is performed eight bits at a time. When memory is addressed, a byte of data
(eight bits) is taken from or written to memory by the CPU. Each memory
location is eight bits wide. One manifestation of this is that there are eight
lines coming out of Port B labeled PB7 ... PBO. A numerical value is
ascribed to each line, PB7 is 128, PB6 is 64, PB5 is 32, etc. Line PBO has a
value of 1. Each of the lines PBO-PB7 has a direct correspondence to one of
the data lines of the 6502 CPU.

Each line of Port B is individually programmable for either input or
output. Storing 128 in DDRB (location 50178) will program line PB7 for

36

Thermistor experiments

output and leave all the rest as input lines, storing 80 = 64 + 16 in DDRB
will set up PB6 and PB4 as output lines and leave the rest as input lines. The
binary (base 2) representation of 80 is 0101 0000 which shows the easy
correspondence of the binary representation with the I/O lines. Thus, as
stated before, sending a 1 to location 50178 in line 10 of the program sets up
PBO0 to be an output line and all the rest input lines. The program then
proceeds to send ls and Os alternately to DRB, ie, location 50176, to
generate the square waves which you see on the oscilloscope. If PB7 were an
output line, sending 128s and 0s to DRB would generate a square wave on
PB7. In the computer a | is represented by approximately +5 V on a wire, 0
by approximately 0 V on a wire. To stop the program, which is trapped to run
forever; press CTRL-C.

Exercise 3.10.2 Square wave output on PB3

Rewrite program 3.10.1 to generate square waves on line PB3.
When you get the program running satisfactorily, stop, print it out
and save it on disk.

3.11 POKE and PEEK

POKE and PEEK are conjugate instructions when used with ordi-
nary RAM. The instruction POKE X, Y means store the number Y in
memory location X. Conversely Y=PEEK(X) will read the number stored
at address X and assign it to variable Y. Since the 6502 is an eight-bit
processor (eight data lines) the number Y will range from 0to 255 (256 = 2%).
The 6502 has 16 address lines and so is capable of directly addressing 65536
memory addresses (65536 = 2'%). Thus X in the POKE statement ranges
from 0to 65535. Memory address 36864 is a RAM location in which eight bits
of data can be stored and retrieved without disturbing programs in the
computer. The instruction POKE 36864.45 will store the number 45 in
address 36864. Type in this instruction in the immediate mode (no line
number). The PEEK (X) instruction will read the number stored in memory
address X. The number returned will be between 0 and 255. To demonstrate
this, enter the immediate instruction PRINT PEEK (36864). The value 45
should be returned if it was preceded by POKE 36864,45. Experiment with
other combinations.

3.12 Using a HEXFET to control the heater

The digital signals coming out of the APPLE are feeble and in
general cannot drive external circuitry loads directly. HEXFETSs are one
variety of enhanced mode power FETs (Field Effect Transistors) which are
particularly suited for controlling large amounts of power by using the digital
control signals coming out of a computer.

Fig. 3.11. HEXFET connections
and pin diagram for thermistor
apparatus.

3.12 Using a HEXFET to control the heater 37

Vo
679 R,
§ Heater |4+
LED c, to ADCO

Drain Thermistor

IRF 510

e IRF 520 4Ground ‘

Source .

g/ IRF 510
or
HEXFET ’ .

I I Source
Drain
Gate

To see how these devices are used, set up the circuit as shown in Figure
3.11. It will act like the push button switch you used earlier but will be
controlled by the computer. When a HI signal is applied to the gate of a
HEXFET, the device conducts current like a closed switch; when a LO
signal is applied, the device acts like an open switch, ie, it has infinite
resistance. Connect the gate of the HEXFET to PBO after resetting the
computer with a CTRL-RESET CR. This initiates Port B (as well as the
other ports) as an INPUT port so that no potentially dangerous outputs are
generated when the computer is idle. The 47 k() resistor which is connected
between the HEXFET gate and ground is to insure that the HEXFET will
be off in the absence of a signal specifically to put it on. That is the case if the
portis set as an INPUT line with reset.

Test the circuit using the immediate mode of BASIC. To turn on the
HEXFET (and thus the heater) it is first necessary to set Port B up as an
OUTPUT port; type in POKE 50178,1 CR (50178 = DDRB). Now, a
POKE 50176,1 (50176 = DRB) should turn the pilot light on indicating that
the heater is on. To turn the heater off type POKE 50176,0 CR. In doing this
and subsequent experiments you must take care that the heater is not left on
indefinitely; that will heat the system continuously and destroy the
thermometer. To turn to off use POKE 50176,0 or turn the power supply off.

Exercise 3.12.1 Temperature controller

Write a program for a temperature controller following the flow
chart in Figure 3.12. The program should ask you to type in a

38 Thermistor experiments

Fig. 3.12. Flow chart for
temperature controller.

Initialize PBO as output
and heater off

l

Input desired temperature
To

|

Obtain temperature from thermistor T]

l

If T < T, turn on heater
if T> T, turn off heater

temperature. The computer should then turn the power to the
heater on and off in response to the thermistor voltages read. Run
the program and demonstrate that the thermometer does stabilize
to the temperature typed in. When testing be sure the Light
Emitting Diode (LED) (and heater) are off after you halt your
program (POKE 50176,0 CR).

For those interested, try using the statement ON ERR GOTO to
detect the control C you used to stop the program and then to ensure
that the heater is off before stopping. See the reference manuals.

Exercise 3.12.2 Temperature controller with hysteresis
So that heater is not turning on and off rapidly at the desired
temperature, modify the program to turn on the heater when the
temperature is below desired temperature minus 1.0° (7, — H) and

turn off the heater when it is above the desired temperature plus 1.0°
(Ty+ H).

The process of turning the heater on and off used in the program of
Exercise 3.12is called hysteresis. It is used in many process control situations
to stabilize the system. A thermostat for a household furnace uses hysteresis
so that the furnace doesn’t turn on and off too quickly. In a later section you
will be using a Schmitt trigger which uses hysteresis to stabilize voltages.

Timing

In many experiments, the measurement of interest is the change with time of
a particular quantity (eg, dx/df). One of the most useful capabilities of a
computer is to provide accurate and varied timing signals so that these
measurements can be made. Indeed, the internal operation of the computer
requires the orchestration of many events to the beat of the internal clock.
In this section several ways of generating time intervals will be presented.

4.1 Timing loops in BASIC
A simple method of generating time intervals is to use the time
required by the computer to execute BASIC instructions. This method is
neither precise nor constant but nevertheless is useful in situations where
those qualities are not required.

Exercise 4.1.1 Square wave output (BASIC)

(a) Run the following BASIC program which uses PB0 as an output.
This is a program you have used before so you might have it on your
disk. (Note: disconnect the wires to the circuit of the previous
experiment before running.)

5 REM EX 4.1.1A

10 POKE 50178 ,1 Init DDRBO for output.
20 POKE 50176 ,0 PutPBOtoLO.

30 POKE 50176 ,1 PutPBOtoHI.

40 GOTO 20 Repeat.

With the program running look at the output (PBO) with the
oscilloscope. You may need to adjust the oscilloscope triggering
level and timebase to obtain a steady trace. Note the time it takes for
one period and the time PBO0 is HI and the time itis LO.
(b) Now try the following program:
3 REM EX 4.1.1B
5 B=50176
10 POKE B+2,1
20 POKE B,O
B,1
20

40

Timing

Again measure the time PB0 in Hi and the time is LO. Why are the
HI and LO times different? Why are the times different from those
of Program 4.1.1A?
(¢) Now add the following program lines and LIST the program so you
see how they fitin.
REM EX 4.1.1C
8 N =10
35 FOR I =1 TO N
38 NEXT I

Run the program and note the HI and LO times again. Try different
values of N and determine the time required for one FOR-NEXT
loop in this program. Also try placing a statement in the middle of
the loop. Some interesting ones might be:

37 X= I*I +1 (thisiscalleda ‘flop’)

37 X= 172 +1

37 REM

37 PRINT "A";

Be sure to keep a record of your results.

This type of timing loop could be placed anywhere in a program to provide
timebase. However, it suffers from several disadvantages. First, since every
BASIC statement takes a different amount of time, it is very difficult to
predict the exact amount of time a loop will take. You must resort to trial and
error and use an oscilloscope to obtain a particular desired time. Second, the
BASIC interpreter is slow when compared to the capability of the micro-
processor itself. Frequently BASIC is just too slow to measure the time
interval between events in an experiment. A third disadvantage is that the
timing is not independent of the program statements. If you change a
program line or add a statement even elsewhere in the program, the timing
of the loop may change and you will need to readjust it.

Programming in assembly language (more on that later) can solve the first
two problems. However, the 6522 VIA which is discussed in Sections 4.4 and
4.5 provides an easier way to do timing which is fast, accurate and indepen-
dent of the program. The next section illustrates one use of BASIC timing
loops.

4.2 Stepping motors

Stepping motors are used to position apparatus of all kinds pre-
cisely. A stepping motor rotates a shaft a small increment of a turn for each
pulse of electric current it receives. An electric clock is a stepping motor: it
rotates a fixed, small amount for every pulse of current it receives from the
wall power outlet. The power outlet provides the current which reverses
polarity 60 times each second so that by using gears the hands rotate at the

Fig. 4.1. Stepping motor
controller (4202) connections.

4.2 Stepping motors a1

proper speed. A clock motor always rotates in a fixed direction (unidirec-
tional). Some stepping motors can be made to rotate either clockwise or
counter-clockwise under computer program control (bidirectional); the one
which you will use and the one in the disk drive which positions the reading
head are bidirectional.

Exercise 4.2.1 Single step of stepping motor

(a) To see how a stepping motor and controller IC are used, make
connections to PBO and PB1 asindicated in Figure 4.1. Write a short
BASIC subroutine to generate a single negatively going pulse out
on PB0 by setting PB0 and PB1 for output and PBO Hl initially; then
send PBO LO then HI to pulse the motor once.

(b) Write a second subroutine which allows you to control the direction
of rotation by specifying the level of PB1. The awkward voltage
programming for the motor itself is done by the 4202 control
Integrated Circuit (IC) so that you need only specify the direction
by setting the polarity of the direction control and then applying a
short pulse to the stepping input.

+5V
o
[k
| J [«
= 7654821
4202
910111213141516 15V
PBO>————J L
step [¢

EBl———————
direction

The mechanics of a stepping motor are shown in Figure 4.2. The rotor is a
permanent magnet with 12 sets of north and south poles; the stators each
have 12 sets of fingers which can be magnetized electrically. Each stator has
2 coils of wire inside it, labeled C and D. If coil C is energized the fingers
marked A become north poles, those marked B become south poles. Coil D
energizes the stator with reversed current direction relative to the stator so
that A becomes a south pole and B a north.

Figure 4.2(a) shows the motor pulled apart to show the relationship of the
stators and the rotor. Figure 4.2(b) shows the rotor unravelled with its north
and south poles lying next to one another. There are two sets of stators, the
fingers of each are displaced from one another in azimuth as shown in Figure

42

Fig. 4.2. Stepping motor opened
up. (a) Stators 1 and 2 each have
12 pairs of poles (A1, B1, A2, B2)
and 2 coils (C1, D1, C2, D2).
Current in coil C makes A poles
north and B poles south and
currentin coil D makes A poles
south and B poles north. (b)
Poles and rotor flattened out to
show staggering of stator 1 and
stator 2's poles. To move rotor
one position to the right from
the position shown, turn coil D1
off and D2 on (A2 is then south
and B2 north). To move once to
left, turn D1 off and C2 on (A2
north and B2 south).

Timing

4.2(a). With the rotor unravelled as shown, it can be pulled to the right by
energizing the A,B, stator set with coil D, so that A, becomes a south pole
and B, a north pole. The rotor will then move over one step so that the north
poles of the rotor lie under the south poles of the stator 2.

The controller IC has two inputs: a direction control and a step control. A
HI level on the direction control signals movement in one direction, a LO
level in the other. The controller is set so that each time the voltage goes
from LO to HI on the step control input, the stepping motor will advance two
steps in the appropriate direction. Between pulses the step control should be
left HI. In the case of the stepping motor illustrated, one step is 360/(4 X
12) = 7.5%since it has 12 poles and each step moves the rotor one fourth of
a pole distance. Thus one pulse on the step control line will move the shaft
15°. The controller IC regulates the current flow in the four windings of the
stator. If has logic circuitry within it so that it knows which coil must be
energized to step in the specified direction from where it is. This saves you
the trouble of programming these details. If the stepping motor shaft is
connected to a gearbox with a 200: 1 gear ratio, the output shaft will turn one
revolution for every 200 revolutions of the motor shaft (200: 1 gear ratio).

Exercise 4.2.2 Maximum stepping rate

(a) You have seen that it is only necessary to use two POKE statements
which make PB0 go LO and then back to HI to step the motor once.
The stepping motor is a mechanical device which is inherently slow;
thus it is important that there be a reasonable amount of time
between pulses. By usinga FOR-NEXT loop to waste time between
pulses, determine the maximum number of pulses per second that

Stator 1 Stator 2 Rotor
(a)
B2 Al A2 Bl B2 Al A2 Bl B2
(i S A N s 3 0 C0) ... Stators
== — — i ... Rotor
N S N S

(&)

4.3 Number systems 43

the motor will respond to. Do this by varying time delay of the loop
and watching to see whether the motor responds properly or not.
For example, a program which give 200 pulses to the stepping motor
of Figure 4.2 with the gearbox attached should turn the gearbox
output shaft 15°. Use the oscilloscope to measure the time beween
pulses.

(b) Write a subroutine, to be used by later programs, which will step the
motor in the direction specified before entering. The program
should delay the proper amount of time for the stepping motor
before returning. Set the delay time of the loop so that you never ask
the motor to rotate faster than the maximum rate. This will ensure
reliable operation.

Exercise 4.2.3 Positioner

Using the subroutine in Exercise 4.2.2 write a program which moves
the output shaft of the gearbox to a specified angle. Since it is only
the number of pulses and not their detailed timing which is impor-
tant, a simple BASIC program is adequate. At the outset the
current position of the stepping motor should be INPUT to the
program. The program should then ask you for the angular position
of interest and step the motor to that angle. After itis at this position
the program should come back and ask for the next desired position.
To avoid truncation errors in calculating the angle, keep track of
steps not degrees. The program should accept the position or
negative numbers of any magnitude and turn the shortest route to
the angle.

4.3 Number systems

To work with I/O devices and with assembly language programs, it
is necessary to go back and forth among the representations of numbers in
decimal, hexadecimal and binary. Except for a few commands, BASIC
statements use decimal (base 10) representations for numbers. However,
internally the computer represents all numbers and characters in binary
(base 2). This internal conversion to binary is usually not important to the
user but becomes so when connecting I/O devices to the computer. Then a
binary representation directly corresponds to signal levels on the I/O lines.
Hexadecimal numbers (base 16) are a convenient shorthand notation for
long binary numbers.

When a decimal number is written down, say 348, what is really indicated
is that there are 3 hundreds, 4 tens and 8 ones (Figure 4.3). This can be
described by the equation

348 = 3 x 10> + 4 x 10" + 8 x 10° (4.3.1)

44

Fig. 4.3. Decimal, binary, and
hexadecimal number
representations.

Timing

L.

09 0-9 09 09
o
) o
Hexademmal
OF OFOFOF

H H
/f///////@

0,1

0;1]0,1]0,1]0,1 010]

In exactly the same spirit a hexadecimal number with the characters 1234,
represents
$1234 = 1 x 16’ +2x 16 +3 x 16' + 4 x 16" (4.3.2)

It is useful to remember that 16% = 4096, 16> = 256, 16' = 16,and 16" = 1.
Hexadecimal numbers are often indicated by a $ sign preceding the number.
Sometimes a period is used to indicate a decimal number even if it is an
integer (for example 348.). Each of the characters 1, 2, 3, 4 in Equation
4.3.2) could be a number from 0 to 15 just as in the decimal representation
each place (column) has a number between 0 and 9 (Figure 3.3). In
hexadecimal, to represent 10, A is used, 11, B, etc., as shown in Table 4.1.
As an example 348. = $15C = 1 x 256 +5x 16 + 12 x 1.

A number will be preceded by a % sign to indicate that the characters
which follow are a number in binary representation. Thus

%0101 = 0x 22 +1x224+0x2'+1x2° (4.3.3)

The magic numbers here are 2’ = 128, 2% = 64, 2° = 32, 2* = 16, 2’ = 8,
22 =4,2"=2,2" = 1. In writing down binary numbers it is convenient to
write them down in groups, four digits (bits) at a time. This makes it easy to
identify the position in which each bit belongs. It also makes it easy to go
back and forth between binary and hexadecimal since 4 binary bits = 1
hexadecimal character. Thus, 348. = $15C = %0001 0101 1100.

To get a feel for the above ideas, use Port BB of the 6522 board to display
the output of the eight data lines PBB7-PBB0 on eight LEDs (a schematic

Fig. 4.4. LED number display
wiring. Schematic of LEDs on
PBB.The 74LS04 ICis a BUFFER/
DRIVER to provide current drive
for LEDs. A'HI’onaPBBline will
illuminate an LED.

4.3 Number systems 45

Table 4.1 Correspondence between binary,
hexadecimal, and decimal characters

Binary Hexadecimal Decimal
% $

0000 0 0
0001 1 |
0010 2 2
0011 3 3
0100 - 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B L
1100 C 12
1101 D 13
1110 E 14
1111 F 15

wiring diagram for this is shown in Figure 4.4). Anytime a 1 is put into a
particular bit of Port BB the correspoding LED will light up. Data lines
PBB7-PBB4 are connected to four red LEDs, data lines PBB3-PBBO0 are
connected to green LEDs. The 74LS04 integrated circuit between the actual
data port lines and the LEDs has what are called line drivers or buffers; they
provide the 15 or 20 mA of current required to light up the LEDs. The data
lines alone are not capable of generating enough power.

Red +5V

Green
270 LEDs

74L.S04

46

Timing

Exercise 4.3.1 LED binary number display

(a) Write a BASIC program which sets up all the data lines of PBB for
output and sends various numbers to PBB. (DDRBB = 50306,
DRBB = 50304).

(i) Make data PBB3, PBBS and PBB7 HI and the rest LO.

(ii)) Send the numbers $28 and $C3 to PBB; remember to convert
to decimal. Verify that the expected LEDs light up.

(iii) Send the number %1010 0111 to PBB. What is this in hexa-
decimal?

Even though PBB is set up for outputitis possible to read the data
which is in PBB using the PEEK statement in the usual way. Store
several numbers in DRBB and note their hexadecimal equivalents
and their binary equivalents (the lights which light). Also read them
back into the memory using the PEEK instruction and PRINT them
out.

(b) To get a feeling for counting in binary, enter and run the program
below.

5 REM EX 4.3.1B

6 BA=50304

10 POKE BA+2,255 Setupall PBB lines for output.
20 FOR I=0 TO 255

30 POKE BA,I

40 FOR J=0 TO 200 Inserttime delay.

50 NEXT J

60 NEXT I

The representation of negative numbers in a computer is one somewhat
differently than in common computations. In many ways the system is more
logical than the customary one, and it certainly makes things much simpler
in a computer. Imagine a continually incrementing binary four-bit counter.
A counter is a device which increments each time a pulse is applied. Table
4.2 shows the sequence of digits as the count pulses are added (start at 0 and
read upwards). The correspondence to the ordinary number system is shown
in the column to the right. Being a four-bit counter the ‘readings’ repeat
every 16 counts, that is, the count after 1111 gives 0000. (This transition is
called overflow.) A representation of the numbers 0-15 is naturally done
through the correspondence to the counter readings of 0000—1111. One
possible way to represent positive and negative numbers is to assign the
numbers between —8 and 7 to the counter readings of 1000-0111. This is
called the two’s complement representation. As shown in Table 4.2, —1
becomes 1111, —2 becomes 1110, etc. Notice that the most lefthand bit takes

4.3 Number systems 47

Table 4.2 A four-bit counter

Negative No-negative
Four-bit numbers numbers
binary interpretation interpretation
1111 i | 15
1110 —=2 14
1101 -3 13
1100 —4 12
1011 =95 11
1010 -6 10
1001 ~7 9
1000 -8 8
0111 7 7
0110 6 6
0101 3 5
0100 4 4
0011 3 3
0010 2 2
0001 1 1 Add
0000 0 0

Subtract

1111 =1 15
1110 -2 14
1101 —3 13
1100 -4 12
1011 =5 11
1010 -6 10
1001 = 9
1000 -8 8

on a special meaning; if it is 1, a negative number is being represented, if 0,
a positive one.

Within the computer a particular bit combination, say %1011 will repre-
sent 11 one time and —5 at another. An example of this is in the numbering
of memory addresses. There is RAM available between $9000 and $9FFF
which is normally not used by APPLE routines and can be safely used. Now
for instance,

$94AC = 38060. = %1001 0100 1010 1100 = —27476.
Thus typing POKE 38060,163 CR followed by either PRINT PEEK (38060)
or PRINT PEEK(—27476) will bring back the number 163 (try it).

Also note that the four-bit counter will repeat its reading every 16 counts.
Thus the decimal numbers 11,27, 43, etc., will all be represented by the same
binary combination in a four-bit counter. If we count down 16 counts from
11 we come back to the same binary reading; thus 11 and —5 (which is 11-16)
are repesented by the same binary string. Similarly in a 16-bit counter, the
bits will repeat every 65536 counts (2! = 65536). By the same reasoning the
number 38060 and the number —27476 will both be represented by the same
16-bit string since 38060 — 65536 = —27476.

48

Timing

4.4 Generation of square waves by the 6522

You have used the data output capability of the 6522 VIA to control
the heater in the experiment in Chapter 2 and to light the LEDs in Section
4.3. The VIA can do other functions as shown in the data sheets in Appendix
G. You need not concern yourself with the details of each function but some
practice in deciphering these often cryptic descriptions is valuable. As you
work through this section read the data sheets about functions which you
have already used and about timers 1 and 2.

There are actually two 6522 VIAs on the card plugged into the APPLE.
You have used the VIA1 with registers at memory locations $C400-$C40F
to control the heater and VIA2 with registers at memory locations $C480-
$C48F to control the LEDs. Port A (DRA) and Port B (DRB) are used as
I/0O ports, the 1/O function of each line is controlled by DDRA and DDRB.
The timers in the 6522 can be programmed to run in several different modes
by writing (POKEing) various bit combinations into a special control
register called the Auxiliary Control Register or ACR (see Appendix E,
Figure 14). The ACR is at memory location 11 (ie, hexadecimal $B) above
the base address and so will be at $C400 + $B = $C40B for VIA1. The mode
we will use is with timer 1 (T1) operating continuously and generating a
square wave output on PB7. (In Appendix E, read the paragraphs under the
heading ‘Timer 1 Free-Run Mode’, don’t worry about ‘interrupts’ now.)
Therefore, bits 7 and 6 in the ACR must be 1. For now, the rest of the bits
can be 0, so the ACR should contain % 1100 0000 = $C0 = 192.

The T1 counter counts down at the rate of the internal clock of the
APPLE. This rate, called @2, is set by a quartz crystal oscillator to a
frequency of approximately 1.022727 MHz. The T1 counter counts down at
this rate from the 16-bit value loaded into registers 4 and 5 (T1L and T1H).
Since T1 is a 16-bit counter, it takes two 8-bit bytes to fully define the PB7
rate. When the counter reaches zero several things happen: the state of PB7
is changed (ie, 0 goes to 1 or 1 goes to 0), the numbers which were originally
in the counter registers are automatically reestablished, and counting down
begins again. So to obtain a desired rate R at PB7, you need to: calculate the
number N of ®2 cycles in R, make two 1-byte numbers from N and place
these into registers 4 and 5 (neglecting the ‘1.5” and ‘2’ cycle corrections
shown in Figure 16 of the Appendix E). As an example, suppose it is desired
to have PB7 invert every 0.008 s. This is 8000 us,so N = 8000 x 1.022727 =
8182. = $1FF6. HIGH-ORDER = $1F = 31.; LOW-ORDER = $F6 =
246. The following program will cause PB7 to invert every 0.008 s. (Note that
the period of the square wave is 0.016s.)

5 REM PROGRAM 4.4.1
10 BA = 50176 Base address of VIA1, $C400.
20 POKE BA+11,192 Set ACR for T1 free run, ie, store $CO in
BA + 11 = ACR.

4.5 Making an interval timer 49

30 POKE BA+2,128 Important! Enable PB7 asan output pin,
ie, store $80 in DDRB.

40 POKE BA+4,246 Load low-order T1, $F6.

50 POKE BA+5,31 Load high-order T1, $1F and start
countdown.

RUN the program and look at PB7 with the scope. Notice that the timer
keeps operating even after the program has stopped! Press CTRL RESET
to stop its operation.

Exercise 4.4.1 Square wave on PB7 VIA 6522

Modify Program 4.4.1 to invert PB7 every 0.005 s; ie, a square wave
of period 0.01 s.

4.5 Making an interval timer

Experiments frequently require the measurement of time intervals.
The combination of the T1 control of output on PB7 (you have used above)
with the pulse counting mode of counter T2 (described below) can provide
this on the APPLE. In the ACR, bit 5 controls the mode of operation of T2.
When set to 1, the value in the T2 counter registers (low-order is register 8,
high-order is register 9) decrements on each HI to LO transition of a signal
input to PB6. (Described further in Appendix E, Figures 17 and 19 and text
under the heading “Timer 2 Pulse counting mode’.)

Exercise 4.5.1 T1-T2 interval timer

Put a wire from PB7 to PB6 on the protoboard. This will allow T2
to count the number of PB7 periods (remember the PB7 rate is
controlled by T1). The following program will start T2 counting
down at the rate of 0.1 s which is coming from PB7.

5 REM EX 4.5.1

10 BA = 50176 Base address of VIA1.

20 POKE BA+11,224 Set ACR bits 7,6,5 to 1, others to
0(%1110 0000).

30 POKE BA+2,128 Enable PB7 as output, PB6 (and

also PB5—PBO) as input (put
%1000 0000 in DDRB).

40 POKE BA+8,255 Initialize T2 low-order counter to
maximum value $FF.
50 POKE BA+9,255 Initialize T2 high-order counter.

60 POKE BA+4,192 Initialize T1 low-order to $CO.

50

Timing

70 POKE BA+5,199 Initialize T1 high-order to $C7 and
start counter and square wave
generation.

100 T = 256 * PEEK(BA+9) GetT2H (high byte) each unit =

256 PB6 HI to LO transitions.
10 T = T + PEEK(BA+8) Get T2L (low byte)andadd to T
120 PRINT "T ="; T Print T2 value.

In this program T2 is set to its maximum value $FFFF. At each
HI-LO transition on PB6, the timer/counter decrements one count
(eg, T2 = FFFF,FFFE, FFFD, .. .). Since these transitions on PB6
are wired to PB7, they occur every 0.1 s (which is twice the T1 rate).

Now, periodically run the part of the program from instruction
100 on to see that the counter is indeed decrementing. To do this use
the command ‘GOTO 100 CR’ which will pick up the program from
where it ended with variable values left as they were. This is
different from the command RUN 100 in that the latter will first set
all variables to zero (eg, BA) and then begin executing at 100 giving
nonsense results.

Subtracting successive values of 7 which appear on the screen
should give you the time elapsed between the two PEEKSs in units of
0.1s. check with a watch to see that this is indeed true.

Exercise 4.5.2 Beeper

Write a program which BEEPS the terminal ‘bell’ at one second
intervals. The statement to ring the bell is ‘PRINT CHR$(7);’ Run
PB7at0.01s per cycle. In this program the T2 counter should be set
up as in the above program. Then read T2L and T2H periodically
and take differences to obtain the desired one second interval.

The one second timing program in Exercise 4.5.2 may be in error when T2
counts down past $0000 because the subtraction done will give a negative
time interval. For instance, if the first time determined is $005F = 95. and
the second is $0050 = 80., subtracting the second from the first (as is
normally done) gives $000F = 15., a valid number. But if the first is
$005F = 95. and the second is $FFF5 = 65525., the result is —65430 but
should be 107.

There is another problem which occurs when reading the value of time T2.
In the statement:

T2 = 256*PEEK(TH) + PEEK(TL)
(where TH is the high byte of T2 and TL the low byte) the peek to TH is done
before the PEEK to TL. If a count should come into the timer between the
two PEEKSs and if TL is at $00 when TH is PEEKed, an error will occur. For
example:

4.5 Making an interval timer 51

TH TL

2B 01

2B 00 PEEK(TH) occurs here.
2A FF PEEK(TL) occurs

here. Gives: T2=256* ($2B)+($FF)=256*43+255.

Both of these problems can be fixed by using additional BASIC statements
in your program.

Thermal diffusion

Fig.5.1. Theflow of heatinarod
of specific heat C (J/kg K) and
thermal conductivity k (W/m K).

axis

T,
P —_
K] —z+dz
r-"J Cross section 4
.

The experiments which you will be called upon to do in this chapter give you
a chance to apply the 6522 timing concepts and to review the use of the ADC
while learning about the phenomenon of diffusion. Specifically, you will be
studying thermal diffusion but many of the concepts encompass a variety of
other phenomena.

5.1 Heat flow equation

In this section you will explore some of the physical and mathe-
matical considerations of one-dimensional heat diffusion. When heat is
added to a material there are two parameters which affect the distribution of
temperatures: the specific heat (or heat capacity) and the thermal con-
ductivity. The specific heat indicates how much heat is added to a mass of
material for a specified temperature rise. The thermal conductivity indicates
how fast the thermal energy is transported through the material.

Consider the flow of heat in a rod as shown in Figure 5.1. The specific heat
C of a material is the ratio of the amount of heat added dg (Joules) to the
resulting rise in temperature d 7' (degrees Kelvin) per unit mass dm (kg); thus
C = (dq/dT)/dm, (see Equation (3.3.1)). For a rod of cross-sectional area
A, the volume dV = Adz and dm = pdV where p is the density. So, the
amount of heat added to the length dz of the rod is

dg = CpAdTdz = sAdTdz (5.1.1)

where s is the volumetric heat capacity, Cp.

When one end of the rod is hotter than the other there will be a net flow of
energy from the hot end to the cool end. The power P (Watts) of this heat
flow down the rod is the heat energy per unit time flowing past a point on the
rod P = dg/dt (Equation 3.3.2)). For one-dimensional heat flow, P is
proportional to the temperature gradient d77/dz, the thermal conductivity &
(W/m K) and the cross-sectional area;

P = —kA (dT/dz) (5.1.2)
There is a minus sign because heat flows from higher to lower temperatures.
In writing this equation, it is assumed that the rod is insulated; no heat
escapes from the rod by conduction, convection or radiation. The net heat
gain per unit time dqg/dt in the piece of rod between z and z + dz is given by
the difference in the power flowing in at z and the power flowing out at
z + dz, so

Fig. 5.2. Heat flow in a rod,
temperature vs. distance where
t=t'slk..

5.1 Heat flow equation 53

dg/dt = P(z) — P(z+dz) = —(aP/dz)dz (5.1.3)
Combining Equations (5.1.1), (5.1.2) and (5.1.3) gives the differential
equation for heat flow in a rod

s(8T/at) = k(3°T/oZ%) (5.1.4)
This equation has many solutions; if a quantity of heat is added to the rod
quickly (a heat pulse), the solution can be written as follows:

B, = constant

B, = constant (5.1.5)

T(t, z) = B, + B, exp(—z>s/4kt)/t"?

Details of how this solution can be obtained are found in Appendix F.

Exercise 5.1.1 Impulse heat diffusion solution

(a) Show that Equation (5.1.5) is a solution of Equation (5.1.4).

(b) Show that B, can be interpreted as the starting temperature; that s,
T(t, z)att = Oforz#0. B, = T,.

The solution (5.1.5) describes the temperature at any point in the rod as a
function of time after an impulse of heat has been added at z = 0. Before
proceeding further it is useful to examine the graphs temperature T vs.
distance z of the solution at various times after the impulse. These are shown
in Figure 5.2. In this figure, T' = T(t, z) — T,. At times near zero, the heat,
and thus the excess temperature, is concentrated near z = 0. As time
progresses the heat diffuses away from the center to larger and larger values
of z with the peak temperature decreasing in time.

1.20
1.00
0.80
0.60

0.40

Temperature, 7/[Q/A (ks)]

0.20

0.00 L
0.0 1.2 2.5 3.4 5.0 6.2 15 8.7 10.0

Distance, z

54

Thermal diffusion

An important point to note is that the solution is symmetric with respect
to z, just as much heat diffuses up as down the rod. Since there is no heat flow
across the cross section at z = 0, cutting the rod at z = 0 will not modify the
form of the solution although now all the heat added goes one way. This
half-space rod is the configuration which you will study experimentally.

To obtain a theoretical expression convenient for analyzing a quantitative
experiment, itisuseful to relate the constant B, in Equation (5.1.5) to the total
heat O added tothe rod (from z = 0 to z = ») by integrating Equation (5.1.1).
Consider T as the excess temperature above T(0), ie, T = T(¢, z) — T,
= T' — Ty; integrating Equation (5.1.1) from temperature 7 to T’ gives

dg = sAdz(T' — T,) = sATdz (5.1.6)
To integrate from z = 0 to z = «, use Equation (5.1.5) to describe the
variation of temperature at any z and ¢. Then

Q = J _OSA B2 e)t(lF/)Z(_ZZS/4kt) dz = % B2 JO exp(_ZZS/4kt)dZ
SA o 2 (4ke\?
= iy 32—2— (T) - Bz(vrks)l/zA (5.1.7)

solving for B, and inserting into Equation (5.1.5)
2

Aswritten Equation (5.1.8) is not in an optimum form for displaying some
of the important features it contains. It is often very helpful, particularly for
purposes of recognizing the domain of behaviour in a given physical
situation, to relate the quantities in an equation to physically significant
parameters rather than simply measuring time in seconds, temperature in
degrees centigrade, etc. You saw this before in the equation for the
thermistor resistance as a function of temperature of Chapter 2. The natural
parameters there being Ry and 7. For displaying the change in temperature
T as a function of time ¢ at a fixed z, Equation (5.1.8) can be written in terms
of a characteristic time ¢, and a characteristic temperature 7 as

TIT, = (t,/t)"? exp(—t,/t)

(5.1.8)

tl = S22/4k
T, = 20/Azsw'® Sl
T=T(,z) — T,

Equations (5.1.9) immediately show several important points. First, the
variation of temperature with time at a constant z can be related to just two
parameters ¢; and 7). Second, the characteristic time scale ¢, is proportional
to z%; this is a general property of diffusion phenomena.

Exercise 5.1.2 Graphing the heat diffusion equation

(a) Use the AMPERGRAPH utility program to plot 7/T; as a function
of t/t; fromt/ty = 0.1tot/t; = 10.

5.2 Numerical integration of heat flow equation 65

(b) Show that the temperature 7 is proportional to the temperature
rise which a quantity of heat Q would produce if absorbed by a
length z of the rod with the heat distributed over the length of the
rod. Find the constant of proportionality.

(¢) The temperature 7, can also be related to the maximum values
which T assumes, show that the maximum occurs at ¢/t = 2 and at
the maximum 7/7, = 0.43.

5.2 Numerical integration of the heat flow equation

Appendix F shows a solution to the differential equation for one-
dimensional heat flow for an impulse of heat at t = (. For other starting
conditions or parameter dependencies the equation could be much harder,
if not impossible, to solve. For example, the thermal conductivity k is really
temperature dependent k = k(7)) and so cannot be treated as a simple
constant parameter. An analytical solution quickly becomes impossible and
you must resort to numerical solutions.

General numerical integration of partial differential equations is a broad
and difficult subject. The following will be a simple procedure which works
in this case but must be used with care. It is really only meant to illustrate a
general approach. For further discussion see Numerical Recipes The Art of
Scientific Computing, by Press et al. in the bibliography.

The basic equations for the flow in a rod are the static equation for the heat
capacity Equation (5.1.1) and the dynamic equation with the thermal
conductivity Equation (5.1.2) which are combined to form the differential
equation, Equation (5.1.4). However for purposes of numerical integration,
it is best to leave them separate and write them in this form:

AQ = —kA AT At/Az (5.2.1)

AT = AQ/As Az (5:2.2)
where A is assumed to approach zero.

Now break up the rod (Figure 5.1) into N. pieces of length Az each and
consider the ith piece; the heat flowing into this piece in the time Ar will be:

Qin = kA(T,‘,I = T,) At/AZ (523)
If the temperature in element i — 1 is hotter than in the element i then Q;,
will be positive. The heat flowing out of the piece will be:

Qout = kA(T, =3 TH—I)A[/AZ (524)
The difference of the two is the heat gained or lost in the element:
AQi . Qin . Qou! (525)

This heat changes the temperature of the element in proportion to its heat
capacity:

AT, = AQ;/As Az (5.2.6)
and so

I = To¥ 4 AT,

56

Thermal diffusion

(a)

(b)

Exercise 5.2.1 Integration algorithm

Equations (5.2.3)—(5.2.6) can be used to determine the temperature
in any element at any time (which is all we want out of a solution to
the differential equation) as follows:

First specify Az and N, and the temperature 7; in each of the
elementsi = 1...N,atthe start, which in the case of the laboratory
experiment will be 7, = Q (from heater)/AsAz and 75, T;, ...,
Ty, = 0. Also specify the time step desired At.

Next, make the calculations in Equations (5.2.3)—(5.2.3) for each of
the elements using the old temperatures to give new temperatures.
Repeat the last step until the desired time is reached.

Now repeat the whole procedure but with a smaller Az and/or
smaller Atz. Compare these results with the previous ones to make
sure that they are not sensitive to the size of the steps used. If they
are, reduce the step size again.

Since the theory deals with an infinite rod, another parameter which
needs to be examined is the length of the rod N, Az. Make sure that
it does not affect the results.

With a working program in hand, the results can be checked by
comparison with the analytical solution. But now the analysis can be
taken further; consider the following questions and how the pro-
gram might change to answer them:

What is the effect of a short rod or a rod with one end clamped at a
constant temperature?

What is the effect of a thermal conductivity k& which is a function of
temperature, eg, k = k'/T?

What is the effect of the heat impulse occurring over a longer
interval of time?

How does convective and radiative heat loss affect the temperature
distribution?

53

Experimental setup and program development
The apparatus you will use for these experiments is illustrated in

Figure 5.3. In the top of the copper rod (#10 copper wire, 2.59 mm

diameter) is set a 3.3 () resistor which is used as a heater. Current can be

switched into the heater under program control using the IRF 520 HEXFET

in a manner similar to that used in Section 3.12. After generating a short
pulse of heat by momentarily turning on the HEXFET, the computer will
measure the increase in temperature at two positions down the rod using two
thermistors. The thermistor positions are as shown on Figure 5.3. A plot of

Fig. 5.3. Heat diffusion
apparatus.

Fig. 5.4. Flow chart for Exercise

5:3.1.

Input time TH to
put heater on.

il

5.4 Voltage amplifier 57

Heaterz =0 —

Thermistor | z; ———»

Thermistor 2 z, —>

Photo circuit
board

e Aluminium

base

Potentiometers

the temperature vs. time at each of these thermistors will yield values for the
heat capacity and thermal conduction constants of copper and also demon-
strate the functional dependence of heat diffusion on time and distance.

Set up ACR to generate
square waves on PB7
and to count pulses
on PB6.
Set T2 to $FFFF.

1

Set T1 to generate 0.01 s
period square waves on PB7.

|

Read T2L
(don’t need T2H).

1

Exercise 5.3.1 Heat impulse to rod

Write a subroutine which uses the 6522 T'1-T2 timing set-up of
Chapter 4 to turn the heater on for an amount of time which you
type as input data into the computer. Use PAO to control the
HEXFET. A flow chart outlining the steps in the program is shown
in Figure 5.4. Check your program and apparatus by putting an
oscilloscope probe between the heater and ground and then turning
the heater on for times ranging from 0.1 s to 2 s. Note the voltage
across the heater when it is on with the oscilloscope and compute
the power being put into the heater. (Remember: do not put the

[Turn heater on.] o a
L alligator clip to any circuit point which is not at ground potential!)
Wait for T2L
to count down for g
TH typed in. 5.4 Voltage amplifier

l: Turn heater off. j

The change in temperature of each thermistor from an initial

temperature (7(z, z) — T,) is the significant quantity to measure in this
experiment. However the temperature increments and thus the voltage

58

Fig. 5.5. Voltage amplifier circuit
for heat flow apparatus.

Thermal diffusion

changes are very small; if the ADC is connected directly to the thermistor as
in Chapter 3, the changes are less than the step size of digitization. To
overcome this problem an amplifier is used to boost the voltage change. On
the protoboard attached to the experimental apparatus is an amplifier using
a CA3140 operational amplifier; a schematic diagram is shown in Figure 5.5.
It is not necessary to understand the details of this amplifier circuit except to
note that the relationship between the three voltages V4 (output) (pin 6), V,
(pin 2) and V' (pin 3) is given by

Va=GWVi—V)) (5.4.1)
For the circuit components used, the gain G is equal to 21.

The amplifier output (V) is constrained by the characteristics of the
CA3140 to be between 0 V and +3 V. Since arise in thermistor temperature
will lead to arise in the output voltage of the amplifier, the potentiometer R,
should be set so that the output voltage of the circuit starts near the lowest
voltage before a heat pulse is applied. This will allow the greatest voltage
swing as the thermistor heats up without exceeding the 3 V limit. Using the
oscilloscope to monitor the output voltage of each amplifier, set the poten-
tiometers (one for each amplifier—thermistor combination) so that the
amplifier outputs are about (.20 V before you start each run. When this is
done each potentiometer R; has been adjusted to be essentially the same
resistance as the thermistor resistance Ry before a temperature pulse is
applied. Since the amplifier gain is 21, the change in the output voltage AV
will be 21 times greater than the change in the thermistor voltage AV,

Thermistor
10 k2
1 kQ Ry
[

v \7

glksz @R;

(3]

N\
NS/
=

w
ZaA
Pl
Y

% o 0 ADC

Fig. 5.6. Flow chart for Exercise
5.4.1. use

PRINT PEEK (49312);"

— putting a semi-colon and
guotes with a few spaces will
make it possible to view what is
goingonusingthe screenwith a
minimum of programming.

5.5 Data analysis 59

Apply heat pulse of
specified time T
program of exercise 5.3.1

Measure ADC output of
thermistor and amplifier
PRINT result on screen

]

Fig. 5.7. Flow chart for Exercise
5.4.2.

Dimension 7(50),
A1(50), A2(50)

I

Read A1(0)
read 42(0)

|

Apply heat pulse
of specified time

Read time T(0)

For
I=11t040

]

Wait for T2

(a)

(b)

Exercise 5.4.1 Amplifier check

Before writing a detailed program write a simple program to see
that the apparatus is functioning following the outline shown in
Figure 5.6. When you run this program you should see on the
oscilloscope the voltage output rise and then slowly fall. It should
start above 0 V and not try to go above 3 V. Stop it after 20 or 30 s
using CONTROL C.

Do the same to check thermistor 2, the lower thermistor. You will
need to let the apparatus cool down and reset the potentiometer
between heat pulses.

Exercise 5.4.2 Heat flow real-time plot

The next task is to make thermistor ADC measurements at specified
times. To do this, modify the program by putting in waiting loops as
indicated by the Figure 5.7. Note that a sample is taken before the
heater is turned on (A1(0) an A2(0)). This records the baseline
ADC reading. The heating of the rod then changes the ADC
reading from this starting value.

Now combine this with AMPERGRAPH so that these relatively
rough, unprocessed data are plotted in real time while they are
being collected. You have enough time (even though BASIC is very
slow) to read the time, A1(/) and A2(/) and to get them on a graph
as data points before the next reading must be taken 3 s later. the
AMPERGRAPH symbol plotting is too slow so use ‘&
DRAW,X,Y: & PENUP’ for each point. In addition, it may be too
slow to convert the ADC readings to voltages so just leave them as
raw data. Also make a data file of the ADC readings A1(/), A2(])
and times 7'(/) together with the time the heater was kept on (Ty).

5.5

Data analysis
Before proceeding to more data plots and analysis, here are some

to decrement by 50
(0.5 s) from last
sample time 7(/—1)

|

Read A1())

read A2(])

|

For/=0
to 40

1

Print T() A1(1) A2(])

additional mathematical considerations. We will assume that the tempera-
ture and voltage changes at the thermistor are small enough to that their
behaviors are adequately described by differentials. Thus: (change in
amplifier output voltage) = (gain) X (change in the input voltage)

dV, = GdVy (5:5:1)
The relationship between V1 and Ry is similar to the thermistor experiment
of Chapter 3, ie, V4/Vy, = R;/(R; + Ry) with V; = 5 V. The relationship
between dV and thermistor resistance changes dRt can be obtained by
differentiation; the result (which you should work out) is

2
dvy _ _dRy 1 (5.5.2)

60

Thermal diffusion

Noting that R, and R are adjusted to be nearly equal at the outset gives

dVy/Vy = —dR{/4Rt (5.5.3)
The next task is to relate change in the thermistor resistance to changes in
temperature. The relation between thermistor resistance and temperature is
Rt = Ry exp(T,/T,) as discussed in Chapter 3. Differentiation of R} with
respect to temperature 7, gives

Ohr . _Jadl, (5.5.4)
Ry Lz I

where T, is the absolute temperature (K) (not the excess temperature,
T(t, z) — T,) and dT, is a small temperature change due to the heat pulse.
Thus if d7, is small, it can be approximated by the measured temperature
change of the apparatus (ie, the excess temperature) and 7, can be approxi-
mated by room temperature. Appropriately combining Equations (5.5.3)
and (5.5.4) gives the result

4 T, dV
dT, =T, =22 5.55
= hipgy (5.5.5)

As Equation (5.5.5) shows, the change in output voltage in volts is not
important, only its ratio with V. This ratio dV ,/V is equal to the ratio of the
change in ADC units to the ADC full scale reading.

Exercise 5.5.1 The thermal conductivity and specific
heat of copper

Plot the data which you have taken with the vertical axis in
temperature change from the initial temperature (Equation (5.5.5))
and the horizontal axis in seconds (7, = 3440 K for the GB32J2
thermistor). As a first step in the analysis of these data use the
relations derived in Exercise 5.1.2(c), ie, visually estimate the
position T}, and height T, of the peak and calculate ¢, and T
from these values. Use these estimates to draw a curve on your
graph of the data and check the fit. Then you may want to change
your estimate and try another fit.

When you are satisfied with your values of 7', and ¢, use them to
calculate, via Equation (5.1.9), the diffusion constant D = k/s, the
thermal conductivity k& and the heat capacity ¢ = s/p where p is the
density. Make an estimate of the error made in differential evalua-
tion of the temperature change (Equation (5.5.5)) compared with
actual temperature change. For doing this estimate, use the
maximum change which can be measured using the amplifier circuit
employed.

One further consideration can be applied to the data analysis. In deriving
Equation (5.1.5) we assumed that the time during which the heater was on

5.5 Data analysis 61

(7) was very small in relation to the time the heat takes to diffuse down the
rod (¢,), ie, it was an impulse of heat (see Appendix F). In doing your
experiments this approximation is valid as long as you make ¢ = 0 on your
graph correspond to the midpoint of the heating time and if the heating time
is less than any ¢,. Appendix G gives the details.

Exercise 5.5.2 Time shift of heat flow data

Shift the time scale of your heat flow data by 57 and again estimate
T;, ti, D, s and k.

6 APPLE architecture and

assembly language
programming

Fig. 6.1. Inside the APPLE Ile.

Thus far, there has been no need to understand the inner workings of the
computer in order to do useful experiments. It has been a black box which
responds in a reliable way when given instructions. Just as in using a car,
many times this is sufficient; however, to utilize its capabilities as a tool in the
laboratory fully, the internal operation of the computer should be under-
stood. In this chapter, we will look under the hood to explore the internal
organization of the APPLE and to learn to program the 6502 microprocessor
directly.

6.1 Inside the APPLE

A first glance under the cover of the APPLE shows a circuit board
with a row of connectors which contain other circuit boards standing
vertically. The horizontal board (the mother board) contains the 6502
microprocessor chip and various other chips which control the keyboard and
screen and contain the memory cells. The microprocessor is the CPU which
controls the system and executes the program instructions. The boards in the
connectors perform a variety of other functions. Figure 6.1 shows the general

ADC 6522 ports —_
protoboard protoboard
w/DACs and
LEDs
User Printer ADC Floppy
§lolg==—" buffer disk
& driver driver
1 2 3 5
6502 uP The buss 16 address wires
Buss boss 8 data wires
26 auxiliary wires

RAM ROM Video
Internally =
connected Oscillator memaorny memory river
o _smegs 1.023 MHz

Fig. 6.2. 6502 Timing in the
APPLE Ile.

Voltage (V)

6.2 The 6502 microprocessor 63

organization. The different chips and boards communicate with each other
via the buss: a group of 50 wires which carry digital signals. There are 16
address lines, 8 data lines, and 26 auxiliary lines. The data lines contain the
8 bits of data which are to be transferred by the CPU. The bits on the address
lines contain the binary number of the location from or to which the data will
be transferred. The operation of the computer is, at the lowest level, a
controlled transfer of bits of data among the various devices.

The CPU uses the auxiliary lines to control the data transfers. The
READ/WRITE (R/W) line signals whether the data will be transferred to
the CPU (a READ, R/W HI) or out from the CPU (a WRITE, R/W LO).
Another auxiliary line is controlled by the oscillator which is the clock that
determines how fast the CPU operates and thus, how fast the data transfers
will take place. The one in the APPLE generates about one million cycles
per second (Figure 6.2). At the beginning of each clock cycle, the CPU puts
the binary bits defining an address on the address wires and sets the R/W line
to indicate the direction of the data transfer. In the second half of the clock
cycle the data transfer takes place on the data lines. The time lag between the
first and second parts of the cycle is used by the memory circuits to locate the
unique memory cell being addressed.

Since the 6502 CPU has 8 data lines, it is called an 8-bit microprocessor.
These 8 binary bits (or 1 byte) can represent various things. They could be a
binary data value, a machine instruction code (op-code) or one half of a
16-bit address. The electronic protocol for transferring the data is always the
same no matter what the data may represent.

6.2 The 6502 microprocessor

Programs are ultimatelv stored in the computer as a series of data
bytes. All programs written in other languages (eg, BASIC, FORTRAN,
Pascal) are translated into this form (by another program!) before they can
be executed. The machine language program is executed by the CPU by the
following steps:
The CPU (1) reads the next instruction code (op-code) in the series,

(2) decodes the instruction,

/Address bits on address lines, R/W set
5

=490 ns—

|
1 / 2 Time (us)
Data bits taken off data times

by CPU or by memory

Fig. 6.3. 6502 Internal registers.

Apple architecture and assembly language 64

(3) if necessary, reads additional data (such as an address or data
byte),
(4) executes the instruction,
(5) starts at step (1) again.
In the 6502 each machine instruction requires 2-7 clock cycles to execute.
There are approximately 150 different op-codes of which 56 are funda-
mental.

The 6502 CPU has six internal memory locations which it uses for
executing instructions and to keep track of where it is in the program. These
are called registers (Figure 6.3). The most sophisticated instructions are
done with the eight-bit accumulator (A register). This is the arithmetic
register whch can do addition and subtraction as well as logical operations.
The X and Y registers are auxiliary eight-bit registers used principally for
counting. The program counter (16 bits) contains the address of the next
byte to be accessed in the program. The stack pointer contains the address
of the top of the stack which is a group of memory locations used predomin-
antly for executing subroutines. The 6502 uses the memory between $0100
and $01FF for the stack. You will learn more about how this works in Section
6.10. Notice that the high byte of the stack pointer is always $01; only the low
byte varies. The last register is the process status (P or F, Figure 6.3) register
which is used for a variety of housekeeping chores. Each bit in the register

Y register
8 bits

X register
8 bits

Accumulator
8 bits

lj Process status register

Program [counter

BlH 16 bits | wide

ADL

Stack pointer |(8 bits vary)
ADH (always $01) ADL

I N—[\Y% [I B [DT 1 I Z] C—I Processor status register

Carry

Zero result
Interrupt disable
Decimal mode
Break command
Expansion
Overflow

Negative result

6.3 Writing machine language programs 65

indicates a different state of the CPU. The branch machine instructions
(Section 6.9) use the bits in this register to determine whether or not a branch
should be taken.

6.3 Writing machine language programs

In the APPLE computer, short machine language programs are
conveniently written using the ‘MINIASSEMBLER’ which is in the
INTEGER BASIC package of programs loaded into the RAM in the
language card when the machine is bootstrapped with the SYSTEM START
DISK (the bootstrap procedure is described in detail in Appendix H). The
MINIASSEMBLER makes it possible to write programs using mnemonics
which directly represent the machine instructions to be executed by the
CPU. A program written with these mnemonics is called an assembly
language program. When using the MINIASSEMBLER the program is
actually stored in machine language (ie, binary op-codes and data) but is
displayed in assembly language (ie, mnemonic characters).

Starting with the APPLESOFT prompt (]) on the CRT screen, turn the
printer on by typing PR#1 CR to get hard copy for your reports. Put the
machine under control of INTEGER BASIC by typing INT CR; this will
produce the prompt character of INTEGER BASIC, (>). Then type
CALL-2458 CR; this will run the MINIASSEMBLER program which starts
at memory location —2458., the MINIASSEMBLER program promptis *!".
With the ! before you, type the program indicated below. SP means press the
space bar; CR means press the RETURN key (the spaces marked with SP
are mandatory, the other spaces are optional).

Program 6.3.1.

9300:LDA #0171 CR Load the accumulator (A) with the number $01.

SP STA C402 Store the contents of A in memory location
$C402, (DDRB)

SP LDA #01 CR Load A with $01.

SP STA C400 CR Storein DRB.

SP LDA #00 CR

SP STA C400 CR Store0inDRB.

SP JMP 9305 CR Jump toinstruction coded in location $9305.

$9300L CR Monitorcommand to list program steps starting
at $9300.

$9300G CR Monitor command to run program starting
at $9300.

Figure 6.4 shows what the screen and printer should look like after this is
completed. Appendix [contains useful information about assembly
language programming.

Connect the oscilloscope to the line PBO; you should see square waves.
The above program which you have typed into the machine and set running
is the machine language equivalent of the BASIC program used to generate

Fig. 6.4. Assembly language
program listing and comments.

JINT
>CALL-2458

19300: LGA#D1

9300- A9 01
! STAC4@2
93@2- 8D @2
! LDA#01
93@5- A9 @1
! STA C400
93@7- 8D 00
! LDA#00
930A- A900
! STA C400
93@C- 8D 00
! JMP 93085
93@F- 4C @5
1$9300L
930@- A9 01
93p92- 8D @2
93@5- A9 @1
93p7- 8D 0@
930A- A9 00
93@pCc- 8D 00
93@F- 4C @5
9812- FF
9513= FF
9314- 00
9315- 00
9316= FF
951¢~ FF
9318- 00
9319= @8
951A= FE
931B- FF
931C- @0
931D- 00
931E= FF
1$93006

Cé

Cé4

C4

93

C4

Cé

Cé4
93

LDA

STA

LDA
STA
LDA
STA
JMP

LDA
STA
LDA
STA
LDA
STA
JMP
(g
777
BRK
BRK
At
2?22
BRK
BRK
2
oy
BRK
BRK

AR

#301

$C402

#$01

$C400

#$00

$C400

$9305

#3501
$C402
#$01
$C400
#$00
$C400
$9305

Go to INTEGER BASIC
Go to MINIASSEMBLER

Type in; startloc: instruction
APPLE responds
Type in space after instruction

APPLE responds

Etc

Type $9300L CR

—sends control to monitor
9300L —disassembles
starting at 9300

Disassembled program
starting at 9300

Garbage

9300L disassembles

20 instructions

9300LL would do 40
9300@LLL would do 60 etc.

Type $9300G CR
$ sends control to monitor
9300G starts program running

Fig. 6.5. Comparison of
equivalent machine language,
assembly language and BASIC
programs.

6.3 Writing machine language programs 67

square waves in Exercise 3.10.1. Figure 6.5 shows the parallel statements
between the two programs. To display the square waves set the SWEEP
TIME/DIV on the oscilloscope to 5 us/DIV. Note the time ratio between the
machine language program and the BASIC program.

The lines you typed in with the $ as the first character are instructions to
be executed by another set of subroutines in the APPLE called the monitor
(prompt *). When the MINIASSEMBLER finds a $ as the first character of
a line, it sends the rest of the line to the monitor for execution. The line
$9300L instructs the monitor to go to memory location 9300 (hex) and to
translate the machine codes into assembly codes which are then displayed
alongside the machine code (Figure 6.4). This process of translating a
machine language program into assembly language is called disassembly.
$9300G starts the program execution at 9300 (hex). To stop the program
which loops back to itself continually, press CONTROL-RESET.

It is informative to look at the details of this program as displayed to gain
insight in the operation of the computer. Beyond the first seven lines the
material is irrelevant; it is probably ‘garbage’ which the L instruction is
trying to disassemble.

The first line, LDA #01, instructs the 6502 to load the hexadecimal
number $01 into its accumulator. The program starts at memory location
$9300, the number shown in the lefthand column of the first line of the
program in Figure 6.4. In memory location $9300 the eight-bit number $A9
is stored.

When this program is started at memory location $9300, the 6502 retrieves
the number $A9 from memory and decodes it as the instruction ‘load the
accumulator immediate’ (mnemonic LDA). Immediate means that the
accumulator of the 6502 is to be loaded with the number stored in the next
memory location; in this case, the next address is $9301 and the number is
$01. When the instruction $A9 is decoded by the 6502, it also knows that the
instruction requires two bytes for its definition and thus the next instruction
code will be found in the memory location $9302.

Address Machine code Assembler code BASIC statement

9300 A9 01 LDA #$01 19 POKE 58178 ,1
9302 8D @2 C4 STA $C4P2
9305 A9 01 LDA #$01 20 POKE 5@176,1
9307 8D 0@ C4 STA $C400
930A A9 00 LDA #3$00 3@ POKE 5@0176,0
93@C 8D PP C4 STA $C400

930F 4C @5 93 JMP $9305 40 GOTO 20

68

Fig. 6.6. Memory dump.

Apple architecture and assembly language

The next instruction STA $C402 means ‘store the number which is in the
accumulator, ($01) into memory location $C402’. The data is also retained
in the A register. Memory location $C402 is the DDRB. This will set up
DRB (memory location 50176 = $C400) with PB0 as an output port. When
the 6502 retrieves the number $8D from memory it decodes it as the
instruction to store the eight-bits of data in the accumulator in the memory
location designated by the data stored in the next two memory locations, ie,
$9303 and $9304. The least significant eight bits (low byte) of the address (eg,
$02) are stored in the location just after the op-code and the most significant
eight bits (high byte) of the address ($C4) in the memory location after this,
$9304. This sequence is the protocol of the 6502 for storage of addresses; the
low byte of the 16-bit address goes into the lower memory address and the
high byte into the next higher address.

The above mode of memory addressing (eg, STA $C402) is called
Absolute Addressing because the memory location upon which the instruc-
tion acts is explicitly designated. The instruction ‘store accumulator with
absolute addressing’ is a three byte instruction; it requires three memory
locations to completely specify the instruction. The memory address upon
which an instruction acts is called its operand. The 6502 has about a dozen
different ways of defining operands.

The next two instructions listed in the program put $01 into the
accumulator from whence it is transferred into Port B. The next two
instructions put $00 into Port B. The final instruction JMP $9305 makes the
6502 jump to memory location $9305 to find its next instruction, thereby
looping the program interminably upon itself.

To examine but not disassemble the data stored in the memory defining
the program above, type $9300.9311 CR. The result displayed on the CRT
is shown in Figure 6.6. The above is called a memory dump; it is a simple
tabulation of the data stored in the memory locations between $9300 and
$931F. With this memory dump before you, take the time to make a step by
step review of what occurs when the program is run from memory location
$9300.

Saving machine language programs on the disk and retrieving them again
can be done from the MINIASSEMBLER or BASIC. Machine language
programs are saved as binary files. A binary file is simply a series of data
bytes stored on the disk; this sequence may represent a variety of things: data

Type $9300.9311 CR
9300.9311 is a monitor instruction
1$9300.9311 to dump memory contents from
9300 to 9311 inclusive
93P@- A9 @1 8D @2 C4 A9 @1 8D
93@8- PP C4 A9 0@ 8D @@ C4 4C
9310- @5 93

6.4 Operation of a DAC 69

bits, a machine language program, a CRT graphics image. They are different
from TEXT files which are a sequence of encoded character strings or from
APPLESOFT files which are encoded BASIC instructions.
To save a machine language program use:
BSAVE filename, A address, L length
where ‘address’ is the address of the start of the program and ‘length’ is the
number of bytes you wish to save. These are specified by a decimal number
or alternatively using a hexadecimal number preceded by a $. For example
BSAVE EX6.0.0, A$9300, L$11
will save 17 bytes starting at memory $9300 with the filename ‘EX6.0.0’. To
retrieve a binary file use
BLOAD filename, A address

If you leave off the A parameter, the binary file will be loaded into the
location from which it was saved. Otherwise it will be put in the memory
starting at the specified address. To use BLOAD as a DOS command within
a BASIC program use the instruction PRINT CHR$(4) ‘BLOAD filename’.

Exercise 6.3.1 Machine language square waves
and BSAVE

(a) Write, run, and print out a machine language program which
produces square waves at PB4. Examine and record the signals on
your oscilloscope. BSAVE and BLOAD the program.

(b) Run the program DEMO?2 on the AMPERGRAPH disk or one of
your own programs which will quickly produce a graph. Data for
page 2 of high resolution graphics are stored in the memory
locations from $4000 to $5FFF. BSAVE this page of graphics on a
disk. Write a BASIC program to BLOAD and display the file. Be
sure to set the display to HGR2.

6.4 Operation of a DAC

The purpose of this section will be to explore the use of Digital to
Analog Converters (DAC) and to get some practice in assembly language
programming. You also will learn how to instruct the computer to go back
and forth between BASIC and machine language programs.

You have used an ADC in the previous sections to convert an analog
voltage signal external to the computer into a digital signal which the
computer can manipulate and store. The inverse operation is done with a
DAC. The DAC is an output device which converts the binary number to an
analog voltage. They can be used for a variety of purposes. For example,
they are used as the output devices for digital music playback and for digital
video players. You will use them to drive oscilloscope displays.

70

Fig. 6.7. DAC circuits.

Apple architecture and assembly language

There are two DACs connected to the APPLE parallel interface, Figure
6.7; one is on Port AA and one is on Port BB of the second 6522 VIA (base
address $C480). They are used by setting up the ports as output and then
writing digital numbers into the ports.

For electronic reasons which need not concern us, the DAC you are using
uses an inverted representation of numbers, ie, the binary number $00 at its
input produces +5 V at its output and $FF at its input +0V at the output. To
generate the conventional conversion between analog voltage and binary

APPLE
6
5
2
2
8 8
lines lines
5 2
7 7
— —
. =]
P ket D P }— 2
AL € Output 1 B | 0 Output 2
y_. 0 0-5V — g 0-5V
—| g (pin 12) o (pin 12)
+5V =5V
+5 V (ref)
13 3
499 kQ
MSB 7 D 14 4.99 kQ
To 5 7 A oV
PAA omw G =
or 3-—1-% 0
PBB % = g 4.99 k2
LSB og—12] g 15 = 5 :1—7
16

6.5 Indexed addressing 71

numbers the binary numbers at the output to the DAC should be inverted,
ie, all ones converted to zeroes and zeroes to ones.

Exercise 6.4.1 DAC sawtooth wave (BASIC)

Using BASIC and Port AA, write a program which will set up the
port for output and write the temporal sequence of numbers $00,
$01, .. .,$FF,$00, . .. ad infinituminto the port. Observe the output
of the DAC with the oscilloscope and note the results. The output is
on pin 4 of the DAC chip.

Exercise 6.4.2 DAC sine wave (BASIC)

Write a BASIC program which will output a sine wave from the
DAC. Take note of the fact that the sine function goes from —1 to
+1; this must be put in a digital range from 0 to 255 for the DAC.
Display the sine function in two ways: (a) by calculating the sine
each time it is needed, (b) by using a lookup table. In (b) a table
(array) of 100 sine values is calculated once and then, when the
program needs a value, it is obtained from the array. Observe with
the oscilloscope and note the difference in speed of the two methods
of programming.

6.5 Indexed addressing
Before proceeding to the use of DACs with assembly language
programs, two more assembly language concepts need to be understood;
these are indexed addressing and program branching.
A BASIC program sequence to move the data from one area of memory
to another is

10 BA=36864 : BB=37120
20 FOR I=0 to 99
30 A=PEEK (BA+I)
40 POKE BB+I, A

50 NEXT I
60 END
These instructions transfer an array of values from memory locations
BA,BA +1,BA + 2,...,BA+ 99t BB,BB+1,..., BB+ 99. An

assembly language program can do the same thing much more quickly using
indexed addressing. A program to do this is:
9300 LDX #3%00 Get 0 into the X register.
9302 LDA $9000,X Getthe data from address $9000+X
into A.
9305 STA $9100,X Store the data in A at address
$9100+X.

.

Apple architecture and assembly language

9308 INX Add 1 to the X register.

9309 CPX H#$64 Compare (calculate X — $64) the
number in the X register with $64
($64 = 100).

930B BNE $9302 If X — $64 is not equal to zero, go back to
$9302.

930D BRK Stop execution.

There are several new instructions here. Read the comments on the right
thoroughly to understand how they work. LDX #xx (immediate) is similar
to LDA #xx; it will load the X register with the value of the byte which
follows. LDA $xxxx,X indicates indexed addressing. This instruction will
‘load A with the data which appears at the address computed by adding the
value in the X register to the address $xxxx.” In the above program if X
contains the value $1C, the 6502 will load the data from address $901C
($9000 + $1C) into A. Notice one limitation — since the X register can only
range from $00 to $FF (eight bits) the range of addresses which can be
‘indexed’ is limited to those within 255 from the base address. STA $9100,X
operates in an analogous manner. INX stands for ‘increment X'; it adds 1 to
the X register.

The next instruction, CPX #$64, is ‘compare X with the next byte’ (notice
the immediate mode addressing indicated by #). In this case $64 is sub-
tracted from X and the flags (the data bits in the processor status register) are
set according to the result. The N bit is set to 1 for a negative result, Z is set
to 1 for a zero result; otherwise, these flag bits go to zero. The last
instruction, BNE $9302, tests the Z flag. BNE stands for ‘branch if the
previous result was not zero’. (More on branching in section 6.9.) Thus the
computer will jump to $9302 if Z is zero. Since the state of the Z flag is set by
the CPX instruction, the result of these last two instructions is that the
program will loop (branch) back to $9302 if X is not equal to $64. Thus, as
the program does each loop, the X register increments until it gets to $64,
then the branch is not taken and the computer goes on to the break
instruction at $930D and stops. The net result is the same as the BASIC
program shown before.

Exercise 6.5.1 DAC output in machine language

By using indexed addressing, the BASIC program which you wrote
for Exercise 6.4.1 can be translated into assembly language. The
procedure is as follows: first, write a BASIC program which POKEs
the numbers 0-99 into memory $9000-$9063. These will be the
‘data’ to be output to the DAC. Next, go to the MINIASSEMBLER
and enter a program starting at $9300 which will read the data bytes
from address $9000 to $9063 and output them to the DAC. This
program will be very similar to the one described above. Add a IMP

6.7 An X-Y plotter 73

instruction at the end which will loop back to the beginning of the
program. Then run the machine language program with $9300G,
and observe the results with the oscilloscope.

6.6 The CALL and RTS connection

A few embellishments will make the operation of the BASIC-
machine language system smoother. Once the machine language program is
in the memory, it can be used by a BASIC program through the use of the
CALL statement. When BASIC executes a ‘CALL address’ statement it
jumps to the address given and begins to execute the instruction it finds there
as a subroutine. To then return to BASIC from the machine language
subroutine, the machine language instruction ‘return from subroutine’ RTS
isused. The lastinstruction of every subroutine is RTS. (More on this later.)

Exercise 6.6.1 BASIC—machine language connection

Try using the assembly language program you wrote in Exercise
6.5.1in a BASIC program. First go to the MINIASSEMBLER and
replace the JMP instruction at the end with RTS. Then go to BASIC
and enter and run the following.

200 CALL 37632

210 GO TO 200

Watch what happens with the oscilloscope and explain the qualita-
tive shape of the waveform.

Exercise 6.6.2 DAC sine wave (BASIC and machine
language)

Write a BASIC program which calculates a sine wave table (array)
whose amplitude varies between 0 and 255 and which is stored in
$9000-$9063 (100 values) and then uses a CALL to a machine
language program to show the results on the oscilloscope. Try
varying the frequency of the calculated sine wave and observe the
effects.

6.7 An X-Y plotter

By using two DACs and the oscilloscope you can make an X-Y
plotter, that is a display whose X value is determined by one function and
whose Y value by another function of the same parameter. The oscilloscope
will display the two input channels in this way if you set the MODE to ‘X-Y".
As an example of X-Y plotting, suppose the x axis voltage varied as
cos(6) and the y axis voltage varies as sin(6), what would be the figure traced
out as successive points were plotted (6 = 6,, 6,, ...)?

Apple architecture and assembly language

Exercise 6.7.1 Lissajous figures on a DAC X-Y plotter

Use the two ports and DACs to plot Lissajous figures. Program the
calculationsin BASIC and the display outputin assembly language.
(a) Begin with the simplest figures, a circle:

x = cos(6), y = sin(6)
and a line:
x = cos(0), y = cos(6)
(b) Next try:
x = cos(6;), y = sin(6,)

where
0, = 26, or 0, = 26,
(¢) What happens when you vary the relative phase or amplitude of x
and y? For example, try a circle again but with
x = cos(6), y = % sin(6)
then
x = cos(0 + i), y = 3 sin(0)

6.8 Boolean algebra

Normal algebraic variables can take on an infinity of values and are
added, subtracted, multiplied, etc. to give new values. Boolean variables are
quantities which can take on only two values and are operated upon by
AND, OR, NOT, etc to give new values. The two values can be described by
0 and 1, HI and LO, or true and false. (No 3, MIDDLE, or maybe.) The
AND operation combines two Boolean variables A and B to produce a third
Boolean variable C such that Cis 1 if, and only if, both A and B are 1. The
AND operation between two Boolean variables is represented by A or by a
dot,

C=A-'B or C=AANB
Boolean algebra statements are frequently defined by truth tables. Table 6.1
shows the AND operation

Table 6.1 Truth table for the AND operation

= A-B

_——0 O }

B
0
1
0
1

—o oo N

6.8 Boolean algebra 75

The 6502 has an instruction AND which does exactly this. Each of the
eight data bits is considered as a Boolean variable. The AND instruction
performs the AND operation between each of the corresponding bits in the
accumulator A and some memory location and deposits the result in the
accumulator. In the table of instruction codes of Appendix I, and AND
operation is written A A M — A.

An important application of the AND instruction is to help determine
whether some bit in a byte is a 0 or a 1. The first step is to isolate the bit and
to produce a result dependent upon the value of the bit in the place being
tested. This operation is called masking. It is as though we hide the bits of no
concern behind a mask and look through a hole in it at the one of interest.
The result is independent of the value of the other data bits. The program
steps

LDA #10
AND $9405

will isolate DB4 (Data Bit 4) of the contents of memory location $9405. The
AND operation between the 1 loaded into DB4 of the accumulator by the
LDA#10 operation and the data in memory location $9405 will produce a 1
in DB4 of the accumulator if DB4 of $9405 is a 1 and O if it is a 0. All other
data bits of the result in the accumulator will be zero because 0 AND 0 = 0
and0 AND 1 = 0.

Exercise 6.8.1 AND

To see how this works, use the MINIASSEMBLER to write the
machine language program code for the following program starting
at memory location $9300.

$9300 LDA 9400

AND 9401

STA 9402

RTS
Store some random numbers into $9400 and $9401 by typing the
appropriate monitor commands from the MINIASSEMBLER. To
do this, with the ! prompt before you, type

$9400: D3 SF CR

to store $D3 in $9400 and $5F in $9401. To verify that these are the
numbers stored, type (with the prompt ! on the monitor):
$9400.9401 CR
This will display the contents of memory locations from $9400
through $9401 (which is of course just $9400 an $9401). In general,
these two numbers could be the beginning and end of any interval.
Store some selected hexadecimal numbers in $9400 and $9401,

76

Apple architecture and assembly language

run the program and then display the results in locations $9400—
$9402. Write out the hexadecimal numbers in binary to demonstrate
how AND worked between the two starting numbers. Choose two
starting numbers so the entire AND truth table between them can

be verified.

The Boolean algebra operation conjugate to AND is OR, which given two
Boolean variables A and B, will produce a Boolean variable that C which is
1if A or Bis 1. The OR operation is written

C=A+8B or C=AVBEB
It is defined by the truth table, Table 6.2.

Table 6.2 Truth table for the OR operation

A B C=
0 0

1

If

i

0
1

Exercise 6.8.2 ORA

Rewrite the program in Exercise 5.8.1 using the ORA instruction
(A + M — A) in place of the AND instruction. As above, run the
progam and write out in binary form the resulting byte in $9402 and
note the relationship between them and the bits you started with in
$9400 and $9401. Put the data into $9400 and $9401 which verify the
entire truth table.

The third and final Boolean algebra instruction in the 6502 is exclusive OR
(EOR). It works on each bit like the AND and OR operations. EOR is

written
C=ADB or C=A¥B
The rule for exclusive OR between A and B is that C will be HI only if either

AisHI or Bis HI.
Table 6.3 is the truth table for EOR.

Table 6.3 Truth table for the EOR operation

—_——0 O D;
»—a@»—icm

=
0
1
1
0

Fig. 6.8. Push button circuit.

PA2

+5V

10 k2

Push button

J- switch

6.9 Branching instructions 77

An important application of EOR is to invert one or more bits in a
memory location and leave all the others alone. For example you could
produce square waves on PB7 at the same time that the other lines on this
port are used for other applications. This inverting property of EOR, that
1 ® DB = DB and 0 @ DB = DB; is easily derived by inspection of the
truth table above. (DB means DB inverted or ‘NOT DB’ thus, if DB = 1
then DB = 0 and if DB = 0 then DB = 1.)

Exercise 6.8.3 EOR

Write a program which inverts DB6 of the data stored in the
memory $9401 and leaves the rest of the bits alone. Run it and
demonstrate this property by displaying and printing out the con-
tents of $9401 before and after running with several initial values.

6.9 Branching instructions

The 6502 has a group of instructions called branching instructions.
They test the byte obtained in a previous operation for various conditions:
if the result of that test is true, the program will continue execution at some
other location. The BNE instruction in the program in Section 6.5 tested
whether or not the result of the CPX instruction was equal to zero; if not, the
branch to $9302 was taken and program execution continued from there. If
the test result is false, the program counter advances sequentially, as it
would in the absence of the instruction. Thus, branching instructions are
similar to the IF . . . GOTO statement in BASIC.

To demonstrate how this works wire up the circuit shown in Figure 6.8.
Before doing so it is important that you make sure that Port A is set up for
INPUT which means that all the data bits in data direction register A be set
equal to zero. A quick way of doing this is to simply press CONTROL
RESET. To protect electronic components, the 6522 sets all its control
registers, eg, DDRA and DDRB to zero whenever the power is turned on or
the machine is RESET. If it were otherwise, the possibility, indeed probabil-
ity, would be present of both the 6522 and the switch which you are installing
trying to control data lines leaving the machine. This can lead to a ‘short
circuit’ since the 6522 may try to connect a data line to +5 V, at the same time
that the switch which you installed connects to ground. This condition can
lead to burned out components so be careful to avoid it.

Exercise 6.9.1 Masking and branching

Enter and run the program indicated in Figure 6.9. In formulating
programs it is usually easier to write a mnemonic memory location
like DRA for $C401 (which is what you type into the MINI-

78

Fig. 6.9. Masking program.

Apple architecture and assembly language

AGAIN LDA #04 AGAIN = memory location of
AND DRA beginning of program
BNE AGAIN
BRK
DRA = $C401

ASSEMBLER) and a mnemonic like AGAIN to indicate the step
where the program is to loop upon itself. Then do the proper
translation of mnemonics as you use the MINIASSEMBLER. This
program will continuously loop back upon itself waiting until you
press the switch which you have connected to the PA2. When you
do, it will go on to the BRK instruction and stop execution. The
APPLE monitor will display the contents of the machine registers,
ie, A,X,Y, P and S, together with the value in the program counter
when the BRK was encountered.

The 6502 has eight instructions like BNE which branch as the result of a
test. These instructions actually test one of four of the bits in the process
status register. They are the carry bit (C), the zero bit (Z), the overflow bit
(V), and the negative bit (N). These bits are set as a result of what happened
in the processor during a previous operation. For example, if the AND
operation produced zeros in all eight data bits, the zero bit in the P register
would be set to 1. If it did not produce all zeros, the Z bit in the P register
would go to 0. If DB7 is 1 as the result of an operation, the N bit in the P
register gets set to 1; if the operation produced a 0 in DB7 the N bit goes to
0. Each of the branch instructions tests one of these flag bits (Z,N,C,V) for
a 0 or a 1. The effect which each machine instruction has on the P register
flags is shown by checks (/) in the right hand column of the 6502 instruction
listin Appendix I. Some instructions do not affect the P flags; thisis indicated
by a dash (-).

An important point to note is that a scheme of relative addressing is used
by the 6502 CPU in executing branch instructions (and only branch instruc-
tions!). In typing the branch instruction for the switch circuit above into the
APPLE you typed BNE followed by the memory location ($9300) where the
instruction was to be found if the branch is taken. Look at the code generated
and note that in memory location $9305, the number $D0 is stored which is
the op-code for BNE. In the following memory location the number $F9 is
stored in response to your instruction that the branch go to $9300 if the BNE
test is true. If the test is true the 6502 will take the value of the number stored
in the location following the branch op-code and add it to the current value
of the program counter if the branch is to be taken. Then execution resumes

6.10 Subroutines and use of the stack 79

at that calculated address. To demonstrate this, take the number stored in
$9306 and add it to the low byte of the location where the program counter
will be if the branch is not taken, ie, $07. You can do this with paper and
pencil or using a hexadecimal adding routine which is in the monitor. From
the MINIASSEMBLER type $07 + F9 CR. The result is $00, which,
together with the high byte of the program counter $93, gives the address
$9300 which the CPU will use to find its new instruction if it has to take the
branch. The high byte of the offset is assumed to be $FF if the offset is
negative.

This scheme of relative addressing has the important consequence that
program codes which have branches are intrinsically relocatable in memory.
It has the drawback that branches can be taken which are no more than 128
memory locations earlier in the program and not more than 127 steps further
on since the largest negative eight-bit number $80 is —128 and the largest
positive eight-bit number $7F is 127. In practice this does not cause serious
restrictions for short programs.

6.10 Subroutines and use of the stack
Another program branching capability which every computer must
have is that of executing subroutines. A subroutine is a sequence of program
steps that can be used anywhere in a program by a jump to subroutine (JSR)
instruction.

To execute a subroutine, the computer stops fetching instruction op-codes
sequentially from memory, jumps (JSR) to the memory location indicated
and from there continues fetching instructions until a return from subroutine
(RTS) instruction is encountered. It then returns to the original program and
resumes fetching instructions in sequential progression where it left off when
the subroutine was called. This process is illustrated in Figure 6.10.

In order for the computer to return to the correct place in the calling
program, the memory location of the next op-code after the JSR in the
calling program needs to be saved. When the instruction JSR is executed,
the 6502 stores the memory location of the next op-code after the JSR
instruction on the top of the stack. This operation is analogous to writing the
return address on a card and placing it on top of a pile. The last instruction
of every subroutine is RTS which means return from subroutine. This
instruction effectively takes the top card from the pile, reads the return
address, puts that location into the program counter and then throws the
card away.

The idea of using a stack (the pile of reminder cards) to store addresses,
may seem like a tortuous way of doing things. It is, however, an invention
which was very important for the development of modern computers.

80

Fig. 6.10. Subroutine execution
sequence.

Apple architecture and assembly language

$9100 LDA #$01 First op-code of main program;
program executes sequentially to
$9203 where JSR is found;

Program execution continues at
$9203 JSR $9500 $9500.

$9206 LDA $C400 Main program continues after
subroutine execution until BRK
which halts computer.

$9253 BRK

Ls $9500 LDX #$00 First op-code of subroutine:
subroutine executes sequentially
until RTS is found; then the
computer returns to the main

$9563 RTS program at the instruction just after
the JSR.

Without something like a stack it is not possible to use ROM to store
subroutines. It is said that one of the most awkward things about using the
first successful minicomputer, (the DEC PDPS), was that it did not have a
stack. The stack is akin to the Reverse Polish Notation used by Hewlett
Packard calculators. The last item stored in the stack is the first to be
retrieved. In addition to storing the return address for the subroutine, the
stack is sometimes used (with care and understanding) to pass numbers from
a calling program to a subroutine.

As mentioned in Section 6.2 the memory locations of the stack on the 6502
are those memory locations on page 1 of memory, ie, those memory
locations with addresses between $0100 and $01FF. The stack pointer is a
16-bit register in the 6502 which contains the address of the top of the stack.
There, after completion of the subroutine, the CPU will find the memory
address to which it must return program control. The bookkeeping of the
stack is quite automatic in the CPU. From the programming point of view
the only thing which you must be sure to do, is to have an RTS instruction for
every JSR instruction.

Fig. 6.11. Machine instruction
execution times (from MOS
Technology Microcomputer
Programming Manual). The
numbers are the machine cycles
needed to execute the
instruction.

6.11 Assembly language timing loops 81

Exercise 6.10.1 JSR

Write a machine language program which starts at $9100 and waits
for you to push a switch which is wired to PB3, as shown in Figure
6.8. When the switch closes the machine language routine should
call (JSR) the monitor subroutine at address $FBE4 which produces
a 0.1 s BEEP. CALL the program from a BASIC program which
then prints “THE BELL RANG’ on the CRT monitor after the
subroutine has been completed.

6.11 Assembly language timing loops

Frequently it is necessary to estimate the time required for a
program to run and to write simple time delay programs in machine language
to wait for some event. Time delay loops written in BASIC are not precise
because of the way in which the BASIC interpreter functions. Most pro-
grams written in machine language run with well-defined and with easily
calculable execution time. A copy of the 6502 instruction set with the

execution time in number of machine cycles of each instruction is shown in
Figure 6.11.

2 3
5 e m» g> 2 5 T x> 2w 5
s % 55 % v © © R s % % % §‘ T T o ey -
Egeaeds535328%: Egece535328853
2 Eo 992223 =255 32 2 ES 928 23 8F 355 2
IS RREEEN DR E SEEESE35832882
ADC 2 3 4 4 4°4*. . 6 5° JSR L 8 & ;
AND 2 3 @ 4 454, . B 57, LDA 2 3 4 4 4° 4 6 5°
ASL 2 x B 6 5 8T x 9 5 = @ 3 LDX 28 . 4@ 4 ., 4y, Lo
BCC 2 o o o g o ow 2P o . LDY ., 23 4 4 4 ;
BCS R EEEEY & - LSR 2 « 56 6 7 .
BEQ ¢ % @ 3 o5 ¥ o8 & B 4 s NOP ; - o 2 .
BIT e« B a 3@ s 6w 91 b @ ORA . &3 4 4 4°a° 6 5°
BMI | e PHA = P i
BNE I PHP 5 & 2 N 4 e B
BPL I TP - D PLA g 4
BRK . NN PLP i 3 4
BvVC B T T ROL 2 56 « 6 7
BVS R T Tl i ROR 2 56 + 6 7
CLE : ¢ @ @ @ 9 2@ & w 3 RTI Y . 6 .
CLD cow s ; 2 RTS N . ;
cLI . = : 2 SBC » 234 . 4 AR, 6 5°
cLv oL e w2 op oa s SEC A R e
CMmP 23 @4 4 48, . B 5, SED . 2 .
cPX 2 3 . A . o & & s ow SEI i 9 .
CPY - e EEEE STA v+ 3 4, 485 8 . 6 6
DEC . 5 6 8 T v v & s v % STX® v e g .44 . i
DEX — ¢ v o & e ow v ow STY S 3 4 4 :
DEY T M - MR TAX . 2
EOR . 2 3 4 4 8°4%,. = 6 5 s TAY)
INC . 56 687 v 5w » 5 8 TSX 2
INX ’ : 2 TXA 2
INY 4 9 = omw om e oe Raow Wi TXS 2
JMmpP s @ @ w3 B w ow p & m o B TYA 2

* Add one cycle if indexing across page boundary

** Add one cycle if branch is taken, Add one additional if branching operation crosses page boundary

82

Fig. 6.12. Time delay program.

Fig. 6.13. Longer time delay
program.

Apple architecture and assembly language

Number of clock cycles

LDX #12
MORE DEX
BNE MORE

2
2
3

The execution time is five cycles for each circuit of the loop.
$12 = 18. times around loop so 18. x 5. = 90 us delay.
Total time for program 90 + 2 us = 92 us.

To compute the time required for a program to run we simply note the
number of machine clock cycles required of each instruction and add them
up. A time delay program is given in Figure 6.12 together with a computation
of the number of clock cycles required for it to run. To get longer delays it is
easy to write programs with multiple nested loops or using multiple precision
addition. An example showing the use of double precision addition is given

in Figure 6.13.

Number of cycles Instruction

2 LDA #00 Initialize sum low and sum high
4 STA SL
_4 STA SH

10

2 AGAIN CLC

2 LDA #01 Add 1. to SL and update SL

4 ADC SL

4 STA SL

2 LDA #00 Double precision add: #00 and
4 ADC SH carry added to SH

4 STA SH

4 CMP TH Compare SH to TH, if not equal
3 - 2 BNE AGAIN addone more

29 28

4 LDA SL Compare low bytes, SLand TL
4 CMP TL
3 BNE AGAIN

(N

10 wus for init
TH X 256 X 29 us for main loop

TL x (28 + 11)

ws for final loops

6.12 Indirect addressing 83

Exercise 6.11.1 Machine language timing loops

Write a program using triple precision addition to generate a time
delay of 5 s. After each 5 s interval, add one count to the LED
display connected to PBB. With a watch measure the time for the
contents of PBB to increment to check that your programis correct.

6.12 Indirect addressing
Although you will not have occasion to use indirect addressing in
this course it will be discussed briefly because it is often used in assembly
language programs.

Indirect addressing is an addressing mode which can be contrasted with
absolute addressing that you have already used. The instruction written JMP
$9500 (jump absolute) means jump to memory location $9500 and continue
program execution with the op-code found there. The indirect instruction
written as JMP ($9500) (jump $9500 indirect) instructs the CPU to look in
memory locations $9500 and $9501 to find the low and high parts of the
address where the next op-code is to be found and from which subsequent
program execution is to be continued. The jump indirect instruction is useful
for jumping to different parts of a program depending on previous program
steps. The previous steps may for instance, write a new address into $9500
and $9501. In general, writing parentheses around a memory address in an
assembly language program means ‘the contents of’. With the exception of
the JMP indirect instruction, the indirect addressing modes of the 6502 are
limited to indirect addressing from memory locations lying between $0000
and $00FF.

Viscosity measurement

Fig. 7.1. Drag force of a fluid on
thin plates, F, = —Au(dv,/dx).
For a ‘Newtonian’ fluid, the
shear force per unit area is
proportional to the shear in the
velocity, dv,/dx. The viscosity u
is the proportionality constant.

A solid body moving through a fluid has a force pushing on it which depends
on the type of fluid. You might imagine that it would be much harder swim
in honey than it is in water. The parameter which describes this difference is
the viscosity (u). The drag force also depends upon other parameters much
as the surface area of the body and the fluid density, as you will discover in
this chapter. The computer will be programmed to measure the speed of a
sphere falling through glycerine and to calculate the viscosity. The measure-
ments are made with photosensors and using machine language program-
ming. A short section at the end of the chapter describes the use of an
EPROM to record semipermanently a machine language program.

7.1 Force required to move a solid body through a fluid

In this section the physics of a sphere moving in a fluid will be
discussed. There are two distinct regimes; if the sphere is moving slowly, the
dominant force resisting its motion is due to viscosity. For rapid movement,
the inertial resistance of the fluid due to its density is the dominant factor.
The magnitude of the resistance and the functional dependence on sphere
size, velocity, fluid density and viscosity can be estimated in a rough way for
both cases. This gives insight into how the drag force behaves without getting
lost in the mathematics. Indeed, with turbulent phenomena exact computa-
tions have not been possible.

Viscous resistance of a fluid arises from shear in the velocity profile of
flow. If two flat plates have fluid between them, as shown in Figure 7.1, a
force is required to move the top one at a constant speed in relation to the
bottom one. The force is proportional to the area of the plate and, (if the
fluid is characterized by a Newtonian viscosity coefficient), to the relative
velocity and inverse distance between plates, ie, to the velocity gradient
dv,/dx.

Plate of
area A

Fig. 7.2. A sphere falling slowly
in a fluid, the fluid flow to move
fluid from front of sphere to rear
extends to about raway from
sphere. So, dv,/dx= v/rand F=
47urvwith 4772 as the area of
sphere.

Fig. 7.3. A sphere falling with
velocity vand a turbulent Wake.
The fluid is accelerated to about
velocity v. The volume of fluid
displaced each second is r?v,
the cross-sectional area Aiis 7r°.

K _

Fluid motion to
make space for
the advancing
sphere. Fluid
accelerated to

about velocity v.

7.1 Force to move a solid through a liquid 85

Without doing elaborate computations this simple concept can be used to
estimate the viscous resistance of a falling sphere. The effective area of
velocity shear is more or less the area of the sphere, 4ar* (Figure 7.2). The
velocity perturbation resulting from moving the ball through the fluid
extends to a distance about equal to the radius of the sphere; thus, the
velocity gradient, dv,/dx, which enters into the viscous drag relation is
approximately v/r. Putting these two rough estimates together, an estimate
of the viscous drag F, on the sphere is

F, = 4mr’uvir = 4mury (AL.1)
where u is the viscosity of the fluid.

This problem is amenable to exact mathematical analysis; it was first done
by Stokes and the relation is known as Stokes’ law for the viscous resistance
of a sphere moving in a fluid. His result’ is

FStokes = 67T}LI’V (712)

Stokes’ law is verified experimentally for cases when the sphere’s motion is
sufficiently slow. The approximate approach used above gives important
insight into the physical origin of the Stokes’ formula.

More rapid motion leads to a turbulent wake behind the sphere. Though
mathematical computation of the drag force in this regime has not been
done, relatively simple ideas give a good estimate of the force observed. To
move an object rapidly, the speed of the fluid in the path of motion is
accelerated from zero to the speed of the sphere and the fluid is pushed aside
and then forms a turbulent wake behind the sphere. The turbulence
eventually dissipates the kinetic energy of the moving fluid as heat and sound
energy without giving any kinetic energy back to the sphere. The drag force
on the sphere will be equal to the force required to push the fluid out of the
way.

An estimate of the mass of fluid moved per unit time is the mass of the
column of pushed aside fluid each second as the sphere falls. This is the
product of the cross-sectional area A of the object perpendicular to the
direction of motion, the velocity of motion v, and the density p of the fluid
(Figure 7.3). A maximum guess is that each element of this column is
accelerated to the velocity of the moving object by the presssure exerted on
the front face of the object.

Therefore the work done by the drag force on the sphere (force X
distance) is equal to the kinetic energy of the fluid (3 X mass of fluid
moved X v?).

(Fo) (VA1) = (ppmrvA)y?
Thus
By = kpa A (7.1.3)

L

is the estimated drag on the sphere where A is the cross-sectional area.

+ See, forinstance, Geodynamics: Applications of Continuum Mechanics to Geological
Problems, D. L. Turcotte & G. Schubert, Wiley, New York, 1982.

86

Viscosity measurement

The drag resistance of a blunt object in terms of an experimentally
determined drag coefficient C is by definition

Fgp = CpApv?2 (7.1.4)

The combination pv?/2 is called the kinetic pressure of a fluid. The experi-

mentally determined drag coefficient for a sphere moving rapidly through a

fluid is C, = 0.5. As you can see, Equation (7.1.3) over estimates the drag

on a sphere by a factor of 2. Drag coefficients for other shapes are given in

Figure 7.4.

Combining the Stokes relation with the turbulent force gives the total drag
force on the falling object as

Fo = 6mury + Cpmrispv?2

As Equation (7.1.4) shows, the turbulent drag for a sphere is proportional

Fig. 7.4. Experimental drag
coefficients (from p. 11.68 of
Mark’s Standard Handbook for
Mechanical Engineers, ed. T.
Beaumeister, 8th edn, McGraw-
Hill, New York, 1978 — used by
permission).

Drag Coefficients of Various Bodies

For bodies with sharp edges the drag coefficients are almost
independent of the Reynolds number, for most of the resis-
tance is due to the difference in pressure on the front and rear
surfaces. Table 4 gives Cp = D/gS, where § is the maximum
cross section perpendicular to the wind.

For rounded bodies such as spheres, cylinders, and ellipsoids the
drag coefficient depends markedly upon the Reynolds num-
ber, the surface roughness, and the degree of rurbulence in the
air stream. A sphere and a cylinder, for inscance, experience a
sudden reduction in Cp as the Reynolds number exceeds a
certain critical value. The reason is that at low speeds (small

Re) the flow in the boundary layer adjacent to the body is
laminar and the flow separates at about 83° from the front (Fig.
20). A wide wake thus gives a large drag. At higher speeds
(large Re) the boundary layer becomes turbulent, gets addi-
tional energy from the outside flow, and does not separate on

_/—.\ /\‘
— —
=0 =0 o
Lominar boundary layer
(early separation-
wide waoke)
Fig. 20 Boundary layer of a sphere.
the front side of the sphere. The drag coefficient is reduced
from about 0.47 to about 0.08 at a critical Reynolds number of
about 400,000 in free air. Turbulence in the air stream reduces
the value of the critical Reynolds number (Fig. 21). The
Reynolds number at which the sphere drag Cp = 0.3 is taken
as a criterion of the amount of turbulence in the air stream of
wind tunnels.

Table 4. Drag Coefficients

(7.1.5)

the square of the velocity; therefore, it is the dominant phenomenon at high
velocity whereas viscous drag is more important for a slowly moving sphere.

Object P{&‘;‘;" Attitude Co
1 1.16
4 1.17
Rectangular plate, e - g :gi
sidee ¢ and b b g5 Vv b 157
50 l 1.76
@ = 2.00
1 0.93
Two disks, spaced a 1) v 0.78
distance [apart 2™ 2 —_— l I 1.04
3 152
—t b=
1 v 0.91
Cylinder 1 2 —_— D @ 0.85
— = 4 0.87
a 7 —{ 1 0.99
. \2
Circular disk p—— 1.1
Hemispherical cup, \ 0.41
Turbulent boundary loyer open back .
(later separation=
norrow wake)
~D @
Hemispherical cup, 1.35
open front,
parachute
<] @
—
Cone, closed base a = 60° 0.
a = 30° 0.

[WEVY

Fig. 7.5. Drag force vs. Reynolds
number (from Turcotte &
Schubert, Geodynamics:
Application of Continuum
Physics to Geological Problems,
Wiley & Sons, New York, 1982).

7.1 Force to move a solid through a liquid 87

The ratio of the turbulent drag force for a sphere to the viscous drag is

Frurp ,pv? 1 Cp p@ryv o
B, = (o} SRR — Pon S e SNy Pan B 1 7.1.6
F e 2 6murv 24w 24 ¢ ()
Re — w2ry
“

The parameter Re (dimensionless) is called the Reynolds number; it is used
as a measure of the turbulence of the fluid flow. The length (2r) used in
defining Re for a given body is usually taken as the length of the chord iff the
direction of motion. Thus, for a sphere it is the diameter.

Setting Equation (7.1.6) equal to 1, shows that the change from smooth to
turbulent flow occurs at a Reynolds number of about 48 (with Cp, = 0.5).
Figure 7.5 is a graph of the drag force vs Reynolds number for the range of
Reynolds numbers from 107! to 10° and shows that the transition occurs over
a wide range of Reynolds numbers. The smooth flow regime is generally
below a Reynolds number of 1 and the turbulent regime above 10°.

Exercise 7.1.1 Stokes’ law

(a) For a2 mm diameter bubble of air rising through glycerine, what is
the predicted terminal velocity assuming Stokes’ flow? Is this what
you observe in the laboratory? What is the Reynolds number? Does
it agree with the assumption of Stokes’ flow?

(b) By using a propeller-like flagella an E. coli bacterium 1 um in
diameter can swim about 0.03 mm/s in water. What is the Reynolds
number? What is the drag force on the bacterium? If the bacterium
can obtain 3 x 10™"?erg per molecule of glucose and can use 10% of
that energy for propulsion, how many molecules per second must it
metabolize to swim continuously?

Material Viscosity (kg/m s) Density (g/cm’)
glycerine 2.33 (at. 288 K) 1.24

air 1.78 % 107 123 x 107"
water LOox103 1.0

Stoke’s law

10 o
Mt Observed
drag
= / Turbulent
drag Cp =%
. i =
10 T 1% T T T T T
107! 1 10 102 103 10* 10° 10°

Normalized drag force/(Fp/%pv2A,)

Reynold’s number (2rv p/u)

88

Viscosity measurement

A sphere starting from rest in a liquid will be acted upon by gravity F, and
buoyancy Fy, forces. Once it begins to move, the drag force Fy will act to slow
its acceleration. By Newton’s laws

F,— F,— Fy = ma (7.1.7)
F, and F, are constant regardless of the speed of the ball but Fy is dependent
on the speed. If Stokes’ flow is assumed, Equation (7.1.7) becomes a
differential equation for the velocity of the sphere

m(dv/dt) + (6mru)y — (F,— F,) = 0 (7.1.8)

Exercise 7.1.2 Approach to terminal velocity

(a) Assume the solution to Equation (7.1.8) is of the form
v = a(l — e"™). Plug into Equation (7.1.8) and find a and b.

(b) Plot the velocity vs. time for a glass sphere of 0.60 cm and 0.26 g
starting from rest in glycerine. What is the decay time b of the
acclerated motion?

(c) How far will the sphere fall before attaining 0.95 of the final terminal
velocity?

7.2 The experimental apparatus

To measure the viscosity of a fluid the apparatus like that shown in
Figure 7.6 will be used. It consists of a column of glycerine into which spheres
of various sizes and compositions can be dropped and observed to fall under
the influence of gravity. The velocity of the falling sphere can be measured
by noting the time at which it moves through each of the four light beams.
The essence of the following experimental work is to write programs to
measure the required times and to graph the resulting data.

Each of the four light beams which traverse the glycerine column have
several elements. LED light source activates a cadmium sulphide photo-
resistor whose resistance changes when light shines upon it. To sense this
resistance change and to convert it into a digital signal suitable for computer
processing, a voltage comparator circuit is used.

An LED is a small solid state light bulb which requires about 10 mA of
current and 1.5 V to operate. A higher voltage source is generally used
together with a current limiting resistor in series as shown in Figure 7.7. An
LED passes current in only one direction so it is important that it be
connected with the correct polarity.

A cadmium sulfide photo-resistor, is used in many cameras to compute the
exposure time. Like a thermistor, it is a passive device whose resistance
changes. The cadmium sulfide sensor being shown has a resistance of over 20
M(Q in the dark and a resistance in the hundreds of ohms in bright sunlight;
so its resistance changes by over 100,000 to 1. Although it is quite sensitive

7.2 The experimental apparatus

Fig. 7.6. Viscometer apparatus.

LED light
source with

5 c¢cm diameter glass tube
lens

filled with glycerine

Cadmium sulfide photo-resistor
in a tube with 3 mm high and
10 mm wide slit

Zero adjust
@0 < -—
Indicator LED

B = Reset push button
(o @

| Electronics
A board

Fig. 7.7. Optical position sensor +5V +5V o—9 =
circuit. i
100 50kQ 100 kQ2 CA3724G
[LED
= driver
Cadmi transistor
admium,
: sulfide
i?ahulr)ce AN L Jsensor 100 k§| 1600
claret L i
327-15 LED
= indicator
’ 0.001 uF
l Schmidt voltage To 6522

comparator circuit

input port

89

90

Viscosity measurement

to light, a cadmium sulfide cell is a rather slow device; it takes about 30 ms to
fully respond to a sudden change in light level.

To translate the resistance change which the light beam induces in the
photo-resistor to a digital signal, a voltage comparator is used (Figure 7.7).
The comparator will produce an output of either 5 V or 0 V depending upon
whether the input voltage to the + input of the device is greater than or less
than the voltage to the — input. Each LM339 has four such comparators in
a single 8 X 15 mm integrated circuit chip. The comparator circuit in Figure
7.7 has a little bit of positive feedback incorporated to give latching action;
it takes more voltage to turn it on and less voltage to turn it off than just the
minute voltage change required to make the comparator switch. This
hysteresis is similar to that used in the temperature controller of Chapter 2.
The circuit is called a Schmidt trigger and is used frequently with mechanical
switches to eliminate chattering.

Exercise 7.2.1 Cadmium sulfide cel resistance and
voltage changes

To get a feeling of the voltage changes being registered by the
cadmium sulfide light detectors, attach the wires and turn on the 5
volt power to the fluid column apparatus. Fill the column with
glycerine and wait until most of the bubbles are gone. The glycerine
column needs to be in place for the sensors to focus correctly. Level
the apparatus with the screws on the base. Attach an oscilloscope
probe to the test point provided on the circuit board and put the
oscilloscope in the free running mode with a sensitivity of 1 V/div.
This point is the hot (not ground) side of the cadmium sulfide cell
(point A, Figure 7.7). The 50 kQ potentiometer which is in series
with the photoresistor should be set so that the voltage at A is about
one half the supply voltage, ie, 2.5 V. Break the light beam with a
small piece of paper and note the voltage change which occurs.
Move the paper across the light beam as fast as you can to get anidea
of the minimum response time of the cadmium sulfide cell. Moving
the paper vertically will probably give a faster response since the
entry slit on the front of the tube is about 3 mm high and about
10 mm wide.

To set the potentiometer level for the experiment, turn it so that
LED goes off, then the other way until it just goes on. Test the
setting by dropping a medium sized ball.

7.3 The need for using machine language

Even though the data taking rate in the experiment under consider-
ation is modest by most standards, BASIC is too slow to do the job properly.

7.3 The need for using machine language 91

In addition, testing the value of binary bits associated with the comparator
outputs can be done more simply and cleanly in machine language where
binary is the natural number system.

To show the speed limitation imposed by BASIC on this experiment, we
need only estimate the time scale associated with the apparatus. To make a
rough estimate, assume that the maximum velocity of fall to be reckoned
with is about 0.3 m/s; this corresponds to the ball falling from the top of the
column to the bottom (about 0.6 m) in about 2 s. The light beams have a
width of about 3 mm; thus the computer should be able to record an instant
of time ¢ with a resolution of t = distance/velocity = 0.003/0.3 = 0.01 s. In
this time the computer needs to be able at least to decide that the light beam
has been intersected and to record the time of intersection.

Exercise 7.3.1 Speed of a sphere in air
Estimate the time resolution needed to measure with the present
apparatus described above, the speed of a sphere falling through air.

For the computer to decide that the light beam has been intersected, the
data in an input port must be read and tested. This can be done in BASIC
with a WAIT instruction. To estimate the execution time of the WAIT
instruction Program 7.3.1 in Figure 7.8 can be used. Square waves are
generated on DB7 and fed into DB2 as a simulated signal. These are tested
with the WAIT instruction. After the WAIT instruction finds DB2 HI it puts
out a pulse on DBO0 which is then viewed simultaneously on an oscilloscope
with the square wave going into DB2. Thus the execution time can be
measured directly. The time at which the WAIT instruction found a 1in DB2
is recorded by line 65. To go through the WAIT and time recording
instructions took 9 ms. Since we require a resolution of 10 ms, the WAIT
instruction would be only marginally fast enough for our purposes.

Though testing a bit in APPLESOFT can be done using the WAIT
instruction, it has the annoying features that only one state of the bit can be
tested. If you want to determine if a bit is Hl or LO, Program 7.3.2 in Figure
7.9 can be used. If a number x is written in binary form then dividing it by 2
has the effect of simply moving the digits N places to the right; if

x = %00ab ¢d00
then ix is

3x = %000a bcd0
The INT(X) instruction sets all of the digits to the right of 2° place equal to
zero. Thus line 70 of Program 7.3.2 with N + 1 = 3 does the following
operation on the number X = %abcd efgh:

Y%abcd efgh — %abcd €000 = %0000 Ofgh

92

Fig. 7.8. The BASIC WAIT
instruction program example.

Fig. 7.9. A BASIC program to
determine the status of the Nth
bit.

Viscosity measurement

Oscilloscope

¢ Ch_ 1 and
- E trigger
pgrt %

qlb —, Oscilloscope

Ch2

Connections

5 REM PROGRAM 7.3.1
10 BA 50176

12 &1 256

14 C2 BA + 9

16 C3 = BA + 8

20 POKE BA + 2,129
30 POKE BA + 11,224
40 POKE BA + 4,246
50 POKE BA + 5,64
60 WAIT B,4

65 T =

(C3)
70 POKE BA,1
80 POKE BA,O
90 GOTO 60

—

L _IF

~9 My
—

|

Oscilloscope face

Co

nstants

Setup DDRB out DB7,DBO set up
ACR $CO free run load T1

Wait for DB2 GO HI and record time

C1 * PEEK (C2) + PEEK

Put out pulse on DBO

Time for wait loop and T measurement = 9 ms

5 REM PROGRAM 7.3.2

10 INPUT "X=";X
40 INPUT "N=";N
50 F = 2°N - 1

60 g =2"(N+ 1)

70 IF X - G * INT (X / G) > F THEN

GOTO 180

75 PRINT "N TH PLACE IS 0"

76 END

180 PRINT "N TH PLACE IS 1"

190 END

Fig. 7.10. Flow chart for Exercise
7.4.1.

| From BASIC J

|

Assembly language
program to start
clock

l

Find when beam O is
cut

[Record time to TO |

Retum to BASIC]
Print out time TO]

7.4 Machine language program 83

This technique for testing bits is useful in some situations but is even slower
than a WAIT instruction. We will use machine language to test the sensor
bits.

7.4 Machine language program to record fall of a sphere
through glycerine
A common technique for controlling experimental apparatus is to
use a main program written in BASIC or other high level language for doing
the mathematical analysis of data, displaying the experimental results, and
plotting data, in conjunction with subroutines written in assembly language
which do the bit manipulation and other tasks associated with gathering the
data.

Exercise 7.4.1 Light beam sensing and timing

(a) Connect the fluid column outputs to the PBO, PB1, PB2 and PB3
inputs to the 6522 and write an assembly language program to start
the clock decrementing the T2 counting registers at 1 ms intervals.
Call the program from BASIC and write a few instructions which
read the clock registers to check that the clock is functioning
properly.

(b) Expand your assembly language program so that in addition to
starting the clock, it will wait for the first light beam to be cut and
store the time that this occurs. Test with a piece of paper interrupt-
ing the beam.

(c¢) Write a BASIC program which calls the machine language pro-
gram and prints out the recorded time. (See Figure 7.10 for a flow
chart.)

For debugging assembly language programs you can use the trace com-
mand which single steps through the program. Another useful technique is
to substitute a BRK instruction for an instruction op-code and then run the
program to see whether execution gets to the place in question. The op-code
for BRK is 00. When execution is halted by a BRK instruction, the memory
location just after the BRK is displayed together with the values in the 6502
registers. By temporarily inserting BRK instructions in different locations,
the difficulty can usually be found fairly quickly. It is rare to write an
assembly language subroutine (or any program for that matter) which does
not require debugging. With this in mind you may wish to leave spaces in the
program (by inserting the ‘No Operation’ instruction, NOP) at places where
you may want to put in BRK to debug.

94

Fig. 7.11. BASIC program
example for automatic
adjustment of graphing scales.

Viscosity measurement

7.5 Graphing scales

Another problem which this experiment presents is that of choosing
scales to plot the experimental data gathered. Before making a set of
measurements, the best choice of graph scale is not apparent. It is desirable
to have the computer choose an appropriate scale for the axis on the graph
after the data has been obtained. The length of the scale axes should be such
that the data points use as much of the screen as possible. This will make
good use of the limited resolution which the APPLE graphics screen offers.
It can be done by finding the maximum value to be plotted and multiplying
by 1.1 so that there is 10% free space to the right of the maximum data point.
Thus, the second parameter in the &SCALE instruction will be set to
1.1*MAX VALUE OF DATA.

To work out where to put the tick marks is slightly more subtle. The graph
should have tick marks at even values. For example the oscilloscope uses a
1, 2, 5 spacing for its scales. Program 7.5.1 of Figure 7.11 chooses an
appropriate tick mark interval from . . ., 0.001, 0.002, 0.005, 0.01, ..., 1,2,
5, ...etc. Having a total of 5-10 tick marks on the graph seems appropriate.
The program starts with the assumption that the points range from ¢ = 0 to
t = TM. It assumes that the values of the ordinate of the graph are known at
the outset, ie, it is to go from —10 to 40, and that tick marks on the ordinate
are to be placed every 10 units.

3000 REM SUBROUTINE TO SET SCALE
3005 REM PROGRAM 7.5.1
3010 REM INPUT TM THE MAX VALUE OF T

3020 XM = 1.1 * TM Max value for XM
3030 LM = 0.43429 * LOG (XM) Take logarithm base
10 of XM

3040 IM = INT (LM) Get mantissa of the
3050 MM = LM - IM logarithm
3060 IF MM < 0.301 THEN XT = 0.2 =* If the mantissa

10 ©~ IM: GO TO 3090 0-0.301 tick marks
3070 IF MM < 0.602 THEN XT = 0.5 *

10 ©~ IM: GO TO 3090
3080 XT =1 %= 10 ~ IM
3090 &SCALE, - XT,XM, - 10,40 Put left edge of scale
3100 LX$ = "TIME" at — XT; tick marks
3110 LY$ = "z" will go at intervals of
3120 & LABELAXES,XT,10 XT from left edge of
3130 & GR ID, - XT, - 10,XT7,10 graph

3140 RETURN

Fig. 7.12. Assembly language
arithmetic: (a) double precision
addition (b) double precision
subtraction.

7.6 Double precision addition and subtraction 95

7.6 Double precision addition and subtraction

Exercise 7.6.1 Double precision addition

The Program 7.6.1 in Figure 7.12 does a double precision addition
between two numbers and stores the result. If x; and x;; are the low
and high parts of x and the same is true of y and z, where do you put
x and y before starting and where do you look for z = x + y? Show
with examples and explanation that the program steps do a correct
double precision addition.

Program 7.6.2 of Figure 7.12 shows how a double precision subtraction is
done in assembly language. The SBC instruction actually uses the adder
inside the microprocessor to do a subtraction. This is done using the
following observations: first, subtracting a binary number x from the binary
number % 1111 1111 gives the result x (x complement) which is just x with
all its zeros changed to ones and ones changed to zeros. For example:

LLLT 1111 $FF
=1011 0011 —$B3
0100 1100 $4C

(@) Program 7.6.1

9300 18 CLG

9301 AD 00 94 LDA $9400
9304 6D 02 94 ADC $9402
9307 8D 04 94 STA $9404
930A AD 01 94 LDA $9401
930D 6D 03 94 ADC $9403
9310 8D 05 94 STA $9405

(b) Program 7.6.2

9320 38 SEC

9321- AD 00 94 LDA $9400
9324- ED 02 94 SBC $9402
9327- 8D 04 94 STA $9404
932A- AD 01 94 LDA $9401
932D- ED 03 94 SBC $9403

9330- 8D 05 94 STA $9405

96

Viscosity measurement

Secondly, adding $01 to $FF gives $00 (try it). Therefore:

—x=y+$01 + $FF — x = y + $01 + x
y—x=y+801+3$FF—-x=y $ X } (7.6.1)
y—x=3y+&+¢€

where c is the carry.

So, when the 6502 executes an SBC instruction, it complements the
subtrahend, then adds that result to the minuend and the carry ($01). That
is why the carry is set before doing an SBC.

(a)
(b)

Exercise 7.6.2 Quadruple precision subtraction

Show that the Program 7.6.2 in Figure 7.12 does double precision
subtraction as is claimed.

Write and test a program which does quadruple precision subtrac-
tion of the number x stored in $9400, $9401, $9402, $9403 ($9403
contains the most significant part of x, $9400 the least) from the
number y stored in $9404 . .. $9407 and place the result z in $9408
... $940B. You may wish to use indexed addressing but be careful!
CMP, CPX and CPY change the carry bit.

7.7

The viscometer

(a)

Exercise 7.7.1 The viscometer and the viscosity

of glycerine

Write and test a program outlined by the flow chart in Figure 7.13
which waits for the subsequent light beams to be cut, measures the
time interval from the cutting of the first beam and then plots the
data on a graph. So that your assembly language program is suitable
for putting onto the EPROM in the next section be sure it requires
less than 256 bytes and contains no JMP or JSR instructions. The
ASL instruction is quite useful for shifting the mask in this program.
Store your program as a binary file on a disk. The BASIC program
should call the assembly program, then plot the position vs. time for
the data obtained.

Use your position vs. time plots to determine the terminal
velocity and calculate the viscosity and Reynolds number for several
balls of different diameters and densities. It is not necessary to do a
least squares fit for each plot. Have the computer use two of the
measured times to calculate the velocity and draw a line. You can
check visually to make sure the other points fall along the line. If you
input the diameter and mass of the ball, the computer can then
calculate the viscosity (using Equation (7.1.5)) and Reynolds
number (Equation (7.1.6)) and print them on the graph, too. Make

7.7 The viscometer 97

Fig. 7.13. Flow chart for Exercise 7.7.1, the viscometer.

bter (from BASICTI

Set up ports, set up timer T1, set up T2 counters and start counting

Wait for light beam O to be curl
liead T2L, T2H and store data T

Initialize X

¥
lWait for light beam X to be cuTI

1

| Read T2L, T2H and store data in TL,X and TH,XI

l

Subtract TL,X and TH,X from T,
to get elapsed time and store in TL, X and TH,X

Return to BASIC
Set up graph axes

98 Viscosity measurement

(b)

(c)

(d)
(e)

Table 7.1 Typical diameter and mass of spheres

Diameter Mass Material
(cm) (g)

0.60 0.26 glass
1.31 R e 01311 glass
1.575 SR | glass
0.09 4.1 lead
L1 9.22 lead
1.45 17.8 lead
0.80 2.02 steel

several graphs with balls which are available to you. Some useful
sizes are shown in Table 7.1.

Compare your determinations of the viscosity with the value given
in a reference book. Note that temperature and water content have
a large effect on the viscosity of glycerine. (Exercises 7.7.3 and
7.7.4)

Using the data for several balls, make a plot of the drag force on the
ball (which equals the gravity minus buoyancy forces) vs. its
terminal velocity times its radius (vr). Why is this plot significant?
Can the transition to turbulence be seen?

Will the timing part of your program work for a ball dropping in air
(no glycerine)?

Try replacing the glycerine in the column with water and repeating
some of the measurements. Lead balls work the best in this case.
Since the flow will be well into the turbulent regime (Re ~ 400), the
viscosity cannot be accurately determined (why?). However, the
drag coefficient C can be plotted vs. Re by assuming a value for the
viscosity of water (u = 0.010 poise at 20 °C).

One experimental problem with this apparatus is that with larger diameter
balls, the walls of the column interface with the flow and affect the motion of
the ball. The viscosity value can be corrected with the following empirical
formula (Dinsdale & Moore, ‘Viscosity and its Measurement’, Reinhold
Publishing, New York, 1962):

I‘LITUC = /’meil\llll‘d[]‘ - 2'104(r/R) + 2'()9(7'/]?)3 - 0'95(1,/R)3]

where R is the radius of the column and r the radius of the ball.

Exercise 7.7.2 The wall effect

Correct the viscosity values obtained in Exercise 7.7.1 to account
for the wall effect.

7.7 The viscometer 99

The temperature and water content of glycerine affects its viscosity
greatly. The water content is particularly hard to control since glycerine
absorbs water vapor from the air when it stands uncovered.

Exercise 7.7.3 Temperature variation of the viscosity

of glycerine

The datashown in Table 7.2 taken from the Handbook of Chemistry
and Physics and the American Institute of Physics Handbook shows
the temperature dependence of the viscosity of glycerine. Make a
plot of viscosity vs. temperature. Suspecting an exponential depen-
dence, now plot the natural logarithm of the viscosity vs. tempera-
ture and find the parameters and the model equation which give the

best fit.

Table 7.2

Temperature °C Viscosity Pa s (MKS unit)
0 121
6 6.26

10 3.95

15 2.33

20 1.49

25 0.954

30 0.625

Exercise 7.7.4 The viscosity of aqueous solutions of
glycerine
The data shown in Table 7.3 from the Handbook of Chemistry and
Physics (Chemical Rubber Co., 52nd Edition, page D191) gives the
relative viscosity of aqueous solutions of glycerol by percentage
weight of glycerol.

(a) Plot these data to see the general behavior. Try both linear and log
plots.

(b) Try fitting these data with the mixture formula:

1_P & =P

[M2
where P is the concentration of component one and u; and w, are
the viscosities (u; = glycerine, u, = water).

(c) Try fitting these data with the Arrhemis formula (Dunstan & Thole,
The Viscosity of Liquids, Longmans Green and Co., London, 1914).

o= iy ?

100

Viscosity measurement

Table: 7.3
Relative viscosity
% glycerol by weight (Viscosity/viscosity of water)
il 1.02
10 1:29
20 1.73
30 2.45
40 3.65
50 5.92
60 10.66
70 23.00
80 59.78
88 147.20
92 383.70
96 778.90
98 1177.00

(d) Try fitting a simple exponential to the data above 80% con-
centration.

7.8 Using an EPROM

Erasable Programmable Read Only Memory (EPROM) is a cross
between ROM (which can’t be reprogrammed) and RAM (which forgets
everything when the power is turned off). Like a ROM, an EPROM requires
special equipment to write the data into its memory. It will not forget the
data when the power is turned off; but unlike ROM, it can be erased by
shining ultraviolet light through a quartz window in the top of the chip. Thus,
programs can be developed by erasing and reprogramming improved ver-
sions on a single EPROM. In building experimental apparatus it is often
convenient and economical to have a simple one board computer dedicated
to doing a single task with a ROM or EPROM to store its program.

Exercise 7.8.1 Blasting and using an EPROM

Using a computer which has an EPROM programmer, blast an
EPROM with the program you wrote above. If you are using the
J. Bell programmer the APPLESOFT program EPROM.
BLASTER can be used. Read through these instructions before
you begin. Take your disk with the BASIC and assembly language
programs from Exercise 7.7.1 to an APPLE computer set up with
the EPROM programmer and RUN EPROM. BLASTER (a copy
of the program listing for this program is in Appendix J). Then
follow the instructions to enter your Exercise 6.7.1 machine
language program into the EPROM from your disk. When the

7.8 Using an EPROM 101

program is done, release the lever and remove the chip from the
holder. Return with the programmed EPROM and an EPROM
card to your APPLE.

WARNING!!!
Before placing the EPROM into your computer, turn the computer
off!

After being sure the computer power is off, pop the cover off the
APPLE computer, place the EPROM in the holder in slot 7, being
careful that the pin orientation is correct; gently lock it with the
lever. From BASIC, the program in the EPROM will now be called
at address $C700. Modify your Exercise 7.7.1 BASIC program to
call the machine language program in the EPROM. Repeat the tests
with the same type of balls to demonstrate that you can reproduce
your Exercise 7.7.1 graphs using the EPROM chip and that the data
is consistent. When you have finished with this exercise please turn
off the computer, remove the EPROM you used and place it in the
place designated for blasted EPROMs.

8 Interrupts

Fig. 8.1. The process status
register. If a BRK instruction is
executed, a forced interrupt is
doneandtheBbitissetto 1 (this
forced interrupt is not masked,
ieitis not inhibited when the
interrupt disable bitis setto 1).
Setting the D bitto 1 (SED
instruction) makes the 6502 do
binary coded decimal addition
(ADC) and subtraction (SBC).
IRQisrecognized only if bitis 0.
After IRQ is accepted | bit is
automatically setto 1.

Interrupts are an important capability of modern computers. They allow the
processing of several independent tasks by the CPU. On large computers
they allow multiuser and time sharing activities. On microprocessors they
allow the running of a main program while periodically taking data or
sending data to a slow device like a printer. Also computer start up, DOS,
reset and BREAK instructions make use of the interrupt function.

In the discussion which follows, we will first trace the steps taken by the
CPU when it receives an Interrupt Request (IRQ) from other parts of the
APPLE and then look into the ways we can cause interrupts to be generated
and serviced.

8.1 Interrupts and the CPU

The interrupt sequence is similar to a jump to a subroutine except
that it occurs when signalled by wire leading to the CPU (IRQ) line whereas
the subroutine jump is a normal executable statement (JSR). When an
interrupt signal is present on the IRQ and the interrupt disable bit (I) of the
process status register (see Figure 8.1) is 0, the CPU begins processing the
interrupt. The interrupt disable bit is used to prevent the CPU from
beginning to process the same interrupt again before it is completed the first
time. Without it the computer would go into a continuous regression. The I
bit is set equal to 1 during an interrupt sequence and further interrupts are
ignored until this I bit is returned to zero. This can be done with the CLI

| N I v [I B l D l I l Z I i] Processor status register

Carry

Zero result

e Interrupt disable

Decimal mode

Break command

Expansion

Overflow

Negative result

Fig. 8.2. Flow chart for normal
generated interrupts.

8.1 Interrupts and the CPU 103

instruction but is done automatically at the return from the interrupt service
routine.

If the I bit of the process status register is 0 the CPU recognizes an IRQ
signal and, after completing the machine language instruction currently in
process, stores the program counter (P) and process status register (S) (with
the I bit set to 0) on the stack. It is remarkable but necessarily true that if
these registers and the A, X, Y registers are restored to their values just
before the interrupt, the executing program will continue exactly where it
left off as if the interrupt had not occurred. After saving the P and S registers,
the CPU then sets the I bit of the process status register to 1 to prevent
further interrupts and goes to the top of memory $SFFFE.FFFF to find the
location of its next instruction (see Figures 8.2 and 8.3).

At Rom addresses $SFFFE.FFFF the CPU finds the address $FA40 and
begins executing the program at that address. The first instruction (STA $45)
saves the accumulator in memory location $45 for later restoration. The next
instructions at $FA42.FA47 pull the old value of the process status register

, Interrupt request received

If interrupt inhibit bit in process status
register is not set, IRQ is accepted.

1

Processor jumps indirect to $FFFE, ie, it looks
at SFFFE and $FFFF for address of next op-code,
address $FA40 is stored in APPLE ROM

Program routine in
addresses $FA40 - $FA47
decides if IRQ came from a BRK
instruction by examining the
B bit in P register

Routine to pro-
cess reaction
Jump indirect to $03FE; to a BRK starts

when machine is booted at SFA4C
$FF65 is stored in $03FE
and $03FF. If DOS has

initiated an IRQ it ex-

NB all locations pects the CPU to look in
except $03FE and $FF65 for an op-code to
$03FF are in ROM, process its IRQ

APPLE uses a JMP
instruction through
this location so
that a user can
intercept the ISR

104

Fig. 8.3. Unmodified Machine
Generated Interrupt Service
Routine.

Interrupts

from the stack and check to see if the interrupt came from a BRK instruction.
If it did, the CPU is directed to $FA4C to service the BRK interrupt where
the CPU registers are displayed on the screen and the computer halts the
program. If the BRK bit was not set, the CPU would execute JMP ($03FE)
which is an indirect jump to the memory address stored in $03FE.O3FF.
Under normal operation the machine would find the address $FF65 there
and proceed to further interrupt processing by the APPLE monitor pro-
gram. This is the APPLE Interrupt Service Routine (ISR).

At the end of servicing an interrupt, the value stored at $45 is returned to
the accumulator followed by a return from interrupt instruction (RTI).
This instruction pulls the old value of the process status register (with the I
bit set to 0) and program counter from the stack and restores them in their
appropriate registers. The interrupted program then continues from where
it left off.

Note that the X and Y registers are not automatically saved by the normal
interrupt sequence. If they are used during the servicing of the interrupt the
original values must be saved at the start and restored before returning. Also
notice that the indirect addressing JMP at $FA49 using addresses at

FFFE- 40 FA After placing the process
status register and program
counter on the stack and
setting the B bitto 1, CPU
goes here to start normal
machine ISR.

FA40- 85 45 STA $45 Accumulator saved at $45.

FA42- 68 PLA

FA43- 48 PHA

:::2;_ 8: :?E Break bit of old PSR checked.

FA46- OA ASL

FA47- 30 03 BMI $FA4C Branch to break ISR.

FA49- 6C FE 03 JMP ($03FE) Jump indirect to ($03FE)

FA4C Routine continues.

FF65 D8 CLD Entry point for continued

FF66- 20 3A FF JSR $FF3A service of normal machine

FF69- A9 AA LDA #3$AA interrupts.

FF6B- 85 33 STA $33

FF6D Routine continues.

03FE~ 65 FF Address loaded for normal

machine interrupts.

8.2 User controlled interupt 105

$03FE.O3FF is the only part of the interrupt sequence that causes the CPU
to look in the RAM. The other instructions are all in the ROM and cannot
be modified by the user. This short trip outside the ROM is what allows the
user to enter the interrupt process.

8.2 User controlled interrupt

Your APPLE is equipped with a 6522 VIA which has the capability
of generating IRQs by means of its Interrupt Enable Register (IER) (see
Appendix E, Figure 4). User controlled interrupts involve programming the
IER and intercepting the ISR at $O3FE.

The programming of the IER is indicated in Appendix E, Figures 29 and
30. Six events can generate IRQs. We will be concerned with interrupts
produced by either the T1 counter or T2 counter reaching zero. The
programming of the IER is a two step process. First the bit(s) for the function
not being used must be disabled. This is accomplished by placing a zero in bit
7 toindicate a disable action followed by ones in bits to be disabled and a zero
in bits not to be disabled. Then enabling is accomplished by placing a one in
bit 7 followed by ones in bits to be enabled and zeros in bits not to be enabled.
For example to set up T1 for interrupts first %0011 1111 is sent to the IER
followed by %1100 0000 sent to the same location. After programming the
IER the I bit of the process status register is set equal to zero with a CLI
instruction. This signals the computer to accept interrupts.

Now if the address of your own interrupt program (ISR) is put into
$03FE.O3FF, all non-BRK generated interrupts will be directed to it. Some
of these interrupts (those not generated by the VIA) still need to be sent to
$FF65. So in your ISR there must be a check to see if the non-BRK
generated interrupt was caused by the 6522 VIA or some normal machine
interrupt. This check is performed by reading the Interrupt Flag Register
(IFR) of the 6522 (see Appendix E, Figure 29).

Bit 7 of the IFR is set any time the VIA produces an IRQ. The other bits
are set by the conditions indicated. For example, if T1 generated the
interrupt, bit 6 and bit 7 are set. Both bits are cleared by reading the low byte
of the T1 counter (T1C.L) or by writing the high byte (T1C.H).

The user controlled interrupt process is now complete. Two programs are
necessary. The Interrupt Initialization Routine (IIR) redirects the interrupt
process by inserting the memory location of the ISR at $03FE. The IER is
programmed. The I bit of the process status register is set to zero and the IFR
cleared. The interrupt initialization routine ends with an RTS instruction
and is called or run only once to establish the user controlled interrupt
conditions.

The second program is a user ISR which will be run on every non-BRK
generated interrupt. This ISR begins at the memory location putinto $03FE.
The first thing that must happen in the ISR is a check to see if the interrupt
was generated by the 6522 VIA. This is done by reading the IFR. If the

106

Interrupts

interrupt was not generated by the 6522 then the CPU is sent back to $FF65
in the ROM. If it was generated by the 6522 then the IFR is cleared and the
rest of your ISR executed. At the end of this ISR the old value of the
accumulator is retrieved from $45 and the X and Y registers restored if they
were used. The ISR is completed with a RTI instruction.

8.3 AnlISR

To illustrate the use of an IRQ, a program which continuously
displays the elapsed time on the CRT monitor screen in the upper left hand
corner, without disturbing the normal APPLE operation, will be used as an
example. The procedure uses the T1 timer in the 6522 VIA to generate a
continuous stream of interrupts, one every 1/100 s. Each time the CPU is
interrupted the ISR increments a three-byte counter TL, TM, TH by one
count. After 100 counts (1 s) a display routine is called and data are displayed
on the CRT. After this is done program control is returned to the APPLE
program in process.

Exercise 8.3.1 Running an interrupt program

Using the MINIASSEMBLER, type in the IIR of Figure 8.4(a) and
(b) and the ISR from Figure 8.5(a) and (b). Run the IIR from
BASIC (call 37120). You should see a display of seconds in the
upper line of the CRT which increments every second. Once this is
going try running other programs and doing other operations of the
APPLE.

In addition to the interrupt processing, several aspects of the ISR of
Exercise 8.3.1 are new. The section of the program from $900D to $9027 uses
Binary Coded Decimal (BCD) arithmetic. In BCD each byte represents a
number from 0 to 99 rather than from 0 to $FF, that is, each nibble (four bits)
is allowed to count only to 9 before a carry is taken to the next nibble (see
Figure 8.6). The four-bit nibbles thus become direct representations of
decimal digits. The SED instruction (set decimal) at $900D puts the CPU
into the BCD mode and the CLD at $9027 takes it out. To help in the
understanding of the BCD mode replace SED with a NOP in $900D for
Exercise 8.3.1 and observe the operation of the ISR.

Another new operation is the direct write to the screen in the program
section from $9032 to $906F. When the APPLE is in text mode (TEXT) just
as in graphics mode (HGR?2), certain memory locations are being read to
display the information on the screen. For HGR?2 these are $4000.5FFF and
for TEXT they are $0400.07FF beginning at the top left of the screen. Each
byte is interpreted as one character to be displayed. So a character can be
placed anywhere on the screen by writing to one of these memory locations.

8.3 AnISR 107

Fig. 8.4. |IR for generating T1 Set
timer interrupts at 0.01s
intervals: (a) flow chart; (b)

program. l Store start of ISR in $03FE and $03FF I

|

’Set up PB7 so timing can be viewed on scope |

|

I Set ACR for continuous interruptq

l

Set timer T1 so that interrupts
are generated every 1/100 second

I

Set 1ER so that the T1 interrupt
flag on IFR is active

s

[Initialize TL, TM, TH]

RTS
9100- 78 SEI Load $9000 into $03FE.O3FF
9101- A9 00 LDA #$00
9103- 8D FE 03 STA $03FE
9106- A9 90 LDA #%$90 Set up PB7 output to observe
9108- 8D FF 03 STA $O3FF | square waves on scope
910B- A9 80 LDA #$80 |
910D- 8D 02 C4 STA $C402 | Set T1 for free run
9110- A9 CO LDA #$CO |
9112- 8D 0B C4 STA $C40B |
9115- A9 EC LDA H#S$EC | SetT1Land T1Hfor 1/100's
9117- 8D 04 C& STA $C404
911A- A9 27 LDA #$27
911c- 8D 05 C4 STA $C405 |
911F- A9 3F LDA #$3F l Set IER for T1 interrupts
9121- 8D 0OE C4 STA $C40E
9124- A9 CO LDA #$CO
9126- 8D QOE C4 STA $C4OE |
9129- AD 04 C4 LDA $C404 Clear bits 6 and 7 of IFR
912Cc- A9 00 LDA #$00)
912E- 8D 00 94 STA $9400
9131- 8D 01 94 STA $9401 Initialize TL TM and TH
9134- 8D 02 94 STA $9402
9137= 58 CLI Clear | bit of process status

9138- 60 RTS register

108

Fig. 8.5. ISR for counting
interrupts and displaying the
elapsed time: (a) flow chart; (b)
program.

Interrupts

l Interrupt acceptedJ

| Clear interrupt flags on 6522]

|

Add one to time counter
use 6502 BCD (binary coded
decimal mode - don’t worry

about details of this)
triple precision

Have 100
counts been
added

Display routine

Restore A
restore X

RTI

9000- AD 0D C4
9003- 29 cO
9005- DO 03
9007- 4C 65 FF
900A- AD 04 C4

900D- F8
900E- 18
900F- A9 01

9011- 6D 00 94
9014- 8D 00 94
9017- A9 00
9019- 6D 01 94
901C- 8D 01 94
901F- A9 00
9021- 6D 02 94
9024- 8D 02 94
9027- D8

Interrupt came from
DOS; send program to
$FF65 to find DOS
ISR op-code

Restore Accumulator
to original value

RTI
LDA $C40D
AND #$CO
BNE $900A
JMP $FF65
LDA $C404
SED
cLC]
LDA #$01
ADC $9400
STA $9400
LDA #$00
ADC $9401
STA $9401
LDA #$00
ADC $9402
STA $9402 |
CLD

Read IFR and send CPU to
$FF65 if interrupt did not
come from 6522 T1.
Otherwise go to $900A
Clear IFR bits 6 and 7
Setdecimal mode

Increment TL, TM and TH
by 1

Clear decimal mode

8.3 AnISR

9028-
902B-
902D~
902F~
9030-
9031-
9032~
9035~
9036~
9037-
9038-
9039-
903B-
903C=
903E-
9041-
9043-
9046-
9047~
9049-
904C-
904F-
9050-
9051~
9052~
9053-
9055~
9056~
9058~
9068~
905D-
9060-
9062-
9065~
9067~
9069-
906C-
906D-
906F-
907 1=
9072=
9073-
9075-

AD
FO
A5
40
8A
48
AD
6A
6A
6A
6A
29
18
69
8D
A9
2D
18
69
8D
AD
6A
6A
6A
6A
29
18
69
8D
A9
2D
69
8D
A9
A2
9D
E8
EO
DO

68
AA
A5
40

00
03
45

02

OF

30
00
OF
02

30
01
01

OF

30
02
OF
01
30
03
20
00
04

23
F8

45

94

94

04

94

04
94

04

94

04

04

LDA
BEQ
LDA
RTI
TXA
PHA
LDA
ROR
ROR
ROR
ROR
AND
cLC
ADC
STA
LDA
AND
cLC
ADC
STA
LDA
ROR
ROR
ROR
ROR
AND
cLC
ADC
STA
LDA
AND
ADC
STA
LDA
LDX
STA
INX
CPX
BNE
PLA
TAX
LDA
RTI

$9400
$9030
$45

$9402

#30F

#$30
$0400
#30F
$9402

#3$30
$0401
$9401

#$0F

#3$30
$0402
#3$0F
$9401
#3$30
$0403
#3$20
#3$00
$0404 ,X

#3$23
$9069

$45

I\

109

If $9400 is not zero reload
accumulator and RTI. If
$9400 is zero go to $9030

Transfer X register to stack

Increment display on
screen

Restore X register and
accumulator

110

Fig. 8.6. Number systems:
binary, hexadecimal, decimal,
BCD. In BCD each group of four
bitsrepresents one decimal digit
and thus the binary
representations of hex numbers
A,B,C,D,E, Fare not valid.

Fig. 8.7. ASCII Code.
(Reproduced with permission
from American National
Standard X3.4-1977, copyright
1977 by the American National
Standards Institute. Copies may
be purchased from the
American National Standards
Institute, 1430, Broadway, New
York, New York 10018.)

8.3 AnISR

Binary % 0010 0101 0110 0100 Binary representation of decimal
9572
Hex $ 2 5 6 4 Hexadecimal representation of
decimal 9572
Decimal — 9 5 7 2 Decimal number
BCD — 1001 0101 0111 0010 BCD representation of decimal 9572
2 5 6 4
40969572 256[1380 16/ 100 1]4
8192 1280 96 4
1380 100 4 0
9572. = $2564
s s 1% 1% 1% ! Te | ol
B : bs — 0 1 0 1 0 : 1 0 1
i (el N1 1 1 2 | 3 £ | 9 | % 7
0[(0[0f0 0 NUL DLE SP 0 @ P)
0]0({0[1 1 SOH DC1 ! 1 A Q a q
0]0[1]0 2 STX DC2 " 2 B R b v
0f0}1]1 3 ETX DC3 # 3 (o S c s
0]1]0(0] 4 EOT DC4 3 4 D T d t
0f1(0]1 5 ENQ NAK % 5 E U e v
0]1]1{0 (] ACK SYN & 6 F v f v
oj1f{1[7 BEL ETB s 7 G L g w
1{0/0]0 8 BS CAN (8 H X h x
1{of0|1 9 HT EM) 9 | X i y
110{1({0] 10 LE SuB * : J Z i z
110[1|1] 0N vT ESC + g K [k {
1[1]o]o] 12 FF FS] < L \ I |
1{1{0]1 13 CR GS - = M] m }
T %0 14 SO RS . > N ~ n .
11| 1s Sl us / ? 0 | — | o |DEL
0/0 NUL Null 1/0 DLE Data Link Escape
0/1 SOH Start of Heading 11 DC1 Device Control 1
0/2 STX Start of Text 1/2 DC2 Device Control 2
0/3 ETX End of Text 1/3 DC3 Device Control 3
0/4 EOT End of Transmission 1/4 DC4 Device Control 4
0/5 ENQ Enquiry 1/5 NAK Negative Acknowledge
0/6 ACK Acknowledge 1/6 SYN Synchronous Idle
0/7 BEL Bell 1/7 ETB End of Transmission Block
0/8 BS Backspace 1/8 CAN Cancel
0/9 HT Horizontal Tabulation 1/9 EM End of Medium
0/10 LF Line Feed 1/10 SUB Substitute
0/11 VT Vertical Tabulation 1/11 ESC Escape
0/12 FF Form Feed 1/12 FS File Separator
0/13 CR Carriage Return 1/13 GS Group Separator
0/14 SO Shift Out 1/14 RS Record Separator
0/15 S| Shift In 1/15 US Unit Separator

/15

DEL Delete

8.4 T2 generated interupts 197

To do this the alphabet and punctuation characters must be represented by
numbers. In the APPLE (and many other computers) the seven-bit ASCII
code (American Standard Code for Information Exchange) is used. This
code was first used by teletype machines. Figure 8.7 shows the mapping of
characters to numbers. To see how the display and character are related,
type in and RUN the following BASIC program.

5 REM PROGRAM 7.3.3
10 FOR I=0 TO 255

20 POKE 1024 + I, I
30 NEXT I

CONTROL — RESET

RUN

The program section to display the time on the screen contains parts which
isolate each nibble of the sum, convertit to ASCII, then write it to the proper
location on the screen.

8.4 T2 generated interrupts

Interrupts generated by T2 can be handled in a similar fashion to
those generated by T1. As in previous chapters, if we use the T1-T2 timer
pair to give us longer time intervals, PB7 must be set up as an output and a
wire connected from PB7 to PB6. The initialization routine (Program 8.3.1)
needs to be modified to allow only T2 generated interrupts. T2H and T2L
as well as TIH and T1L are initialized. The clearing of the T2 flag in the
IFR is done by reading T2L or by writing T2H as indicated in Figure 8.4.
Register T2ZH must be written to again anyway since it does not reload
automatically.

Exercise 8.4.1 Writing an interrupt program

Write an IIR and on ISR using the T2 interrupts to ring the bell
every second. Use T2 to count down (via T1 signals) from a starting
value. When it reaches zero, it should interrupt; then the ISR
should reset T2 and ring the bell. To ring the bell, JSR to the bell
subroutine at SFBE2. This subroutine uses the Y register so be sure
to save it. Test that your interrupt routine is working properly by
running other APPLE programs you have on your disk with the bell
ringing in the background mode. What happens when you access
the disk with the interrupt going? Do you now have a beeping
APPLE?

Other topics

9.1 Hardware for data acquisition and control

There are two styles of hardware for using a microcomputer to
acquire data and control equipment. One is exemplified by the APPLE Ile
system you have used in the laboratory. The ADC, the DAC and the digital
I/O cards are inside the computer and are under direct control of the
microprocessor. They have control and data registers which are directly
addressable via the buss. External devices (sensors, switches, etc) are
connected to the cards. Creative programming can turn the computer into,
for example, an oscilloscope (ADC and display) or a signal generator
(DAC) as the laboratory exercises have shown.

Other buss systems are in use which, like the slots in the APPLE, allow a
microprocessor to be connected to various data acquisition and control
devices by simple board replacements. Some of the more widely used ones
are IBM-PC buss, S100, STDBUS, MULTIBUS and QBUS.

The second style is to have a separate box next to the computer which has
the ADCs, DAGs, digital 1/O lines and a programmed microprocessor
controller. It communicates with the computer via a serial or parallel
communication system (see Section 9.2). The box takes care of the data
acquisition and control while the computer is used to send control bytes to
tell the box what to do and to receive the data for further processing. The
limitation of this style is in the speed of communication to the computer and
in the number of things the box has been preprogrammed to know how to
do. However, some computers do not have card slots (notably the APPLE
IIc and the Apple Maclntosh) so that this style of data acquisition and
control is the only possible choice.

9.2 Serial data communication

In the exercises you have done, transmission of data to the computer
has been direct. The sensors have been connected to the ADC or VIA which
are inside the APPLE and connected to the internal buss. This is not always
the case. Many newer instruments have means of gathering and storing
digital data themselves. To analyze the data, they are transmitted along a
cable between the instrument and computer. The methods used for this
communication can be split into two broad groups: serial and parallel.

Serial data is transmitted one bit at a time. Each bit follows the previous

Fig. 9.1. Serial transmission of
an ASCII ‘K’ character. ‘K" =
Binary 01001011. The time for
one bitis 1/BAUD rate.

Other topics 113

one after a preset time interval has passed. This interval must be known to
the receiver so that it can synchronize its timing with the transmitter. There
are several hardware standards which are used for serial transmission. By far
the most widespread is the RS-232C standard. It is used for slow to moderate
speed communication (110-19200 bits per second or ‘baud’) over distances
of up to 300 m. Most terminals connected to multiuser computer systems use
this standard as do many printers and plotters. At its minimum only two
wires are needed: a ground and a signal wire. Since the standard requires
that data only go one way on the signal wires, this minimal system would be
good only for devices like printers. Most of the time another wire is added to
provide two way communication. The RS-232C standard is also used to
communicate with a modem which is a device that transmits and receives
serial data over the telephone lines. A data rate of 300 or 1200 baud is
commonly used.

Figure 9.1 shows how an ASCII character ‘K’ would be sent using the
RS-232C protocol. The start bit signals the beginning of a data word. It is
followed by 4-8 data bits. Then sometimes a parity bit is included which is
used for error checking. At the end are one or two stop bits. The number of
bits and their meaning as well as the rate of transmission must be known at
the receiver. Since the receiver restarts its timing at each start bit, it only
needs to remain synchronous over the length of the data word.

One problem which arises often is that the transmitter sends data faster
than it can be processed at the receiver. The receiver needs to have a way of
saying, ‘Hold on a moment while I take care of what I already have.’ This is
done either with another wire which signals a hold or in software by having
the receiver transmit characters to signal the transmitter. Most commonly
the ASCII character 19 (Control S or XOFF;is HOLD and 17 (Control Q or
XON) is GO. The transmission becomes a game of RED LIGHT GREEN
LIGHT.

The transmission and reception of serial data is usually done by a UART
(Universal Asynchronous Receiver Transmitter). Once it knows the
protocol of the data being sent, the UART takes care of the serial interface.
It is used by addressing registers; those for the 6551 chip are shown in Table
9.1. On transmission, it translates the byte in its data register to serial form
and on reception, it translates the serial data into a byte in the data register.

Isb msb
{ I
Start 1 1 0 1 @ 0 1 0 Stop Start
0 _____ ﬂ
bmme= \
Start bit 8 data bits

—_—
Sometimes this

is the parity bit

114

9.3 Parallel data communication

Table 9.1 6551 register format

Register ~ Write Read

0 Transmit Data Register Receiver Data Register
1 Programmed Reset (Data is “Don’t Care™) Status Register

2 Command Register

3 Control Register

The control register is used to set the protocol of the serial data, the
command register is for interrupt control, and the status register is used to
signal data transmission and error conditions. The interrupt capability is
often used in communication programs so that the computer need not
continually monitor the UART status.

The most obvious limitation of serial data transmission is in the speed of
communication. A new standard, RS-422A, has been defined to try to
alleviate this problem. It offers speeds of 100000 bits per second over
distances of 1500 m. Another limitation is that each device needs a separate
cable and interface. Further information about serial communication can be
found in the references.

Exercise 9.2.1 Serial communication

Write out the serial sequence (Figure 9.1) which would transmit an
ASCII ‘j’ character on a serial line. Use 1 start, 7 data, no parity,
1 stop bits and 9600 baud. Indicate the time on your picture. Refer
to the ASCII chart of Figure 8.7 for the binary code for ASCII *j’.

9.3 Parallel data communication

In parallel transmission the data in one word are communicated
simultaneously by having many wires connecting the transmitter and
receiver. The data buss connecting various parts of the computer is one
example; each bit of a data byte is stored in a memory location at the same
time. To transmit and receive an eight-bit byte of data externally, eight wires
are needed as well as several other wires, eg, a R/W wire, to control the
direction and timing. A parallel hardware standard has been adopted for
laboratory instrumentation which is called IEEE—488. Although the com-
munication distance is limited to a total of 20 m, it can have up to 16 devices
simultaneously connected and can transmit data at speeds up to 1000000
bytes per second. Many laboratory instruments now have options which

allow connection to this buss.
In the IEEE—488 cable there are a total of 24 wires. Eight of these are
ground wires which help to increase the noise immunity. There are eight
data wires, three data transfer control wires and five management control

Fig. 9.2. IEEE-488 data transfer
protocol. DAV is ‘Data Valid’,
NRFD is ‘Not Ready for Data’,
NDAC is ‘Not Data Accepted’.

Other topics 115

wires. The devices on the buss can be designated as either talkers, listeners
or controllers. There must be at least one controller which is usually a
general purpose microcomputer. [t manages the communication by using the
management control wires to designate which devices should be listeners
and which should be the talker. Only one talker is allowed at one time but
the talker device can be changed at any time. For example, a printer would
be a listener and a voltmeter would be a talker. Devices can also be active or
inactive so, for example, the printer need not be printing all the time.
Communication of a byte of data is synchronized via a handshake
mechanism using the three data transfer control wires. Figure 9.2 shows the
sequence of signals to transmit one byte after the active talkers and listeners
have been designated. Note that a LO level indicates a true condition and a
HI level false. The sequence starts by each active listener letting the NRFD
(Not Ready For Data) line go HI (false) thus indicating that it is ready to
receive data. Due to the open collector design of this signal wire interface,
the signal does not go HI until all of the listeners are ready. When the active
talker sees the NRFD high it places the data on the data wires and signals
that the data is valid by dropping DAV (D Ata Valid). The listeners then set
NRFD LO and each store the data from the buss. As each completes that
task, it lets the NDAC (Not Data ACcepted) signal go Hl indicating that the
data has been stored. As with the NRFD, the NDAC wire does not go HI
until all the listeners have let it go. Thus the slowest listener active on the
buss limits the speed of communication. The talker then sends DAV HI
indicating that the data is not valid any longer and the listeners drop NDAC.

Signal wires Sequence Controlled by
2 of 8 @MJ Active
Data T talker
lines > Floating level

... 1
@ pr
IE%s Fatss Active
True talker
NRFD il Pl i
" listeners
1l T
Listener 1) e
Listener 2
Listener 3
NDAC 7 False Active
L Listeners
. True

o

Listener 1/
Listener 2

Listener 3

116

9.4 Sensors and transducers

The buss is then ready for the next byte transfer. This sequence is called a
handshake since the data transfer takes place when both the transmitter and
receiver have agreed (signalled) that they are ready.

The remainder of the wires in the buss are used for signals between the
devices so that the talkers and listeners can be designated and so that the
devices can signal emergency conditions. For example, if ATN (ATtentioN)
is true it indicates to all the other devices that the controller wants to talk and
that everyone else should listen. If SRQ (Service ReQuest) is true a listener
is requesting to talk. The full protocol can be found by reading the interface
documentation (Hewlett Packard calls it the GPIB interface) or by getting a
description from the Institute of Electrical and Electronic Engineers.

Exercise 9.3.1 Parallel communication

Using 6502 assembly language implement IEEE—488 protocol using
the 6522 VIA interface. Assume that the eight data lines of Port B
are connected to the data lines of the interface and that PAO is
connected to DAV, PA1 to NRFD, PA2 to NDAC. Also assume
that the active talker is the computer (6502). Write a program which
will transfer 100 bytes from memory locations $9000-$9063 to the
active listeners. Use the following outline:

(1) initialize the ports, set the data lines as inputs (floating temporarily),
set DAV HI

(2) startloop of 100

(3) look for NRFD HI (all listeners ready)

(4) set data lines as output and put data on lines

(5) set DAV low (signal data is valid)

(6) look for NDAC HI (data accepted by all listeners)

(7) set DAV HI and set data lines as inputs (floating again)

(8) loop back for next byte of data

9.4 Sensors and transducers

In the laboratory work in this book you have used only three kinds
of sensors, a potentiometer, a thermistor and a photoresistor, and two
controllers, a stepping motor and a HEXFET switch. There are many other
kinds of sensor, at least one for each physical parameter which is measured.
A good physical understanding of the system to be measured is always the
first step. Then, selection or design of the sensor can be done. Some
generalized performance characteristics have been discussed in the sections
on zero, first, and second-order systems. Understanding the physical and
electrical basis of the sensor is also important. Please refer to the references
for information on the wide variety available. Keep in mind that there is
always room for invention.

Other topics 117

9.5 Software for data acquisition and control
Of the large amount of software available for a particular micro-
computer, there are two basic types: languages and application programs.
The first are the primary tools with which a computer is programmed (eg,
BASIC). The second are particular programs which have the computer
perform specific tasks (eg, AMPERGRAPH). Both have their places in the
use of the computer in the laboratory.

As in the work done in this laboratory, most laboratory computers are
programmed in the laboratory using a chosen language. Table 9.2 lists the
more popular ones with some comments on their efficacy. A program in an
interpreted language is executed as it is run whereas one in a compiled
language must be translated into machine code before it can be run. Be sure
that the language has the capability of PEEKing and POKEing absolute
memory locations.

Most application programs for data acquisition which are available at this
time are libraries of subroutines (or procedures or modules) which, when
called, do specific tasks. For example, one subroutine would output a
number to the DAC and another would get the time from the timer. The
libraries are specific to the language and the hardware being used.

What really made microcomputers popular for the home and business
were two applications programs: the word processor and the spread sheet.
These are versatile programs dedicated to a specific need (such as writing)
but general enough to encompass a variety of tasks within that need (such as
letters, reports, lists). There are a few programs available which address the
need for a generalized data acquisition, storage, analysis and graphing. As
the business market saturates, it is to be expected that more and varied
programs will be written for the scientist and engineer.

Table 9.2 Microcomputer languages

Language Comments
BASIC Interpreted or compiled, common, easy to learn, awkward, slow
Assembly Compiled, most direct control of computer system, awkward

FORTRAN Compiled, traditional for number-crunching analysis, has complex
numbers!, awkward, frequently no PEEK and POKE, libraries

available
Pascal Compiled, structured for easier programming
Ada Like Pascal but US Department of Defense backing
Modula II Like Pascal but corrects some weakneses
FORTH Threaded, can be extended by user, originated for data acquisition

and control, somewhat awkward reverse polish constructs

C Compiled, both low level and high level programming, structured,
terse

118

9.6 Where to go from here

9.6 Where to go from here

A great deal of useful work can be done in the laboratory by
applying the principles you have learned. For those interested, there are
several areas of study which extend the topics discussed here. A laboratory
course on digital and analog electronics would be useful in understanding
sensors and their associated signal conditioning circuits as well as the
electrical operation of the computer itself. An introductory course in signal
processing and analysis would be useful for general data analysis. For those
interested in process automation, a course in systems analysis would be
helpful. To keep up on the latest hardware and software in this quickly
changing field, consult trade journals. Also get on the mailing lists of
suppliers. They will frequently send out product bulletins. But the best way
to learn is the way you have learned in this laboratory; that is by doing it.

Appendix A
Laboratory materials
and resources

The following is a detailed description of the equipment used in the
laboratory at Cornell University together with possible sources for these
parts.

Each student work area (Figure A.1) has an APPLE Ile computer with
printer and data acquisition cards, a 5 V power supply, and an oscilloscope.
The APPLE Ile has the following configuration:

Slot Device

1 Practical Peripherals Microbufter IT+

2 John Bell Engineering A—D Converter (Figure A.2 right)

4 John Bell Engineering 6522 Parallel Interface (Figure A.2 middle)
U APPLE disk controller

7 John Bell Engineering EPROM Card (Figure A.2 left)

One of the computers in the laboratory has a John Bell Engineering
EPROM Programmer attached to the 6522 interface so that EPROMSs may
be programmed. An ultraviolet EPROM eraser is also available. The
Microbuffer 11+ is attached to an Epson MX-80 printer. These may be
changed to suit as long as the printer buffer/printer combination can print the
high resolution graphics of the APPLE.

The text is written for use with the DOS 3.3 operating system for the
APPLE. Prodos would probably work too if the appropriate changes are
made in the text. The text also assumes that the Mad West Software
AMPERGRAPH package is being used. We have not seen comparable
packages which could be substituted. For EPROM blasting, the program
listed in Appendix J is useful.

We use a B+K Precision Model 1476A dual trace 10 MHz oscilloscope
and a Power One model C5-6 power supply. Almost any oscilloscope will do
and the only specification which needs to be met on the power supply is that
it hasa 5 V output at 5 A. Look in the back of BYTE magazine or in surplus
catalogs for good prices. We have tied the computer and power supply
grounds together permanently so as to minimize grounding problems for the
students.

The cables from the data acquisition boards are brought out to a proto-
board (Figure A.3) where connections may be made easily. We find that the
Super Strip (available through Digi-Key or Jameco) to be versatile.

120 Appendix A

Fig. A.1. General setup in the
laboratory. The computer, disk
drive, and monitor are on one
wooden stand; the printer is on
another which sits over the
yoscilloscope. The power supply
is between the two and the
protoboards are on the top of
the computer.

Fig. A.2. Three John Bell
Engineering circuit cards with
cables removed. From left to
right: the EPROM holder, the
6522 VIA cad, and the ADC card.

rrr s nsumesnanes

Fig. A.3. A view of the
protoboards where the interface
cablesterminate. The ADC cable
is to the left and the four 6522
VIA cables are in the center and
to the right. In the center the
6522 VIA #2 Port B is wired to
the LEDs and their drivers and
Ports A and B are wired to the
DACs.

Fig. A.4. The push button and
the potentiometer.

Fig. A.5. View of the thermistor
calibration/temperature
controller apparatus. The
aluminum block at the top holds
the heater resistor, the
thermistor and the
thermometer; all emplaced with
conductive grease and some
glue to hold them in place. The
circuit is constructed on a piece
of protoboard.

Fig. A.6. Stepping motor
apparatus. The protractor is
mountedto the leftonthe output
shaft of the gearbox (center).
The stepping motor (on the
right) is mounted to the gearbox
and coupled with a piece of
rubber tubing. The circuitis
constructed on a piece of
protoboard.

Laboratory material and sources

121

122

Fig. A.7. Heat flow apparatus.
The copper wire is secured to
the aluminum base plate and
has three holes drilled for
mounting the heater resistor
and the two thermistors. These
are emplaced into the copper
withthermal grease and secured
with glue. Their leads are
supported with a piece of
aluminum. The circuit is
constructed on a piece of
protoboard attached to the base.

Appendix A

Fig. A.8. Viscometer. A glass
tube, the four positions sensors
andthe electronics are mounted
on a wooden base which can be
leveled by adjusting three
SCrews.

Laboratory material and sources 123

Laboratory Apparatus

Potentiometer (Figure A.4)
Almost any will do in the resistance range of 100 Q to 1 MQ.

Thermistor calibration apparatus (Figure A.5)

A thermistor, thermometer, and heater resistor are mounted in an aluminum
block about 2 cm X 2 em X 2 c¢m size. The thermistor we use is a Fenwall
GB34P2. Others may be substituted by adjusting the bias resistor depending
on the room temperature resistance. Heat conductive grease is used in the
holes so that the thermometer, thermistor and heater resistor make good
thermal contact with the block. The circuit used is shown in Figures 3.5 and
3.4. A standard laboratory mercury thermometer is used but others can be
substituted. The HEXFET is an International Rectifier IRF 510. Almost any
of that line can be substituted.

Stepping motor (Figure A.6)

The stepping motor apparatus consists of a stepping motor connected to a
200:1 gear box by a rubber sleeve and controlled by a UCN-4202A controller
(Sprague Electric Co.) which is mounted on a protoboard. Figure 4.1 shows
the circuit used. The stepping motor is a surplus item (A. W. Hayden Co.
P/N B86138) which may be hard to find but the controller will work with
Permanent Magnet stepping motors rated to 500 MA and 15 V. You may
have to modify the wiring of the motor to suit the controller. BYTE
magazine is a good place to look for surplus motors. The gearbox is from
AST/SERVO Systems and again is a surplus item. The reduction ratio is not
critical.

LED Output Counter (Figure A.3)

These are simple LEDs with 270 Q) resistors and a 74L.S04 driver. The circuit
(Figure 4.4) is constructed on the protoboard where the cables from 6522
VIA #2 are attached.

Heat Flow Apparatus (Figure A.7)

The apparatus for the heat flow experiment consists of a copper rod (#10
copper wire, 2.59 mm diameter) mounted vertically on an aluminum base as
shown in Figure 5.3. An aluminum support runs parallel to the rod to
support the wires to the heater resistor and thermistors. The § watt resistor
is placed in a hole in the top of the rod. The thermistors (Fenwall GB32J2)
are placed in small holes at 2.5 cm and 5 cm down from the resistor. Thermal
grease is again used to ensure thermal contact. The standard amplifier circuit
employed is shown in Figure 5.5. A protoboard is used to construct the
circuit. The only special consideration is that the operational amplifier be
able to run on 0-5 V supplies.

124

Appendix A

Digital to Analog Converter (Figure A.3)

This circuit (Figure 6.7) is constructed on the protoboard where the LEDs
and the 6522 VIA #2 cables are attached. The DAC used is a National
Semiconductor DACO0808. Others may be substituted with some change in
circuitry. The negative voltage necessary for running this chip can be
obtained from the Apple buss by a slight modification of the 6522 VIA card.

Viscometer (Figure A.8)

As depicted in Figure 7.6, the viscometer apparatus consists of a glass tube
about 5 cm in diameter with a rubber stopper at one end mounted in a
wooden frame to which the detectors and electonics are attached. The frame
may be leveled by means of the three screws at its base. The light source for
the position sensors are green LEDs mounted in 1 cm aluminum tubes with
a small focusing lens at one end. The light detectors are CdS photo-resistors
(Claret 327-15) mounted in another 1 cm aluminum tube. In front of the
sensor is a 3 mm high 10 mm wide slit cut in cardboard. The circuit for one of
the sensors is shown in Figure 7.7. The balls used can be of a wide variety
however the ‘wall effect’ becomes very evident for large ones. Table 7.1
shows some we have found useful.

Addresses

John Bell Engineering Jameco Electronics

400 Oxford Way 1355 Shoreway Road
Belmont, CA 94002 Belmont, CA 94002
MADWEST Software Sprague Electric Co.

PO Box 9822 115 Northeast Cutoff
Madison, WI 53715 Worcester, MA 01606
Digi-Key AST/SERVO Systems Inc
PO Box 677 930 Broadway

Thief River Falls, MN 56701 Newark, NJ 07104

Individual pieces or a kit of all the laboratory apparatus can be purchased
from:
Vector Magnetics Inc

PO Box 127
Ithaca, NY 14851

Appendix B
Merging programs: use of
the RENUMBER program

An efficient method for writing programs is to complete one small piece at a
time. Each piece should be tested and understood; even if you have to write
another short program to do this. Only then, as a separate task, combine the
pieces into larger and larger portions of the main program. It is best first to
write out in words, block diagrams and flow charts what you are trying to do
with the program and/or apparatus. By doing this the tasks involved become
conceptually separated and can then be dealt with as pieces of the whole.

If you follow the procedure outlined above, it will be necessary to store
small program segments on the disk and then to put them together to form
programs without having to retype all the pieces already tested. The
APPLESOFT LOAD command is not satisfactory for this since it will first
clear out the program in the machine.

The program RENUMBER on the SYSTEM START disk enables you to
merge and renumber BASIC programs. It works somewhat like the
AMPERGRAPH program in that it appends some new instructions to
BASIC. To use RENUMBER, place the SYSTEM START disk in the drive
and type RUN RENUMBER CR. (At this time RENUMBER replaces
AMPERGRAPH in memory.) A reminder of how to use it is displayed on
the CRT screen. A print of this is given in Figure B.1.

Figure B.2 shows a listing resulting from the use of RENUMBER. The
command LOAD DEMO1 was given to put the program DEMO1 from the
AMPERGRAPH disk into the machine; the LIST command displays the
program. Figure B.2 then shows that the instruction

$FIRST 1000,INC 15,510,E60
was executed in the immediate mode; it renumbered the program state-
ments. The listing shows that the first statement numbered in the new
numbering scheme is 1000; subsequent statement incrementing at 15 units.
The statements in the original program to be renumbered started with
instruction 10 and ended with statement 60.

To merge a program in the machine with another, the two instructions &H
and &M are used as illustrated in Figure B.3. With the renumbered program
of Figure B.2 in the machine, typing &H put it into ‘HOLD’. Another
program can now be loaded into the APPLE without affecting the program
on HOLD. None of the instruction numbers of the two programs can be the

126

Fig. B.1. RENUMBER screen.

Appendix B

same. Two programs are merged by typing &M CR. The subsequent LIST
shows that the new program consists of the two programs put together as one.

The RENUMBER program is thus an editing procedure which makes it
possible to combine two programs conveniently into a single larger program.
RENUMBER and AMPERGRAPH cannot be in the machine simultane-
ously. One replaces the other so after RENUMBERing AMPERGRAPH
will need to be reloaded. RUN AMPERGRAPH LOADER or STARTUP
with the SYSTEM START disk in the drive but be sure you have saved your
merged program first!

1PR#1
JRUN RENUMBER
&&EEEEERRRRRRRLRRRRELRLLRARR LR RRERE

& &
& APPLESOFT RENUMBER &
& &
& COPYRIGHT APPLE COMPUTER, INC, 1978 &
& &
&&&&EEEERRRRRERERERRRRRRRRRRRRRRRRRRRRRRE

RENUMBER (DEFAULT VALUES)
& LCFIRST 101 CL,INC 101 C,s 01 [,E 63999]
MERGE

&H PUT PROGRAM ON HOLD
&M MERGE TO PROGRAM ON HOLD

PRESS 'RETURN' TO CONTINUE... RENUMBER IS INSTALLED
AND READY IF YOU USE'FP', 'HIMEM', OR 'MAXFILES'

YOU WILL HAVE TO RE-RUN RENUMBER

Fig. B.2. Example of a program
renumbered.

Fig. B.3. Example of programs
merged.

Merging programs

JLOAD DEMO1

JLIST

5 REM DEMO1

6 REM ELEMENTARY EXAMPLE
7 REM

10 HGR2 : HIMEM: 16383

20 & SCALE,0,10, -1.2,1.2
30 & AXEs,0,0,2,.2

40 FOR X = 0 TO 10 STEP .2
50 & DRAW X, COS (X

60 NEXT X

J&FIRST 1000,INC15,810,E60

JLIST

5 REM DEMO1

6 REM ELEMENTARY EXAMPLE

7 REM

1000 HGR2 : HIMEM: 16383
1015 & SCALE,0,10, -1.2,1.2

1030
1045
1060
1075

& AXES,0,0,2,.2

FOR X = 0 TO 10 STEP .2
& DRAW ,X, COS (X)
NEXT X

JLIST

5 REM DEMO1

6 REM ELEMENTARY EXAMPLE

7 REM

1000 HGR2 : HIMEM: 16383
1015 & SCALE,0,10, =1.2,1.2
1030 & AXEs,0,0,2,.2

1045 FOR X = 0 TO 10 STEP .2
1060 & DRAW ,X, COS (X
1075 NEXT X

J&H

127

Program in machine to be
renumbered.

Type thisin +CR to renumber
program

Program with new statement
numbers.

} Program 1 in machine

Type &H CR put

continued

128 Appendix B

PROGRAM ON HOLD, USE "&M" TO RECOVER Program 1 on hold
110 REM THE PROGRAM LISTED ABOVE]
120 REM WAS JUST CREATED UNSING

130 REM THE RENUMBER PROGRAM

140 REM AND PUT ON '"HOLD'" USING Put Program 2 into
150 REM THE IMMEDIATE INSTRUCTION ¢ machine —type or
160 REM &H. I WILL NOW INSERT THE LOAD from disk
170 REM PROGRAM I AM WRITING I.E.

180 REM INSTRUCTIONS 10 TO 80 INTO

190 REM THIS PROGRAM.

1&M Type &M CR to merge
Programs 1 and 2

JLIST

5 REM DEMO1]

6 REM ELEMENTARY EXAMPLE

7 REM

10 REM THE PROGRAM LISTED ABOVE
20 REM WAS JUST CREATED UNSING

30 REM THE RENUMBER PROGRAM

40 REM AND PUT ON "HOLD'" USING

50 REM THE IMMEDIATE INSTRUCTION

60 REM &H. I WILL NOW INSERT THE
70 REM PROGRAM I AM WRITING I.E.

80 REM INSTRUCTIONS 10 TO 80 INTO
90 REM THIS PROGRAM.

1000 HGR2 : HIMEM: 16383

1015 & SCALE,0,10, -1.2,1.2

1030 & AXES,0,0,2,.2

1045 FOR X = 0 TO 10 STEP .2

1060 & DRAW ,X, COS (X)

1075 NEXT X

[Programs 1 and 2
merged together

Appendix C
APPLE lle memory map

Fig.C.1. APPLE lle memory map.

Figure C.1 shows how the address space of the APPLE Ile is organized. Both
the decimal and the hexadecimal representations of the addresses are given
(hexadecimal representation is described in Section 4.3). The main RAM

ROM 1/0 RAM
SFFFF 65535.| Monitor
INTEGER
BASIC
APPLESOFT S‘E;'C‘Ee d =
BASIC MINI-

Interpreter | 47 % [ASSEMBLER

$D000 53248.

SCFFF 53247 6522 ¥ia,
$C000 49152 Bonk st

$8000 32768. \\\\\\
N\

STFFF 32767. AMPE

GRAPH

\

$9800

N

D
$SFFF %G/{{/
$4000 16384. %

: HIMEM
$3FFF 16383. '
| BASIC
.Program
- space
$0800. LOMEM

$0000 0. Reserved

130

Fig. C.2. BASIC memory usage.

Appendix C

memory is in locations $0000-$BFFF . The addresses from $C000 to $CFFF
are reserved for the I/O registers of peripheral devices like the disk drive and
the printer. The APPLE IIe also has a block of RAM at addresses $D000—
$FFFF which are the same as the ROM addresses and so would normally
cause a conflict. But there is a register in the I/O space that determines which
memory is being used; it acts like a switch whose position is determined by
the bits in the register (a soft-switch). The command INT switches to the
RAM memory (called bank-switched RAM) and FP switched back to ROM.
When the power is turned on to the computer, the ROM memory is switched
on.

Figure C.1 also shows some of the normal memory usage in the APPLE.
The monitor and APPLESOFT BASIC interpreter are in the ROM. The
INTEGER BASIC interpreter and the MINIASSEMBLER are in the
bank-switched RAM and are loaded into the memory by the program on the
SYSTEM START disk. The start-up program also loads the DOS into the
high addreses of the main memory. Memory locations from $4000 to $5FFF
are reserved for HGR2. The text display memory is at locations $0400—
$07FF. A BASIC program entered from the keyboard or from a file is stored
in memory beginning at $0800. The command HIMEM:16383 instructs the
computer not to store any program or variables above this address (16383
decimal is $3FFF hexadecimal). This protects HGR2 from being overwritten
by the program. The address space for HGR1 is from $2000 to $3FFF. The
reason HGR?2 is used instead of HGRI1 for graphics display is so that the
BASIC program can have as large a memory space as possible by using the
HGRI1 space for program use.

Figure C.2 shows how BASIC uses the program space which is made
available to it by the LOMEM and HIMEM settings.

$3FFF HIMEM
AE5ED. Stri Strings build from
trings HIMEM down
.
Free space
Boundfiry positions dirrays
are variable
Variables build from the
Simple end of the program up
variables | _ Start variables
L — End of program
Program
$0800
2048. Start

Appendix D
Connections and logic
of the ADC

Fig. D.1. ADC connections: DEV
is high when address lines
A15... A0 have $C0Ax, where x
canbeany number. DATAOQ...7
is connected to the data buss
when R/Wand DEV are high and
A0 is low. EOC (End of
Conversion) is bit 0 of the data
when R/W and DEV and AO are
high.

To use apparatus intelligently it helps to understand what is going on inside;
the discussion below focuses on giving some insight into what occurs when
you do an analog conversion. As with most things, such discussion has many
layers of increasing depth and detail. This discussion will go only one veneer
down.

The analog to digital conversion is done by an ADC 0817 IC which is
connected to the address and data busses and to the R/W (read/write) wire
of the APPLE computer (Figure D.1). Addresses 49312-49319 are devoted
to doing analog to digital conversions for channels 0-7 on the protoboard to
which you have attached your thermistor and potentiometers for measuring
voltages.

The BASIC instruction ‘POKE address, data’ which you used to actuate a
voltage conversion is an instruction which says: store the number ‘data’ in
location specified by the number ‘address’. The 6502 will write the data to
memory by holding the R/'W wire LO (Holding it at 0 V specifies a ‘write’
operation to memory), putting the specified address on the 16 wires of the
address buss, and then putting the data on the data buss. An ordinary RAM
location at the specified address would respond by storing the number which
appears on the data buss. The ADC is not ordinary memory; it is an I/O
device connected to the computer. The 6502 uses a system of memory

and DEV and R/W

.

EOC T ——|
To bit 0 E————
of data ——4—34 To board
buss <5 protoboar
o 6
In / D —
To eightbit —3—15! A 10| Not
data ——1 3 7 12 connected
buss _,_' 45 A ———1413
—_— 15
—a—1"7 S
Start
R/W and DEV . 16:1 Multiplexer (channel select)

ADC

132

Appendix D

mapped I/O which means that all input and output are handled through
special memory locations.

When the ADC ‘hears’ one of its addresses called, with the R/W line LO
requesting it to store data, it disregards what is on the data buss. This makes
the number in the data field of the POKE instruction irrelevant. Instead of
storing data the ADC switches the analog channel specified by the lower four
address bits to its analog to digital conversion section and then starts
conversion. The conversion from analog to digital requires about 100 us for
the ADC 0817 which is much less than the time required for a single BASIC
instruction. When the conversion is completed, the digital result is stored in
a memory register in the ADC. This is located at the base address 49312.

The BASIC instruction ‘X=PEEK (address), reads the number in the
memory locations specified by ‘address’ and sets the variable X equal to the
data read. When the PEEK (49312) instruction is interpreted the 6502 CPU
puts the address 49312 on the address buss, sets the R/W line HI to indicate
aread and then takes the data off the data buss. By indicating a READ the
CPU requests the memory location at ‘address’ to place the data on the buss.
Thus, in response to this request, ADC places on the data buss the data from
the last analog to digital conversion which was carried out.

Appendix E
VIA data sheets

Although cryptic, data sheets contain all of the detailed information about a
particular device. But, be warned!, they are sometimes inaccurate due to
typos, poor editing and even slight misrepresentation of the capabilities.
These following data sheets for the 6522 manufactured by Rockwell seem to
be accurate.
© ROCKWELL INTERNATIONAL CORPORATION
Semiconductor Products Division, 1984

134

R6522

R6522

VERSATILE INTERFACE
ADAPTER (VIA)

DESCRIPTION

The R6522 Versatile Interface Adapter (VIA) is a very flexible /0
control device. In addition, this device contains a pair of very
powerful 16-bit interval timers, a serial-to-parallel/parallel-to
serial shift register and input data latching on the peripheral
ports. Expanded handshaking capability allows control of
bidirectional data transfers between VIA's in multiple processor
systems.

Control of peripheral devices is handled primarily through two
8-bit bidirectional ports. Each line can be programmed as either
an input or an output. Several peripheral 1/O lines can be
controlled directly from the interval timers for generating
programmable frequency square waves or for counting exter-
nally generated pulses. To facilitate control of the many powerful
features of this chip, an interrupt flag register, an interrupt enable
register and a pair of function control registers are provided.

ORDERING INFORMATION

Part Number:
R6522

Temperature Range
Blank = 0°C to +70°C
R = -40°C to +85°C

Package
C
p

Ceramic
Plastic

Frequency
No Letter
A

1 MHz
2 MHz

non

Document No. 29000D47

FEATURES

® Two 8-bit bidirectional I’O ports

® Two 16-bit programmable timer/counters

e Serial data pori

® TTL compatible

® CMOS compatible peripheral control lines

® Expanded '‘handshake’ capability allows positive control of

data transfers between processor and peripheral devices.

® | atched output and input registers
@ 1 MHz and 2 MHz operation

Single + 5V power supply

Vgs = 1 40 [CA1
PAO] 2 39 [0 CA2
PA1] 3 38 [RSO
PA2 (] 4 37 [3 Rs1
PA3] 5 36 [0 RS2
PA4] 6 35 [RS3
PAs (] 7 34 [J RES
PA6] 8 33 2 Do
PA7 9 32 [D1
PBO (] 10 31 D p2
PB1] 11 30 [0 D3
PB2 (] 12 29 [D4
PB3 (] 13 28 [D5
PB4] 14 27 [D6
PB5 (] 15 26 [0 D7
PB6 (] 16 25 [02
PB7] 17 24 [CSt
CB1] 18 23 [1CSs2
cB2] 19 22 I RIW
Vee £ 20 21 D 1RQ

R6522 Pin Configuration

Data Sheet Order No. D47
Rev. 8, October 1984

R6522

Versatile Interface Adapter (VIA)

INTERFACE SIGNALS
RESET (RES)

Alow reset (RES) input clears all R6522 internal registers to logic
0 (except T1 and T2 latches and counters and the Shift Register).
This places all peripheral interface lines in the input state, disa-
bles the timers, shift register, etc. and disables interrupting from
the chip.

INPUT CLOCK (PHASE 2)

The input clock is the system (2 clock and triggers all data
transfers between processor bus and the R6522.

READ/WRITE (R/W)

The direction of the data transfers between the R6522 and the
system processor is controlled by the R/W line in conjunction
with the CS1 and CS2 inputs. When R/W is low, (write operation)
and the R6522 is selected, data is transferred from the processor
bus into the selected R6522 register. When R/W is high, (read
operation) and the R6522 is selected, data is transferred from
the selected R6422 register to the processor bus.

DATA BUS (D0-D7)

The eight bidirectional data bus lines transfer data between the
R6522 and the system processor bus. During read cycles, the
contents of the selected R6522 register are placed on the data
bus lines. During write cycles, these lines are high-impedance
inputs and data is transferred from the processor bus into the
selected register. When the R6522 is not selected, the data bus
lines are high-impedance.

CHIP SELECTS (CS1, CS2)

The two chip select inputs are normally connected to processor
address lines either directly or through decoding. The selected
R6522 register is accessed when CS1 is high and CS2 is low.

REGISTER SELECTS (RS0-RS3)

The coding of the four Register Select inputs select one of the 16
internal registers of the R6522, as shown in Table 1.

INTERRUPT REQUEST (IRQ)

The Interrupt Request output goes low whenever an internal
interrupt flag is set and the corresponding interrupt enable bitis a
logic 1. This output is open-drain to allow the interrupt request
signal to be wire-OR'ed with other equivalent signals in the
system.

PERIPHERAL PORT A (PA0-PA7)

Port A consists of eight lines which can be individuallly pro-
grammed to act as inputs or outputs under control of Data Direc-
tion Register A. The polarity of output pins is controlled by an
Output Register and input data may be latched into an internal
register under control of the CA1 line. All of these modes of oper-
ation are controlled by the system processor through the internal
control registers. These lines represent one standard TTL load in
the input mode and will drive one standard TTL load in the output
mode. Figure 2 illustrates the output circuit.

02—

R6500 Ty
MICROPROCESSOR < o R

BUS Cs1,C82 — £~ p
INTERFACE

ASO-RS3 — 23§

RES ————— b

IRQ — P

R6522
VIA

[¢— CA1
¢— > CA2

l¢—» CB1 >
¢—» CB2

PERIPHERAL
INTERFACE

Figure 1. R6522 VIA Interface Signals

135

136

R6522

Versatile Interface Adapter (VIA)

PORT A CONTROL LINES (CA1, CA2)

The two Port A control lines act as interrupt inputs or as hand-
shake outputs. Each line controls an internal interrupt flag with a
corresponding interrupt enable bit. In addition, CA1 controls the
latching of data on Port A input lines. CA1 is a high-impedance
input only while CA2 represents one standard TTL load in the
input mode. CA2 will drive one standard TTL load in the output
mode.

PORT B (PB0-PB7)

Peripheral Port B consists of eight bidirectional lines which are
controlled by an output register and a data direction register in
much the same manner as the Port A. In addition, the polarity of
the PB7 output signal can be controlled by one of the interval tim-
ers while the second timer can be programmed to count pulses
on the PB6 pin. Port B lines represent one standard TTL load in

the input mode and will drive one standard TTL load in the output
mode. In addition, they are capable of sourcing 1.0 mA at 1.5 Vdc
in the output mode to allow the outputs to directly drive Darlington
transistor circuits. Figure 3 is the circuit schematic.

PORT B CONTROL LINES (CB1, CB2)

The Port B control lines act as interrupt inputs or as handshake
outputs. As with CA1 and CA2, each line controls an interrupt
flag with a corresponding interrupt enable bit. In addition, these
lines act as a serial port under control of the Shift Register. These
lines represent one standard TTL load in the input mode and
will drive one standard TTL load in the output mode. CB2 can
also drive a Darlington transistor circuit; however, CB1 cannot.

Table 1. R6522 Register Addressing

Register RS Coding Register Reglster/Description
Number [RS3 | RS2 RS1 RSO Desig. Write (R'W = L) Read (RW = H)
0 0 0 0 0 ORB/IRB Output Register B Input Register B
1 0 0 0 1 ORA/IRA Output Register A Input Register A
2 0 0 1 0 DDRB Data Direction Register B
3 0 0 1 1 DDRA Data Direction Register A
4 0 1 0 0 T1C-L T1 Low-Order Latches | T1 Low-Order Counter
5 0 1 0 q T1C-H T1 High-Order Counter
6 0 1 1 0 TiL-L T1 Low-Order Latches
7 0 1 1 1 TiL-H T1 High-Order Latches
8 1 0 0 0 T2C-L T2 Low-Order Latches T2 Low-Order Counter
9 i 0 0 1 T2C-H T2 High-Order Counter
10 1 0 1 0 SR Shift Register
1 U 0 1 A ACR Auxiliary Control Register
12 1 1 0 0 PCR Peripheral Control Register
13 1 1 0 1 IFR Interrupt Flag Register
14 1 ! 1 0 IER Interrupt Enable Register
15 1 1 1 1 ORA/IRA Output Register A* Input Register A*
NOTE: *Same as Register 1 except no handshake.

1/0 CONTROL
OUTPUT DATA

INPUT DATA

+5V

» » PAO-PAT,
CA2

Figure 2. Port A Output Circuit

+5V

INPUT

OUTPUT *iDo_j
CONTROL !

_l. PBO-PBY,
CB1, CB2
1
OUTPUT — |
DATA i ol
INPUT DATA =

Figure 3. Port B Output Circuit

R6522

Versatile Interface Adapter (VIA)

FUNCTIONAL DESCRIPTION

The internal organization of the R6522 VA is illustrated in Figure
4.

PORT A AND PORT B OPERATION

The R6522 VIA has two 8-bit bidirectional I/O ports (Port A and
Port B) and each port has two associated control lines.

Each 8-bit péripheral port has a Data Direction Register (DDRA,
DDRB) for specifying whether the peripheral pins are to act as
inputs or outputs. A 0 in a bit of the Data Direction Register
causes the corresponding peripheral pin to act as an input. A 1
causes the pin to act as an output.

Each peripheral pin is also controlled by a bit in the Output Regis-
ter (ORA, ORB) and the Input Register (IRA, IRB). When the pin is
programmed as an output, the voltage on the pin is controlled by
the corresponding bit of the Output Register. A 1 in the Output
Register causes the output to go high, and a “0” causes the out-
putto go low. Data may be written into Output Register bits corre-
sponding to pins which are programmed as inputs. In this case,
however, the output signal is unaffected.

Reading a peripheral port causes the contents of the Input Regis-
ter (IRA, IRB) to be transferred onto the Data Bus. With input
latching disabled, IRA will always reflect the levels on the PA
pins. With input latching enabled, IRA will reflect the levels on the
PA pins at the time the latching occurred (via CA1).

The IRB register operates similar to the IRA register. However,
for pins programmed as outputs there is a difference. When
reading IRA, the level on the pin determines whetheraOora1is
sensed. When reading IRB, however, the bit stored in the output
register, ORB, is the bit sensed. Thus, for outputs which have
large loading effects and which pull an output **1”” down or which
pull an output ‘0"’ up, reading IRA may result in reading a “'0”
when a ““1”’ was actually programmed, and reading a ‘1"’ when
a ‘0" was programmed. Reading IRB, on the other hand, will
read the 1" or “'0” level actually programmed, no matter what
the loading on the pin.

Figures 5 through 8 illustrate the formats of the port registers.
In addition, the input latching modes are selected by the Auxiliary
Control Register (Figure 14).

"

INPUT LATCH

e

S oty W]

DATA DIR

BUFFERS
K) PA) K > PORT A
(DDRA)

INTERRUPT
CONTROL
FLAGS
(IFR)
P
(IER)
— DATA | |
BUS <:> BUS: L.
BUFFERS
PERIPHERAL
(PCR)
:> [~ AUXILIARY |
(ACR)
FUNCTION
CONTROL
LATCH | LATCH
RES — TIL-R) 3 (TiLL)
RIW :>"66LNTER’: COUNTER
02 — (TICH) | (T1C-L)
csi CHIP
go1 Pt TIMER 1
RS0 —| CONTROL TIMER 2
Fre LATCH
RS2 _(T2L-L)]
RS3 — COUNTER | COUNTER
—_:> (T2C-H) | (T2C-L)

L

PORT A REGISTERS

CA1
PORT A
:>_ N _? _____] CA2
PORT B
HANDSHAKE
CONTROL
SHIFT REG CB1
:> (SR) cB2

PORT B REGISTERS
rNPUT LATCH

i K b BU(';FBE)RS K > PORT B

DATA DIR
(DDRB)

Figure 4. R6522 VIA Block Diagram

137

138

R6522

Versatile Interface Adapter (VIA)

HANDSHAKE CONTROL OF DATA TRANSFERS

The R6522 allows positive control of data transfers between the
system processor and peripheral devices through the operation
of “handshake” lines. Port A lines (CA1, CA2) handshake data
on both a read and a write operation while the Port B lines (CB1,
CB2) handshake on a write operation only.

Read Handshake

Positive control of data transfers from peripheral devices into the
system processor can be accomplished very effectively using
Read Handshaking. In this case, the peripheral device must gen-
erate the equivalent of a “Data Ready" signal to the processor
signifying that valid data is present on the peripheral port. This
signal normally interrupts the processor, which then reads the

REG 0—ORB/IRB

rle|s]a|3|2i{7|0

! | Y
’ | S—)
i
|

PB2

OUTPUT REGISTER

—_—

| B’ (ORB) OR
L s INPUT REGISTER
; L pas| ‘B’ (IRB)
- - PB6
b PB7
PIN
DATA DIRECTION WRITE READ
SELECTION
DORB = ‘1" (QUTPUT) MPLWRITES OQUTPUT LEVEL | MPU READS OUTPUT REGISTER

1OPB) BIT IN ORB PIN LEVEL HAS NO
AFFECT

MPU WRITES iNTO ORB, BUT | MPU READS INPUT LEVEL ON PB
NC EFFECT ON PIN LEVEL. | PIN

UNTIL SLPB CHANGED

DDRB = 0" (INPUT)
(INPUT LATCHING DISABLED)

DORB = "0" (INPUT)
(INPUT LATCHING ENABLED)

MPUREADS IRB BIT, WHICH IS THE
LEVEL OF THE PB PIN AT THE TIME
OF THE LAST CB1 ACTIVE
TRANSITION

Figure 5. Output Register B (ORB), Input Register B (IRB)

REG 2—DDRB

|7ssazzvo|
1 i

T
[i —— ra0
J : D
i

PB2

!
l —————— "1 | DATA DIRECTION

1 L vesrae| REGISTER “B” (DDRB)
| PBS PAS

PB6 PAG

PB7 PA7|

0’ ASSOCIATED PB PIN IS AN INPUT
(HIGH IMPEDANCE)

1" ASSOCIATED PB PIN IS AN OUTPUT
WHOSE LEVEL IS DETERMINED BY
ORB REGISTER BIT

data, causing generation of a “Data Taken" signal. The periph-
eral device responds by making new data available. This process
continues until the data transfer is complete.

In the R6522, automatic “"Read"” Handshaking is possible on the
Peripheral A port only. The CA1 interrupt input pin accepts the
"Data Ready" signal and CA2 generates the “Data Taken” sig-
nal. The “"Data Ready" signal will set an internal flag which may
interrupt the processor or which may be polled under program
control. The “Data Taken" signal can either be a pulse or a level
which is set low by the system processor and is cleared by the
"Data Ready” signal. These options are shown in Figure 9 which
illustrates the normal Read Handshake sequence.

REG 1—ORA/IRA

A2l OUTPUT REGISTER
Pa3l ‘A’ (ORA) OR
eas| INPUT REGISTER
pas| A" (IRA)

PIN
DATA DIRECTION WRITE READ
SELECTION

DORA = “1" (OUTPUT) MPU WRITES OUTPUT LEVEL | MPU READS LEVEL ON PA PIN
(INPUT LATCHING DISABLED) (ORA)
DDRA = 1" (OUTPUT) MPU READS IRA BIT WHICH IS THE

(INPUT LATCHING ENABLED) LEVEL OF THE PA PIN AT THE TIME
OF THE LAST CA1 ACTIVE
TRANSITION

MPU WRITES INTO ORA BUT | MPU READS LEVEL ON PA PIN
NO EFFECT ON PIN LEVEL
UNTIL DDRA CHANGED

DDRA = 0" (INPUT)
(INPUT LATCHING DISABLED)

DDRA = 0" (INPUT)
(INPUT LATCHING ENABLED)

MPU READS IRA BIT. WHICH IS THE
LEVEL OF THE PA PIN AT THE TIME
OF THE LAST CA1 ACTIVE
TRANSITION

Figure 6. Output Register A (ORA), Input Register A (IRA)

REG3—DDRA

T
—_ PAD
PA1

ngal

|

|

| *+3|_ DATA DIRECTION

y *s| REGISTER “A’* (DDRA)
I Y,

| Wi

| ,A,J

o

ASSOCIATED PA PIN IS AN INPUT
(HIGH IMPEDANCE)

1" ASSOCIATED PA PIN IS AN OUTPUT
WHOSE LEVEL i DETERMINED BY
ORA REGISTER BIT

Figure 7. Data Direction Register B (DDRB)

Figure 8. Data Direction Register A (DDRA)

R6522 Versatile Interface Adapter (VIA) 133

|
| m_ammaﬂm
DATA READY i = 7;{/ D)
(CA1)
.
‘ IRQ OUTPUT 'ﬁ - &
0 |
! READ IRA OPERATION - 1 N
‘ “DATA TAKEN" N | “ |
HANDSHAKE MODE \ [———
1 (CA2) | = 2
‘ ;BA‘SI'A TAKEN" 2 | 2
‘ LSE MODE ¢
(CA2) J

Figure 9. Read Handshake Timing (Port A Only)

Write Handshake

The sequence of operations which allows handshaking data from
the system processor to a peripheral device is very similar to that
described for Read Handshaking. However, for Write Handshak-
ing, the R6522 generates the “Data Ready” signal and the
peripheral device must respond with the “Data Taken" signal.

REG 12—PERIPHERAL CONTROL REGISTER

[2]s]a]«]a]=]]
€82 CONTROL —:_j CA1INTERRUPT CONTROL

: . 7 6T5 OPERATION 0 NEGATIVE ACTIVE EDGE
This can be accomplished on both the PA port and the PB port on 31,0,'& WPUT NEGATIVE ACTIVE FGGE]
the R6522. CA2 or CB2 act as a “Data Ready” output in either OO T INCERCNDERTINTERRUET Cca2CONTROL
the handshake mode or pulse mode and CA1 or CB1 accept the | [o]1To]meuT PosITIVE AcTiVE €DGE | 3]2] 1] orenation
“Data Taken’ signal from the peripheral device, setting the inter- ; °1' ! f:?ﬁ:%‘éi}&'ﬁ:iuw | %%%:E‘%"Ef&',’v,i‘,‘ﬂ;ﬁi: =

2 " $2 H 1/0/0|HANDSHAK uTPU P EG EOGE
rupt flag and clearing the Data Ready” output. This sequence DOOCTET T I Tﬁ*&WWacﬁvpgo s
is shown in Figure 10. 11 [0 towoutPuT | o1 1/ INDEPENDENT INTERRUPT
111 [HIGH ouTPUT | _|INPUT POS EDGE¥

HANDSHAKE OUTPUT
PULSE OUTPUT _
LOW OUTPUT

HIGH OUTPUT

Selection of operating modes for CA1, CA2, CB1, and CB2 is e
accomplished by the Peripheral Control Register (Figure 11).

[
0
1

1]

I..‘
_lo—o

“SEE NOTE IN FIGURE 29

Figure 11. Peripheral Control Register (PCR)

62 __f—l_f—l_l_l_l—l_ T e R L L L P L,
| . =
WRITE ORA, ORB
OPERATION [l 2 2 J 1
“DATA READY"’ hd
HANDSHAKE MODE L »] b | -
LAy glaé)A READY l R 2 ‘
PULSE MODE J T h L
(CA2, CB2) % - |
“DATA TAKEN & £ X
(CA1, CB1) R | 2
IRQ OUTPUT e l 2

Figure 10. Write Handshake Timing

140

R6522

Versatile Interface Adapter (VIA)

COUNTER/TIMERS

There are two independent 16-bit counter/timers (called Timer 1
and Timer 2) in the R6522. Each timer is controlled by writing
bits into the Auxiliary Control Register (ACR) to select the mode
of operation (Figure 14.

Timer 1 Operation

Interval Timer T1 consists of two 8-bit latches (Figure 12) and
a 16-bit counter (Figure 13). The latches store data which is to
be loaded into the counter. After loading, the counter decrements
at 02éclgck rate. Upon reaching zero, an interrupt flag is set,
and IRQ goes low if the T1 interrupt is enabled. Timer 1 then

disables any further interrupts, automatically transers the con-
tents of the latches into the counter and continues to decrement.
In addition, the timer may be programmed to invert the output
signal on peripheral pin PB7 each time it ‘‘times-out.”” Each of
these modes is discussed separaely below.

Note that the processor does not write directly into the low-order
counter (T1C-L). Instead, this half of the counter is loaded
automatically from the low order latch (T1L-L) when the
processor writes into the high order counter (T1C-H). In fact, it
may not be necessary to write to the low order counter in some
applications since the timing operation is triggered by writing
to the high order latch.

REG 6—TIMER 1 LOW-ORDER LATCH

WRITE - 8 BITS LOADED INTO T1 LOW-ORDER
LATCHES. THIS OPERATION IS NO

| DIFFERENT T'HAN A WRITE INTO
REG 4

READ -8 BITS FROM T1 LOW-CRI:ER LATCHES
TRANSFERRED TC A'PU UNLIKE REG 4
OPERATION. THIS [,OES NOT CAUSE
RESET OF T1 INTERRUPT FLAG

REG 7—TIMER 1 HIGH-ORDER LATCH

COUNT
VALUE

32768

WRITE - 8 BITS LOADED INTO T1 HIGH-ORDER
LATCHES. UNLIKE REG 4 OPERATION
NO LATCH-TO-COUNTER TRANSFERS
TAKE PLACE

READ - 8 BITS FROM T1 HIGH-ORDER LATCHES
TRANSFERRED TO MPU

Figure 12. Timer 1 (T1) Latch Registers

REG 4—TIMER 1 LOW-ORDER COUNTER

COUNT
VALUE

L[jj“j:’ .

R — |

L 28

WRITE - 8 BITS LOADED INTO T1 LOW-ORDER
LATCHES LATCH CONTENTS ARE
TRANSFERRED INTO LOW-ORDER
COUNTER AT THE TIME THE HIGH-
ORDER COUNTER IS LOADED (REG 5)

READ -8 BITS FROM T1 LOW-ORDER COUNTER
TRANSFERRED TO MPU. IN ADDITION
T1 INTERRUPT FLAG IS RESET (BIT 6
IN INTERRUPT FLAG REGISTER)

REG 5—TIMER 1 HIGH-ORDER COUNTER

| ‘ | 512
i S—

— 2048

COUNT
VALUE

“ ‘ L——zse'].
|

4096 |

WRITE - 8 BITS LCDED 1870 T* HIGH-ORDER
LATCHES ALSO AT THIS TIME BOTH
HIGH- AND LOW-ORDER LATCHES
TRANSFERRED 'NTO Tt COUNTER
T1 INTERRUPT FLAG AL 5 QESET
READ -8 IBTS FROM Y1 HiGH-ORDER COUNTER
TRANSFERREL TO MPU

Figure 13. Timer 1 (T1) Counter Registers

R6522

Versatile Interface Adapter (VIA)

REG 11—AUXILIARY CONTROL REGISTER

T1 TIMER CONTROL
OPERATION Tpe7
TIMED INTERRUPT |
EACH TIME T11§
_|LOADED

0/ 1[CONTINUOUS

INTERRUPTS i

770/ TIMED INTERRUPT | ONE SHOT
=

7
0

3

o

__| DisaBLED

EACH TIME T11IS OuUTPUT

-1
1

LOADED)
1[CONTINUOUS SQUARE
INTERRUPTS WAVE
ouTPUT

T2 TIMER CONTROL
OPERATION
TIMED INTERRUPT

COUNT DOWN WITH
PULSES ON PB6

o

)

PA LATCH ENABLE DISABLE

P8 [0 DIsABLE
1 ENABLE LATCHING

SHIFT REGISTER CONTROL

OPERATION
DISABLED —]
[SHIFT IN UNDER CONTROL OF T2 N
SHIFT IN UNDER CONTROL OF $2)
SHIFT IN UNDER CONTROL OF EXT CLK
[SHIFT OUT FREE RUNNING AT T2 RATE

SHIFT OUT UNDER CONTROL OF 72|
SHIFT OUT UNDER CONTROL OF p2

SHIFT OUT UNDER CONTROL OF EXT CLK

J

FEFEEERE
~[=[ole==]e[o]u

~[ol=[ol=[o]=[o]~

Figure 14. Auxiliary Control Register (ACR)

Timer 1 One-Shot Mode

The Timer 1 one-shor mode generates a single interrupt for each
timer load operation. As with any interval timer, the delay
between the ‘‘write T1C-H'' operation and generation of the
processor interrupt is a direct function of the data loaded into
the timing counter. In addition to generating a single interrupt,
Timer 1 can be programmed to produce a single negative pulse
on the PB7 peripheral pin. With the output enabled (ACR7 = 1)
a “‘write T1C-H" operation will cause PB7 to go low. PB7 will
return high when Timer 1 times out. The result is a single
programmable width pulse.

Timing for the R6522 interval timer one-shot modes is shown
in Figure 15.

In the one-shot mode, writing into the T1L-H has no effect on
the operation of Timer 1. However, it will be necessary to assure
that the low order latch contains the proper data before initiating
the count-down with a "‘write T1C-H" operation. When the
processor writes into the high order counter (T1C-H), the T1 inter-
rupt flag will be cleared, the contents of the low order latch will
be transferred into the low order counter, and the timer will begin
to decrement at system clock rate. If the PB7 output is enabled,
this signal will go low on the @2 following the write operation.
When the counter reaches zero, the T1 interrupt flag will be set,
the IRQ pin will go low (interrupt enabled), and the signal on
PB7 will go high. At this time the counter will continue to decre-
ment at system clock rate. This allows the system processor to
read the contents of the counter to determine the time since inter-
rupt. However, the T1 interrupt flag cannot be set again unless
it has been cleared as described in this specification.

PO I s I s U e T s Ry T e N Ty 5y Iy

WRITE T1C-H

IRQ OUTPUT

ml
]
|

PB7 OUTPUT I

N+ 15CYCLES— ™

| N-1] N2 | N3 [

Figure 15. Timer 1 One-Shot Mode Timing

141

142

R6522

Versatile Interface Adapter (VIA)

Timer 1 Free-Run Mode

The most important advantage associated with the latches in
T1 is the ability to produce a continuous series of evenly spaced
interrupts and the ability toproduce a square wave on PB7 whose
frequency is not affected by variations in the processor inter-
rupt response time This is accomplished in the "‘free-running”
mode.

In the free-running mode, the interrupt flag is set and the signal
on PB7 is inverted each time the counter reaches zero, at which
time the timer automatically transfers the contents of the latch
into the counter (16 bits) and continues to decrement from there.
The interrupt flag can be cleared by writing T1C-H, by reading
T1C-L, or by writing directly into the flag as described later.
However, it is not necessary to rewrite the timer to enable setting
the interrupt flag on the next time-out.

All interval timers in the R6522 are ‘‘re-triggerable.’’ Rewriting
the counter will always re-initialize the time-out period. In fact,

the time-out can be prevented completely if the processor con-
tinues to rewrite the timer before it reaches zero. Timer 1 will
operate in this manner if the processor writes into the high order
counter (T1C-H). However, by loading the latches only, the
processor can access the timer during each down-counting
operation without affecting the time-out in process. Instead, the
data loaded into the latches will determine the length of the next
time-out period. This capability is particularly valuable in the free-
running mode with the output enabled. In this mode, the signal
on PB7 is inverted and the interrupt flag is set with each time-
out. By responding to the interrupts with new data for the latches,
the processor can determine the period of the next half cycle
during each half cycle of the output signal on PB7. In this
manner, very complex waveforms can be generated.

A precaution to take in the use of PB7 as the timer output con-
cerns the Data Direction Register contents for PB7. Both DDRB
bit 7 and ACR bit 7 must be 1 for PB7 to function as the timer
output. If one is 1 and the other is 0, then PB7 functions as a
normal output pin, controlled by ORB bit 7.

B L L Ll L M T LT L L L LT

WRITE T1C-H ‘

OPERATION —— |

IRQ OUTPUT I] : |
/)

PB7 OUTPUT 1 of 3

P N + 1.5 CVCLES*oLi N + 2 CYCLES —’J

Figure 16. Timer 1 Free-Run Mode Timing

Timer 2 Operation

Timer 2 operates as an interval timer (in the “one-siot” mode
only), or as a counter for counting negative pulses on the PB6
peripheral pin. A single control bit in the Auxiliary Contrcl Register
selects between these two modes. This timer is comprised of a
“write-only” lower-order latch (T2L-L), a “read-oniy” low-crder
counter (T2C-L) and a read/write high order counter (T2C-H).
The counter registers act as a 16-bit counter which decrements
at P2 rate. Figure 17 illustrates the T2 i_atch/Counter Registers.

Timer 2 One-Shot Mode

As an interval timer, T2 operates in the “‘one-shot’” mode similar
to Time 1. In this mode, T2 provides a single interrupt for each
“write T2C-H'" operation. After timing out, the counter will con-
tinue to decrement. However, setting of the interrupt flag is
disabled after initial time-out so that it will not be set by the counter

decrementing again through zero. The processor must rewrite
T2C-H to enable setting of the interrupt flag. The interrupt flag
is cleared by reading T2C-L or by writing T2C-H. Timing for this
operation is shown in Figure 18.

Timer 2 Pulse Counting Mode

In the pulse counting mode, T2 counts a predetermined number
of negative-going pulses on PB6. This is accomplished by first
loading a number into T2. Writing into T2C-H clears the interrupt
flag and allows the counter to decrement each time a pulse is
applied to PB6. The interrupt tiag is set when T2 counts down
past zero. The counter will then continue to decrement with each
pulse on PB6. However, it is necessary to rewrite T2C-H to allow
the interrupt flag tc set on a subsequent time-out. Timing for
this mode is shown in Figure 19. The pulse must be low on the
leading edge of 92.

R6522 Versatile Interface Adapter (VIA)

REG 8—TIMER 2 LOW-ORDER LATCH/COUNTER REG 9—TIMER 2 HIGH-ORDER LATCH/COUNTER

716154 (3]|]2]|1]0 7 sjaj3fjz|r]o
‘ L;ss]
i 512
‘ ——— 1004

COUNT L | COUNT

| VALUE L el vaLUE
| 32 L———3192
i - 54 16384

28 32768

TRANSFERRED TOMPU T2 INTERRUPT

WRITE - 8BITS LOADED INTO T2 LOW ORDER WRITE - 8BITS LOADED INTO T2 +1iGH ORDER
LATCH COUNTER ALSO LOW ORDER LATCH
READ 8 BITS FROM T2 LOW ORDER COUNTER TRANSFERRED TO LOW ORDER

COUNTER IN ADDITION, T2 INTERRUPT

FLAG IS RESET

READ - 8BITS FROM T2 HIGH ORDER COUNTER
TRANSFERRED TO MPU

FLAG IS RESET

Figure 17. Timer 2 (T2) Latch/Counter Registers

2o 1 M1 rririrre e rireririode

WRITE T2C-H | |)
IRQ OUTPUT ¢
“ N \N-11N-2|N.3] | o |N| |N-1|N-2‘N-3|
l-——— N + 1.5 CYCLES —
Figure 18. Timer 2 One-Shot Mode Timing
WRITE T2C-H
OPERATION [1
PB6 INPUT i | | i]
IRQ OUTPUT |
N ’ N-1 } N-2 1 ’ 0 | =4

Figure 19. Timer 2 Pulse Counting Mode

143

|44

R6522

Versatile Interface Adapter (VIA)

SHIFT REGISTER OPERATION

The Shift Register (SR) performs serial data transfers into and
out of the CB2 pin under control of an internal modulo-8 counter.
Shift pulses can be applied to the CB1 pin from an external
source or, with the proper mode selection, shift pulses generated
internally will appear on the CB1 pin for controlling external
devices.

The control bits which select the various shift register operating
modes are located in the Auxiliary Control Register. Figure 20
illustrates the configuration of the SR data bits and Figure 21
shows the SR control bits of the ACR.

SR Mode 0 — Disabled

Mode 0 disables the Shift Register. In this mode the micropro-
cessor can write or read the SR and the SR will shift on each CB1
positive edge shifting in the value on CB2. In this mode the SR
interrupt Flag is disabled (held to a logic 0).

SR Mode 1 — Shift In Under Control of T2

In mode 1, the shifting rate is controlled by the low order 8 bits of
T2 (Figure 22). Shift pulses are generated on the CB1 pin to con-
trol shifting in external devices. The time between transitions of
this output clock is a function of the system clock period and the
contents of the low order T2 latch (N).

I REG 10—SHIFT REGISTER

[ELLLTTT
|

_ I REGISTER
| BITS

NOTES

1 WHEN SHIFTING QUT BIT 7 'S THE FIRST BIT
LUT AND SIMULTANEQUSLY IS ROTATED BACK
INTOBITO

2 WHEN SHIFTING IN BITS INITIALLY ENTER
BIT 0O AND ARE SHIFTED TOWARDS BIT 7

Figure 20. Shift Registers

The shifting operation is triggered by the read or write of the SR
if the SR flag is set in the IFR. Otherwise the first shift will occur
at the next time-out of T2 after a read or write of the SR. Data
is shifted first into the low order bit of SR and is then shifted into
the next higher order bit of the shift register on the negative-going
edge of each clock pulse. The input data should change before
the positive-going edge of the CB1 clock pulse. This data is shifted
into the shift register during the @2 clock cycle following the
positive-going edge of the CB1 clock pulse. After 8 CB1, clock
pulses, the shift register interrupt flag will set and IRQ will go low.

SR Mode 2 — Shift In Under 02 Control

In mode 2, the shift rate is a direct function of the system clock
frequency (Figure 23). CB1 becomes an output which generates
shift pulses for controlling externai devices. Timer 2 operates as
an independent interval timer and has no effect on SR. The shift-
ing operation is triggered by reading or writing the Shift Register.
Data is shifted, first into bit 0 and is then shifted into the next
higher order bit of the shift register on the trailing edge of each $2
clock pulse. After 8 clock pulses, the shift register interrupt flag
will be set, and the output clock pulses on CB1 will stop.

REG 11—AUXILIARY CONTROL REGISTER

oo s =]]x
L=
LSHIFT REGISTER

MODE CONTROL

OPERATION

DISABLED

SHIFT IN UNDER CONTROL OF T2

SHIFT IN UNDER CONTROL OF I,

SHIFT IN UNDER CONTROL OF EXT CLK
SHIFT OUT FREE RUNNING AT T2 RATE
SHIFT OUT UNDER CONTROL OF T2
SHIFT OUT UNDER CONTROL OF I,
SHIFT OUT UNDER CONTROL OF EXT CLK

“|=|=|=|ololc|o|s
slalolo|w|=|o|o]w
slol=lo|=|o|~]o|~

Figure 21. Shift Register Modes

WRITE OR READ
SHIFT REG n

-

o TIIIIUULUUUUnururrurrut

| [
|

e L

N + 2CYCLES [= - ==

T

CYCLES! A

CB1 OUTPUT N §
SHIFT CLOCK

L2 [L= |

|-

CB2 INPUT 77777

DATA

IRQ |

baes

Figure 22. SR Mode 1 — Shift In Under T2 Control

R6522

Versatile Interface Adapter (VIA)

SR Mode 3 — Shift In Under CB1 Control

In mode 3, external pin CB1 becomes an input (Figure 24). This
allows an external device to load the shift register at its own pace.
The shift register counter will interrupt the processor each time
8 bits have been shifted in. The shift register stops after 8 counts
and must be reset to start again. Reading or writing the Shift
Register resets the Interrrupt Flag and initializes the SR counter
to count another 8 pulses.

Note that the data is shifted during the first system clock cycle
following the posiive going edge of the CB1 shift pulse. For this
reason, data must be held stable during the first full cycle follow-
ing CB1 going high.

SR Mode 4 — Shift Out Under T2 Control (Free-Run)

Mode 4 is very similar to mode 5 in which the shifting rate is
set by T2. However, in mode 4 the SR counter does not stop

the shifting operation (Figure 25). Since the Shift Register bit
7 (SR7) is recirculated back into bit 0, the 8 bits loaded into the
shift register will be clocked onto CB2 repetitively. In this mode
the shift register counter is disabled.

SR Mode 5 — Shift Out Under T2 Control

In mode 5, the shift rate is controlled by T2 (as in mode 4). The
shifting operation is triggerd by the read or write of the SR if
the SR flag is set in the IFR (Figure 26). Otherwise the first shift
will occur at the next time-out of T2 after a read or write of the
SR. However, with each read or write of the shift register the
SR Counter is reset and 8 bits are shifted onto CB2. At the same
time, 8 shift pulses are generated on CB1 to control shifting in
external devices. After the 8 shift pulses, the shifting is disabled,
the SR Interrupt Flag is set and CB2 remains at the last data
level.

READ SR

e —ﬁ_rl_ruﬂ_rLHﬂIu ‘
oara - [X X XX XCE X X E T

IRQ

|

Figure 23. SR Mode 2 — Shift In Center 02 Control

ozﬂmummwmmuuumnmmmumnnnnmumn

CB1 OUTPUT L1 J 1 2

1 3 [1 4 T //L

SHIFT CLOCK

CB2 INPUT
cB2 INPUT 77777 TIK T NI 2 Wm

IRQ

Figure 24. SR Mode 3 — Shift In Under CB1 Control

|
! WRITE SR ﬂ ‘ }

N + 2 CYCLES (= =ie = N2 o

[
i CB1 OUTPUT
|

SHIFT CLOCK Al ka2l | 3 | | 4 | ¢ | 8 | | 9 |
CB2 INPUT T
Sers it 1 Y 3 X a X8 X1

Figure 25. SR Mode 4 — Shift Our Under T2 Control (Free-Run)

145

146

R6522

Versatile Interface Adapter (VIA)

SR Mode 6 — Shift OUt Under @2 Control

In mode 6, the shift rate is controlled by the @2 system clock
(Figure 27).

SR Mode 7 — Shift Out Under CB1 Control

In mode 7, shifting is controlled by pulses applied to the CB1 pin
by an external device (Figure 28). The SR counter sets the SR

Interrupt Flag each time it counts 8 pulses but it does not disable
the shifting function. Each time the microprocessor writes or
reads the shift register, the SR Interrupt Flag is reset and the
SR counter is initialized to begin counting the next 8 shift pulses
on pin CB1. After 8 shift pulses, the Interrupt Flag is set. The

microprocessor can then load the shift register with teh next byte
of data.

‘ 1
‘ ‘ |
writesr [1 | ‘ | j
N + 2 CYCLES = - —»/N +2 CYCLES [
CB1 OUTPUT 1 4 s Tl e 75 L
SHIFT CLOCK k= I L
CB2 OUTPUT T RO , 3 3 F :
DATA X X X
IRQ ;

Figure 26. SR Mode 5 — Shift Out Under T2 Control

pipipipigipipipigipipiGipipipipipin

| | |
WRITE SR I1 I { B A |
| |
| \
CB1 OUTPUT —1 1 2 3]LF//_I 7 8
SHIFT CLOCK L
CB2 OUTPUT TMIMONNSNW 17 X 2 X 3)Gm 7 X 8
DATA
IRQ

| S

Figure 27. SR Mode 6 — Shift Out Under 02 Control

ipipipipipipinipipigipgigigiiaigigigigh

writesr __ | |
CB1 INPUT 1 2 = L s
SHIFT CLOCK L. L8 _J
g‘:ﬁ SUTPUT DU) A 2/ A s
T l
IRQ |

Figure 28. SR Mode 7 — Shift Out Under CB1 Control

R6522

Versatile Interface Adapter (VIA)

Interrupt Operation

Controlling interrupts within the R6522 involves three principal
operations. These are flagging the interrupts, enabling interrupts
and signaling to the processor that an active interrupt exists
within the chip. Interrupt flags are set in the Interrupt Flag Regis-
ter (IFR) by conditions detected within the R6522 or on inputs to
the R6522. These flags normally remain set until the interrupt
has been serviced. To determine the source of an interrupt, the
microprocessor must examine these flags in order, from highest
to lowest priority.

Associated with each interrupt flag is an interrupt enable bit in
the Interrupt Enable Register (IER). This can be set or cleared
by the processor to enable interrupting the processor from the
corresponding interrupt flag. If an interrupt flag is set to a logic 1
by an interrupting condition, and the corresponding interrupt
enable bit is set to a 1, the Interrupt Request Output (IRQ) will
go low. IRQ is an ‘“‘open-collector’’ output which can be *‘wire-
OR’ed"” with other devices in the system to interrupt the processor.

Interrupt Flag Register (IFR)

In the R6522, all the interrupt flags are contained in one register,
i.e., the IFR (Figure 29). In addition, bit 7 of this register will be
read as a logic 1 when an interrupt exists within the chip. This
allows very convenient polling of several devices within a system
to locate the source of an interrupt.

The Interrupt Flag Register (IRF) may be read directly by the proc-
essor. In addition, individual flag bits may be cleared by writing
a ‘1" into the appropriate bit of the IFR. When the proper chip
select and register signals are appplied to the chip, the contents
of this register are placed on the data bus. Bit 7 indicates the

REG 13—INTERRUPT FLAG REGISTER

716]8]4]3]2|

status of the IRQ output. This bit corresponds to the logic func-
tion: IRQ = IFR6 x IER6 + IFR5 x IER5 + IFR4 x IER4 +
IFR3 x IER3 + IFR2 x IER2 + IFR1 x IER1 + IFRO x IERO.

Note:
x = logic AND, + = Logic OR.

The IFR bit 7 is not a flag. Therefore, this bit is not directly cleared
by writing a logic 1 into it. It can only be cleared by clearing all the
flags in the register or by disabling all the active interrupts as dis-
cussed in the next section.

Interrupt Enable Register (IER)

For each interrupt flag in IFR, there is a corresponding bit in the
Interrupt Enable Register (IER) (Figure 30). Individual bits in the
IER can be set or cleared to facilitate controlling individual inter-
rupts without affecting others. This is accomplished by writing to
the (IER) after bit 7 set or cleared to, in turn, set or clear selected
enable bits. If bit 7 of the data placed on the system data bus
during this write operation is a 0, each 1 in bits 6 through 0 clears
the corresponding bit in the Interrupt Enable Register. For each
zero in bits 6 through 0, the corresponding bit is unaffected.

Selected bits in the IER can be set by writing to the IER with bit 7
in the data word set to a 1. In this case, each 1 in bits 6 through 0
will set the corresponding bit. For each zero, the corresponding
bit will be unaffected. This individual control of the setting and
clearing operations allows very convenient control of the inter-
rupts during system operation.

In addition to setting and clearing IER bits, the contents of this
register can be read at any time. Bit 7 will be read as a logic 1,
however.

cB2
cB1

PREVIOUSLY

SET BY CLEARED BY
[CA2 ACTIVE EDGE | READ OR WRITE
CAZ REG 1(ORA)*
CA1—{CATACTIVE EDGE | READ OR WRITE
REG 1 (ORA)
SHIFT REG{ COMPLETE B SHIFTS | READ OR WRITE
SHIFT REG

CB2 ACTIVE EDGE

READ OR WRITE ORB*

CB1 ACTIVE EDGE

READ OR WRITE ORB

TIME OUT OF T2

READ T2 LOW OR

TIME R 2 WRITE T2 HIGH
TIMEOUT OF T READ T1 LOW OR
STIMER 1 WRITE T1 HIGH
ANY ENABLED CLEAR ALL
EARG INTERRUPT INTERRUPTS

* IF THE CA2/CB2 CONTROL IN THE PCR IS SELECTED AS
“INDEPENDENT" INTERRUPT INPUT, THEN READING OR
WRITING THE OUTPUT REGISTER ORA/ORB WILL NOT
CLEAR THE FLAG BIT. INSTEAD, THE BIT MUST BE
CLEARED BY WRITING INTO THE IFR, AS DESCRIBED

Figure 29. Interrupt Flag Register (IFR)

REG 14—INTERRUPT ENABLE REGISTER

|7 6|5|4 3|2 \|0

I—CAz 8

cal
SHIFTREG] o — INTERRUPT
cs2 L DISABLED
EEY 1 = INTERRUPT
TIMER 2 ENABLED
TIMER 1
SET/CLEAE

NOTES

1. IFBIT7I1SA "0, THEN EACH "1 INBITS 0 - 6 DISABLES THE

CORRESPONDING INTERRUPT

2. 1FBIT7I1SA 1", THEN EACH "1 INBITS 0 - 6 ENABLES THE
CORRESPONDING INTERRUPT

3. IF AREAD OF THIS REGISTER IS DONE, BIT 7 WILL BE “1” AND
ALL OTHER BITSWILL REFLECT THEIR ENABLE/DISABLE STATE

Figure 30. Interrupt Enable Register (IER)

147

148 Res522 Versatile Interface Adapter (VIA)

PERIPHERAL INTERFACE CHARACTERISTICS

Symbol Characteristic Min. Max. Unit Figure
t, b Rise and Fall Time for CA1, CB1, CA2 and CB2 Input Signals = 1.0 us —_
tcaz Delay Time, Clock Negative Transition to CA2 Negative Transition (read handshake or — 1.0 us 31a, 31b

pulse mode)
tRs1 Delay Time, Clock Negative Transition to CA2 Positive Transition (pulse mode) — 1.0 us 31a
trs2 Delay Time, CA1 Active Transition to CA2 Positive Transition (handshake mode) — 20 us 31b
twHs Delay Time, Clock Positive Transition to CA2 or CB2 Negative Transition 0.05 1.0 us 31c, 31d
(write handshake)
tos Delay Time, Peripheral Data Valid to CB2 Negative Transition 0.20 1.8 us 31c, 31d
trsa Delay Time, Clock Positive Transition to CA2 or CB2 Positive Transition (pulse mode) — 1.0 us 31c
trsa Delay Time, CA1 or CB1 Active Transition to CA2 or CB2 Positive Transition - 20 us 31d
(handshake mode)
1o, Delay Time Required from CA2 Output to CA1 Active Transition (handshake mode) 400 — ns 31d
ti Setup Time, Peripheral Data Valid to CA1 or CB1 Active Transition (input latching) 300 - ns 31e
taL CA1, CB1 Setup Prior to Transition to Arm Latch 300 — ns 31e
teoH Peripheral Data Hold After CA1, CB1 Transition 150 — ns 31e
tsR: Shift-Out Delay Time — Time from ¢, Falling Edge to CB2 Data Out — 300 ns 3if
ispz Shift-In Setup Time — Time from CB2 Data In to ¢, Rising Edge 300 — ns 31y
tsra External Shift Clock (CB1) Setup Time Relative to ¢, Trailing Edge 100 Tey ns 31g
tew Pulse Width — PBS6 Input Pulse 2 x Tey — 31i
tiew Pulse Width --- CB1 Input Clock 2 x Ty — 31h
tips Pulse Spacing — PB6 Input Pulse 2 x Tgy - 31i
tics Pulse Spacing — CB1 Input Pulse 2 x Tey — 31h

R6522

Versatile Interface Adapter (VIA)

PERIPHERAL INTERFACE WAVEFORMS

i __/—\
0.8V

0.8V

READ IRA
OPERATION
CA2 \ 2.0V A
““DATA TAKEN"’ 0.8V
tCA2 L_# tRS1 — =
Figure 31a. CA2 Timing for Read Handshake, Pulse Mode
2
' —_/_\ B ,_/—\7
READ IRA
OPERATION
—— ya
CA2 2.0V
“DATA TAKEN" ‘ 0.8V
v SR
7
L,_‘ tcaz ——— ~Irs2
A
K 2.0V
CA1
““DATA READY" i 0.8V
7'/ |
ACTIVE
TRANSITION

WRITE ORA, ORB
OPERATION

CA2, CB2
“DATA READY"

PA, PB
PERIPHERAL
DATA

2.0V
0.8V j

Figure 31c. CA2, CB2 Timing for Write Handshake, Pulse Mode

149

120 R6522 Versatile Interface Adapter (VIA)

F2.0V
02
twHs
WRITE ORA, ORB
OPERATION 4
—
CA2, CB2 2.0V
“DATA READY" oA

L,/l
tos
PA, PB N
PERIPHERAL
DATA L
— 2y thsa
7 -
CA1, CB1 2.0V
““DATA TAKEN") 0.8V
7
ACTIVE
TRANSITION
Figure 31d. CA2, CB2 Timing for Write Handshake, Handshake Mode
PA, PB) - 2.0V
PERIPHERAL \
INPUT DATA | 0.8V
e tpoH
CA1, CB1 7-2.0v
INPUT LATCHING
CONTROL 0.8V
taL !
ACTIVE
TRANSITION
Figure 31e. Peripheral Data Input Latching Timing
02
- 0.8V
|
cB2 \\\ \ 2
SHIFT DATA \
(OUTPUT) N 0.8V
e =y
CcB1
SHIFT CLOCK
(INPUT OR
OUTPUT) — DELAY TIME MEASURED FROM THE FIRST 4,
FALLING EDGE AFTER CB1 FALLING EDGE.

Figure 31f. Timing for Shift Out with Internal or External Shift Clocking

R6522 Versatile Interface Adapter (VIA) 151

02

sHIFT DATA % / o /////

(INPUT)

CB1

SHIFT CLOCK
(INPUT OR
OUTPUT)

~_ SET UP TIME MEASURED TO THE FIRST 02
RISING EDGE AFTER CB1 RISING EDGE.

Figure 31g. Timing for Shift in with Internal or External Shift Clocking

cB1 2.0V 2.0V)
SHIFT CLOCK | ‘
NPUT 0.8V 0.8V |

| | |

fo————ticw —— F* ——-tgs —————

Figure 31h. External Shift Clock Timing

PB6 2.0V
PULSE COUNT
INPUT 0.8V 0.8V
l
——tew 4——[- tips

COUNTER T2
DECREMENTS
HERE

Figure 31i. Pulse Count Input Timing

152

R6522 Versatile Interface Adapter (VIA)
BUS TIMING CHARACTERISTICS
R6522 (1 MHz) R6522A (2 MHz)
Parameter Symbol Min. l Max. Min. [Max. Unit
READ TIMING
Cycle Time Tey 1 10 0.5 10 us
Address Set-Up Time Tacr 180 — 90 — ns
Address Hold Time Tcar 0 = 0 — ns
Peripheral Data Set-Up Time Tecr 300 — 150 — ns
Data Bus Delay Time Tcor — 365 e 190 ns
Data Bus Hold Time Tur 10 — 10 — ns
WRITE TIMING
Cycle Time Tey 1 10 0.50 10 #S
92 Pulse Width Te 470 = 235 — ns
Address Set-Up Time Tacw 180 — 90 — ns
Address Hold Time Toaw 0 — 0 = ns
R/W Set-Up Time Twew 180 — 90 — ns
R/W Hold Time Toww 0 — 0 — ns
Data Bus Set-Up Time Tocw 200 — 90 - ns
Data Bus Hold Time Thw 10 — 10 — ns
Peripheral Data Delay Time Topw — 1.0 — 0.5 us
Peripheral Data Delay Time Temos — 20 — 1.0 us
to CMOS Levels
Note: tg and tr = 10 to 30 ns.

R6522 Versatile Interface Adapter (VIA) 183

BUS TIMING WAVEFORMS

< Tacr Tey
- 2.0V 2.0V
CLOCK 0.8V
p— t'
CHIP SELECTS, 2.0V 2.0V
REGISTER SELECTS,
RIW 0.8V 0.8V
TpcrR—1 = Temm—

2.0V
PERIPHERAL \
DATA 0.8V

2.0V 4 2.0V
DATA BUS A
0.8V 0.8V
Read Timing Waveforms
Tev I
e Tc—
02 2.0V 2.0v 2.0V
cLock
"'TACW_" e]
CHIP SELECTS, NN \ 2.0v \ i
REGISTER SELECTS \\\W 0.6V \\ \Q\\\\\\\
= Twew ™1 = Tocw ™1
R/W \
F 0.8V
F——] THW
\ NN y -
DATA \ %\ \ \ \ 2.0V MR \ \\\\\\\\ \\\\\\
N \ \\\ N\ DM R
pus N\ 0.8V MY
= Tcmos ‘} _________
Tepw—{ £~~~ "°7TTTTTTTTT Vee
PERIPHERAL i\\\\\ \ e
DATA N \ % 0.8V

Write Timing Waveforms

|54

R6522

Versatile Interface Adapter (VIA)

ABSOLUTE MAXIMUM RATINGS*

Parameter Symbol Value Unit

Supply Voltage Vee -0.3to +7.0 | Vdc

Input Voltage Vin -0.3to +7.0 | Vdc
Operating Temperature

Commercial Ta O0to +70 Llof

Industrial -40to +85 °G

Storage Temperature Tsta -55t0 +150 | °C

OPERATING CONDITIONS

Parameter Symbol Value
Supply Voltage Vee 5V +5%
Temperature Range Ta

Commercial 0°C to 70°C

DC CHARACTERISTICS

*NOTE: Stresses above those listed under ABSOLUTE MAX-
IMUM RATINGS may cause permanent damage to the device.
This is a stress rating only and functional operation of the device
at these or any other conditions above those indicated in the
other sections of this document is not implied. Exposure to abso-
lute maximum rating conditions for extended periods may affect
device reliability.

(Vec = 5.0 Vdc +5%, Vgg = 0, Ta = T to Ty, unless otherwise noted)

Parameter Symbol Min. Typ.3 Max. Unit Test Conditions

Input High Voltage Vi 2.4 — Vee \
Input Low Voltage Vi -0.3 — 0.4 "
Input Leakage Current = Iin - £1 +2.5 A Viy = OV to 5.25V

R/W, RES, RS0, RS1, RS2, RS3, CS1, CS2, CA1, 92 Voo = OV
Input Leakage Current for Three-State Off lrsi - 2 110 wA | Viy = 0.4V to 2.4V

D0-DO7 Vee = 525V
Input High Current Iy -100 -200 — uA Viy = 2.4V

PAO-PA7, CA2, PB0-PB7, CB1, CBS Vee = 5.25V
Input Low Current I - -0.9 -1.8 mA | V= 0.4V

PAO-PA7, CA2, PBO-PB7, CB1, CB2 Voo = 5.25V
Output High Voltage Vou — — Vee = 4.75V

All outputs 24 — — \% lLloap = —100 sA

PBO0-PB7, CB2 (Darlington Drive) 1:5 — — v lloap = -1.0mA
Output Low Voitage Vo s = 0.4 \% Vee = 4.75V

loap = 1.6 mA

Output High Current (Sourcing) loH

Logic - 100 ~1000 — WA | Vou = 2.4V

PBO-PB7, CB2 (Darlington Drive) -1.0 -25 =10 mA | Voy = 1.5V
Output Low Current (Sinking) loL 1.6 — — mA VoL = 0.4V
Output l.eakage Current (Off State) lorr = 4 +10 WA | Vou = 2.4V

IRQ Vee = 5.25V
Power Dissipation Pp — 450 700 mwW
Input Capacitance — Cin Vee = 5.0V

R/W, RES, RS0, RS1, RS2, RS3, CS1, CS2, — — 7 pF Viy = 0V

D0-D7, PA0O-PA7, CA1, CA2, PBO-PB7

CB1, CB2 — = 10 pF f =1MHz

92 Input — — 20 pF Ty = 25°C
Output Capacitance Cout A e 10 pF

! Notes:
! 1. All units are direct current (DC) except for capacitance.

2. Negative sign indicates outward current flow, positive indicates inward flow.

3. Typical values shown for Voo = 5.0V and T, = 25°C.

R6522

Versatile Interface Adapter (VIA)

PACKAGE DIMENSIONS

I:/UUUVV

40-PIN CERAMIC DIP

L1

:- ﬁ

40-PIN PLASTIC DIP

1ANANANDNANNNNANNANNAAN

L

l— @

o

U

1

bl

gy
TR -
——L M

et

]

MILLIMETERS[INCHES

IM[MIN [MAX [MIN | MAX
A | 5029 75131 (1980 2020
B | 1486[1562,0585] 0615
Cc | 254 119]0100[0165
D | 038] 053[0015] 0021
F | o76] 140]0030] 0055
G | 2548SC 0100 BSC
H | 076] 1780030 0070
J | 020] 033]0o08[0013
K | 254] a19]0100] 0165
L [1460 [1537 0575 0605
M| o i | o 10

N | ost| 152[0020] 0060

MILLIMETERS| INCHES

DIM[MIN [MAX | MIN | MAX
A | 5128 (5232|2040 | 2060
B | 13721422 [0540 | 0560
c | 355] 5080140 [0200
D | 036] 051 [0014 [co020
F | 102] 152]0040] 0060
G 254BSC | 0100 BSC
H | 165] 216[0065] 0085
J | o20] 030]oo08[0012
K | 305] 356]0120[0140
L | 1524BSC | 0600BSC
M| 7 T o 7 [10

N | 051] 102]0020] 0040

Information furnished by Rockwell International Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Rockwell
International for its use, nor any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication
or otherwise under any patent or patent rights of Rockwell International other than for circuitry embodied in a Rockwell product. Rockwell International
reserves the right to change circuitry at any time without notice. This document is subject to change without notice.

< Rockwell International Corporation 1984
All Rights Reserved

SEMICONDUCTOR PRODUCTS DIVISION REGIONAL ROCKWELL SALES OFFICES

Printed in U.S.A.

GOME OFFICE

Semiconductor Products Division
Rockwell International

4311 Jamboree Road

P.O Box C, MS 501-300
Newport Beach, California
92658-8902

(714) 833-4700

TWX: 910 591-1698

UNITED STATES
Semiconductor Products Division
Rockwell International

1842 Reynolds

Irvine, California 92714

(714) 833-4655

TWX: 910 595-2518

Semiconductor Produicts Division
Rockwell International

3375 Scott Blvd , Suite 410
Santa Clara, California 95054
(408) 980-1900

TLX: 756560

Semiconductor Products Division
Rockwell International

2001 N Collins Blvd., Suite 103
Richardson, Texas 75080

(214) 996-6500

ux 73-307

Semiconductor Products Division
Rockwell International

10700 West Higgins Rd , Suite 102
Rosemont, lllinois 60018

(312) 297-8862

TWX: 910 233-0179 (Rl MED ROSM)

Semiconductor Products Division
Rockwell International

50018 Greentree

Executive Campus, Rt. 73
Mariton, New Jersey 08053
(609) 596-0090

TWX: 710 940-1377

FAR EAST

Semiconductor Products Division
Rockwell International Overseas Corp.
Itohpia Hirakawa-cho Bldg

7-6. 2-chome, Hirakawa-cho
Chiyoda-ku, Tokyo 102, Japan

(03) 265-8806

TLX J22198

Rockwell Collins International

Tai Sang Commercial Bldg., 11th Floor
24-34 Hennessy Rd

Hong Kong

(5) 274-321

TLX: 74071 HK

EUROPE

Semiconductor Products Division
Rockwell International GmbH
Fraunhoferstrasse 118

D-8033 Munchen-Martinsried
West Germany

(089) 857-6016

TLX: 0521/2650 rimd d

Semiconductor Products Division
Rockwell International Limited
Heathrow House, Bath Rd.
Cranford, Hounslow,

Middlesex, TW5 9QW England
(01) 759-2366

TLX 851-25463

Semiconductor Products
Rockwell Collins Italiana S.P.A.
Via Boccaccio, 23

20123 Milano, Italy

(02) 498.74 79

TLX: 316562 RCIMIL 1

YOUR LOCAL REPRESENTATIVE

7/84

N

155

Appendix F
Solution for heat flow
in one dimension

The problem at hand is to solve the differential equation for heat flow in one
dimension, vis
aTlot = a*(9°T/9z*) (F.1)
where @ = k/s and where the rod extends to infinity on both sides. The initial
condition is that the temperature at r = 0 is given, ie, T(z, t = 0) = f(z)
where f(z) is the given initial temperature distribution along the bar.
To proceed, we try the method of separation of variables by writing
T(z,t) = F(z)G(t). Equation (F.1) then becomes
aGlat _ 3*Flaz?
o’G F
Since the variables f and z vary independently, each side of Equation (F.2)
must be equal to a constant, say g, giving two ordinary differential equations.

(F.2)

dG/dt = qa*G
&*Flde® = gF } (F-3)
The solution for the first is
G(t) = K exp(qa’t) (F.4)

where K is a constant. If g is positive, this solution grows without limit and
thus is not a physically realizable solution. So ¢ = (0 and we can write it as
g = —p* to force this condition. Equation (F.4) becomes
G(t) = K exp(—p°a’t) (E.5)
The second of equations (F.3) can now be recognized as a simple wave
equation

(d*FldZ2*) + p’F =0 (F.6)
with the solution
F(z) = A cos(pz) + B sin(pz) (F.7)
So, the solution to the differential equation has the form
T(z, t; p) = FG
= [A cos(pz) + B sin(pz)] exp(—p’a’t) (F.8)

where the constant K has been absorbed into A and B. Equation (F.8) is true
for any p and any linear combination of solutions with different p will also be
a solution. In particular, a general solution is

T(z, 1) = J " [A(p) cos(pz) + B(p) sin(pz)] exp(—p*a)dp

0

(F.9)

Fig. F.1. Initial temperature
distribution on the infinite rod.

Heat flow in one dimension 157

Using the initial condition that 7(z, 0) = f(z), gives for Equation (F.9)

0 = || 1) costpe) + B sy (F.10)

The Fourier integral theorem gives the following expressions for A and B
Ap) = (i) | &) cos(pera
= (F.11)

B(p) = (1/m) J f(&) sin(pé)dé
Using these expressions, Equation (F.9) becomes

160 = im) []| 7@leos(p8) os(p) + sinpe)sin(p)
X exp(—pzazt)df}dp

=) [[1@ costpz — p&) expiriecnae]ap
(F.12)

Exchanging the order of integration gives
T(z, 1) = (1/m) J f(§)H cos(pz — pé) eXp(—pzazf)dp}d§

The inner integral can be found in a table of integrals and is equal to

77_1/22 eXp|:_(Z e 5)2}

0

0

20t 4ot
Therefore
e °° A== E
(1) = gy | 1© oo - ae (E.13

In the physical situation of a very quick impulse of heat given to a rod at
z = 0, the initial temperature distribution will be (Figure F.1)

0 g & —AZ
flz)= lim T =Az<z<ilz
Az— 0
0 Az <z

Temperature, T

max

_Az 0 Az Distance, z

158

Appendix F

Equation (F.13) becomes
E (z~ &
T(z,t) = ——5 - =~ |d F.14
@0 = g | 1© 9| ~E e (F.14)
If Az is small, the exponential in the integral will not vary much across the
interval —Az to Az and so may be evaluated at ¢ = 0 and be removed from
the integral.

q 22 Az
T(z,1) = = d F;15
(z:1) 2a(7Tl‘)1/2 exp(4a3l‘> J—Az f(&)dé ()
The remaining integral is just a constant so
B F's

where B has absorbed all the constants. Also any constant value, say A, is a
solution to the differential equation, so
B N

T(z,t) = A+ el exp(—m> (F.17)

as is stated as Equation (5.1.5).
That’s all folks.

Appendix G
Finite impulse heat flow
in arod

Fig. G.1. Heat input pulse with
finite duration.

The Equation (5.1.9) describes the flow of heat in a rod when the heat is
applied very quickly at one point. The term very quickly means that the ratio
of the time that the heater is on (call it 7) to the characteristic time of the
system, t;, is much less than one.

it <1 (G.1)
Physically, this means that the heat was put into the rod much faster than it
flowed away from the point where it was added.

In doing the experiment, equation (G.1) does not always strictly hold. An
impulse of 0.5 s gives a 7/t, of about 0.4. In that case, the input of heat can be
considered to be made up of a series of heat impulses, each of which has a
width A7 such that

At/t; < 1
See Figure G.1.

Thus for each of these smaller intervals A7, Equation (5.1.9) will hold but

must be rewritten with a change of origin:

T, = T:(¥ cxp< "') (G.2)

t+7/ e i

where
T4 = 2glAzsow'™
and ¢ = PAr7 is the heat put in during one interval and P is the power

(assumed to be constant). The total temperature change will be given by the
sum of the individual 7}:

T=¥T

Power of
heat
input

o] | 0 Time, ¢

160

Fig. G.2. Heat flow for a finite
heat pulse of length y = 7/t; with
t= 0 at the end of the pulse.

Appendix G

and the total heat input is
Q=xu
If A7 goes to 0 then the sum goes to an integral:

T = | (=) exp(=1\ &3
= e Thire 7] e T (G-3)

with T| = 2P/Azsw'.

By a suitable change in variable and integration by parts, this integral can
be evaluated giving

1 = | =,
P = T, - [(x + y)2 exp(x+ y) — x!? exp<7>

- il 12 1
+ 7 erf() — 7l erf(—ﬂ (G.4)
x+ 7y X
where
Iy = Azzs?-r”z
as in Equation (5.1.9)
vy = 7/t
X =ty
and

) n
erf (n) = 13 f exp(—£)dé

is the error function which can be evaluated using a table or a computer
program.

Figure G.2 is a plot of T/T, vs. t/t; for y = 0.01-1.5 and shows the error

0.500

!

0.417

(=]
w
w
w

Temperature (7/T;)
=)
[3e)
w
o

0.167

0.083

0.000 | | | 1 | I | |
0.00 0.50 1.00 1.50 2.00 2:50 3.00 3.50 4.00
Time (¢/t,)

Fig.G.3. Asin Figure G.2 but with
t=0inthe middle of the pulse.

Finite impulse heat flow in a rod 161

which is made when modeling an experiment with the impulse solution
(Equation (5.1.9) when Equation (G.4) is actually more correct. The curve
with y = 0.01 is essentially equal to the impulse solution Equation (5.1.9).
For ratios of y > 0.1 an appreciable error is made.

If + = 0is measured from the center of the finite input pulse, a better fit is
obtained. Equation (G.4) can be translated to this new origin by the
substitution t — ¢ — 7/2 giving

— 1 172 =1

il 12 =]
(x — 9/2) exp(x_y/z)

1 1
+ 2 _ 2 .
i erf<x = y/2> T erf(x - 7/2” (G.5)

A plot of Equation (G.5) is given in Figure G.3. Ratios of up to y = 1 can
be tolerated without appreciable error with this time origin.

0.500

0.417

=
w
@
@
T

—

0.250

Temperature (7/T,)

o

—

o

-2
T

0.083

0.000 1 | 1 1 | 1 1 J
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

Time (t/ty)

Appendix H
Bootstrap sequence

A whole series of programs is run automatically when the APPLE computer
is turned on. This is called the ‘bootstrap’ since the computer begins in astate
where it is not usable and pulls itself up by its own bootstraps (programs) to
a state where it can be programmed or operated via commands from the
keyboard.

After the power is turned ON, the RESET sequence begins. The CPU
looks in $FFFC, $FFFD (the RESET vector) for an address and begins
executing the program at that address. In the APPLE the address in the
RESET vector is $FF62 which is in the monitor ROM. Among other
housekeeping chores, the monitor program looks for an installed disk drive
controller card in slot 6. (If it does not find it, the monitor jumps to
APPLESOFT BASIC in ROM.) Ifit finds it, the drive is turned on (red light
on) and the disk is searched for the DOS file. This program file is loaded into
RAM (see the memory map of Appendix C) and control is transferred to the
DOS program. The DOS program (1) links itself to APPLESOFT BASIC so
that disk commands can be used, (2) checks the size of RAM and sets
HIMEM to an initial value, and (3) looks for an APPLESOFT program file
on the disk called ‘HELLO'. If it finds this file, it is loaded and run. On the
SYSTEM START disk used in the laboratory, there is a HELLO program
which does the following: (1) loads INTEGER BASIC/MINIASSEMBLER
into the RAM of the language card. (2) Loads and runs AMPERGRAPH
LOADER which links AMPERGRAPH to APPLESOFT BASIC (see
memory map, Appendix C). (3) Returns to APPLESOFT BASIC. At this
time the APPLE is waiting with the cursor blinking for you to type a
command or program line.

The following HELLO Program is used on the SYSTEM START disk so
that AMPERGRAPH is automatically linked to BASIC when the computer
is turned on. It requires the following files to be on the disk as well:

INT BASIC From DOS3.3

LOADER .OBJ0O From APPLE DOS3.3
RENUMBER From APPLE DOS3.3
CHAIN From APPLE DOS3.3
AMPERGRAPH LOADER From AMPERGRAPH disk

AMPERGRAPH From AMPERGRAPH disk

Bootstrap sequence 163

10 TEXT : HOME

20 D$ = CHR$ (4): REM CTRL-D

30 VTAB 2:A$ = "APPLE II": GOSUB 1000

40 VTAB 4:A$ = "DOS VERSION 3.3 SYSTEM

MASTER": GOSUB 1000

50 VTAB 7:A$ = "JANUARY 1, 1983" : GOSUB 1000

60 PRINT D$;"BLOAD LOADER.OBJO"

70 CALL 4096: REM FAST LOAD IN INTEGER BASIC

80 VTAB 10: CALL — 958:A%$ = "COPYRIGHT
APPLE COMPUTER, INC. 1980,1982":
GOSUB 1000

90 C = (- 1101): IF C = 6 THEN PRINT :
INVERSE :A$ = "BE SURE CAPS LOCK IS
DOWN'": GOSUB 1000: NORMAL

95 PRINT CHR" (4);"RUN AMPERGRAPH LOADER"

100 PRINT CHR$ (4);"FP"

1000 REM CENTER STRING A$

1010 B = INT (20 — (LEN (A$) /2)):
IF B= < 0 THEN B = 1

1020 HTAB B: PRINT A$: RETURN

Appendix |
Machine language
instructions

Fig. I.1. Block diagram of the

6502 microprocessor (from MCS
6500 Microcomputer

Programming Manual, MOS
Technology, Norristown, PA,

This appendix contains information about several aspects of machine
language programming. Figure 1.1 shows a bird’s-eye-view of the internal
architecture of the 6502 microprocessor chip. The next few pages describe
the details of what the 6502 does at each clock cycle for various address
modes and instructions and is taken from the MOS Technology Micro-
computer Programming Manual (used with permission). Then follows a
summary of the 6502 instruction set. For more information about individual
instructions, refer to Leventhal’s 6502 Assembly Language Programming or
the MOS Technology 6502 Programming Manual.

Some MINTASSEMBLER tips:

Remember to use the # sign to designate immediate mode addressing.
Without it the instruction is translated as an absolute address mode calling
an acdress on the first page of memory (in the first 256 bytes).

You can BLOAD a machine language program from APPLESOFT
BASIC as well as from the MINIASSEMBLER. It is sometimes convenient
to include it as a program statement eg, PRINT CHR$(4); “BLOAD ...”

1976).
L DATA BUS]
)] {)]) g 1.8 8 [
STACK
e N POINTER A == PCL PCH P
s
X U
INTERNAL ADL j
(94 (94
INTERNAL ADH J

- J
MEMORY

Machine language instructions 165

MCS6501-MC36505 MICROPROCESSOR INSTRUCTION SET — ALPHABETIC SEQUENCE

ADC
AND
ASL

BCC
BCS
BEQ
BIT
BMI
BNE
BPL
BRK
BvVC
BVS

CLC
CLD
CLI

CLv
CMP
CPX
CPY

DEC
DEX
DEY
EOR
INC
INX
INY

JMP

Add Memory to Accumulator with Carry
“AND" Memory with Accumulator
Shift Left One Bit (Memory or Accumulator)

Branch on Carry Clear

Branch on Carry Set

Branch on Result Zero

Test Bits in Memory with Accumulator
Branch on Result Minus

Branch on Resuit i.0t Zero

Branch on Result Plus

Force Break

Branch on Overflow Clear

Branch on Overflow Set

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit

Clear Overflow Flag

Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y

Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One
“Exclusive Or"" Mem:ory with Accumulator
Increment Memory by One
Increment Index X by One

Increment Index Y by One

Jump to New Location

JSR

LDA
LDX
LDY
LSR

NOP
ORA

PHA
PHP
PLA
PLP

ROL
ROR
RTI

RTS

SBC
SEC
SED
SEI

STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

Jump to New Location Saving Return Address

Load Accumulator with Memory

Load Index X with Memory

Load Index Y with Memory

Shift Right One Bit (Memory or Accumulator)

No Operation
“OR’" Memory with Accurnulator-

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory

Store Index X in Memory

Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Puiricer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulater

166 Appendix |

PROGRAMMING MODEL MCS650X

15 7 0
e
L _____ L _ | VO REGISTERS
15 7 0
r ———————————
Lo ____ A ACCUMULATOR
15 7 0
r ———————————
L _____ Y INDEX REGISTER Y
15 7 0
A
L ______ X INDEX REGISTER X
15 7 0
T
L PCH PCL PROGRAM COUNTER
15 2 0
A
L 01 S STACK POINTER

________ L 1

N[V Bl{p|1|[z]cC PROCESSOR STATUS REGISTER, “P”
| CARRY
[
ZERO

INTERRUPT DISABLE
DECIMAL MODE

BREAK COMMAND
FORTHCOMING FEATURE
OVERFLOW

NEGATIVE

Solid line indicates currently available features
Dashed line indicates forthcoming members of family

Machine language instructions

Note:

The following notation applies to this summary:

\U”UZ_NI>
<

<~ > 4 > + |

+

PC
PCH
PCL
OPER

At the top of each table is located in parentheses a

reference number (Ref: XX) which directs the user to

Accumulator

Index Registers
Memory

Processor Status Register
Stack Pointer

Change

No Change

Add

Logical AND

Subtract

Logical Exclusive Or
Transfer from Stack
Transfer to Stack
Transfer to

Transfer to

Logical OR

Program Counter
Program Counter High
Program Counter Low
OPERAND

IMMEDIATE ADDRESSING MODE

that Section in the MCS6500 Microcomputer Family

Programming Manual in which the instruction is defined

and discussed.

167

168 Appendix |

ADC Add memory to accumulator with carry ADC
Operation: A+ M+ C > A, C NZECIDVY
(Ref: 2.2:1) PO fusd
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Immediate ADC {#f Oper 69 2 2
Zero Page ADC Oper 65 2 3
Zero Page, X ADC Oper, X 75 2 4
Absolute ADC Oper 6D 3 4
Absolute, X ADC Oper, X 7D 3 4%
Absolute, Y ADC Oper, Y 79 3 4%
(Indirect, X) ADC (Oper, X) 61 2 6
(Indirect), Y ADC (Oper), Y 71 2 5%

* Add 1 if page boundary is crossed.

AND “AND’’ memory with accumulator AND

Logical AND to the accumulator

Operation: AA M~ A NECIDYVY
(Ref: 2.2.3.0) Vo =
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Immediate AND # Oper 29 2 2
Zero Page AND Oper 25 2 3
Zero Page, X AND Oper, X 35 2 4
Absolute AND Oper 2D 3 4
Absolute, X AND Oper, X 3D 3 4%
Absolute, Y AND Oper, Y 39 3 4%
(Indirect, X) AND (Oper, X) 21 2 6
(Indirect), Y AND (Oper), Y 31 2 5

* Add 1 if page boundary is crossed.

Machine language instructions

ASL

ASL Shift Left One Bit (Memory or Accumulator)

169

ASL

Operation: C +« El a «0 NZCIDV
A A ===
(Ref: 10.2)
Addressing Assembly Language op No. No.
Mode Form COLE Bytes Cycles
Accumulator ASL A @A 1 2
Zero Page ASL Oper @6 2 5
Zero Page, X ASL Oper, X 16 2 6
Absolute ASL Oper QE 3 6
Absolute, X ASL Oper, X 1E 3 &
Bcc BCC Branch on Carry Clear Bcc
Operation: Branch on C = @ N&@IDPV
(Refr 4,1.1.3)
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Relative BCC Oper 90 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
Bcs BCS Branch on carry set Bcs
Operation: Branch on C =1 NZELDVY
(Ref: 4.1.1.4)
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Relative BCS Oper B@ 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to next page.

170 Appendix |

BEQ

BEQ Branch on result zero

BEQ

Operation: Branch on 2 = 1 NZ2CIDV
Reby Buludds) 02 e
Addressing Assembly Language opP No. No.
Mode Form CODE | Bytes Cycles
Relative BEQ Oper] Z 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to next page.
B" BIT Test bits in memory with accumulator B"
Operation: AN M, M7 Ve M > ¥
Bit 6 and 7 are transferred to the status register. NZGIDV
1f rue result of AAM is zero then Z = 1, otherwise M7/ — M6
¢ 9 (Ref: 4.2.1.1)
Addressing Assembly Language opP No. No.
Mode Form CODE | Bytes Cycles
Zero Page BIT Oper 24 2 3
Absolute BIT Oper 2C 3 4
BMI BMI Branch on result minus BMI
Operation: Branch on N = 1 N#& CIL DV
Reff 422l @ T T T TTT
Addressing Assembly Language op No No.
Mode Form CODE Bytes Cycles
Relative BMI Oper 30 2 2%

Add 1 if branch occurs tc same page.

* Add 2 if branch occurs to different page.

Machine language instructions 171

BNE BNE Branch on result not zero B"E

Operation: Branch on Z = 0 NZCIDV

(Ref: 4.1.1.6)

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Relative BNE Oper D¢ 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BPI- BPL Branch on result plus BPI.

Operation: Branch on N = @ NZ2CIDV

(Ref: 4.1.1.2)

Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes | Cycles
Relative BPL Oper 10 2 2%

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

BRK BRK Force Break BRK

Operation: Forced Interrupt PC + 2 + P + NZCIDV
— i l -_——
(Ref: 9.11)
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Implied BRK 00 1 7

1. A BRK command cannot be masked by setting I.

172 Appendix |

BVC

BVC Branch on overflow clear

Operation: Branch on V =0 N2CIDV
(Ref: 4.1.1.8) = ——— =77
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Relative BVC Oper 50 P 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
Bvs BVS Branch on overflow set BVS
Operation: Branch on V = 1 NZ2CIDY
(Ref: 4.1.1.7)
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Relative BVS Oper 70 2 2%
* Add 1 if branch occurs to same page.
* Add 2 if branch occurs to different page.
CI.C CLC Clear carry flag CLC
Operation: @ + C NZ2CIDV
(Ref: 3.0.2) m=l===
Addressing Assembly Language OP No No.
Mode Form CODE | Bytes Cycles
Implied cLC 18 L 2

Machine language instructions

(¢l

Operation: @ + D

CLD Clear decimal mode

173

ql)

NZCIDYV

——
Refx 3.3.2)
Addressing Assembly Language OP No. No.
Mode Form CONE Bytes Cycles
Implied CLD D8 L 2

CL

CLI Clear interrupt disable bit

CL

Operation: @ - I N#ZCIDVY
(Ref: 3.2.2) =
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied CLI 58 1 2

cLv

CLV Clear overflow flag

cLy

Operation: @ + V NZCIDYV
————— [
(Ref: 3.6.1)
Addressing Assembly Language oP No. No.
Mode Form CODE | Bytes Cycles
Implied CLV B8 X 2

174

CMP

CPX

CPY

Appendix |

CMP Compare memory and accumulator

CMP

Operation: A - M NZECIDY
A A —==
(Ref: 4.2.1)
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Immediate CMP #Oper c9 2 2
Zero Page CMP Oper c5 2 3
Zero Page, X CMP Oper, X D5 2 4
Absolute CMP Oper cD 3 4
Absolute, X CMP Oper, X DD 3 4*
Absolute, Y CMP Oper, Y D9 3 4*
(Indirect, X) CMP (Oper, X) cl 2 6
(Indirect), Y cMP (Oper), Y D1 2 5%
* Add 1 if page boundary is crossed.
CPX Compare Memory and Index X CPx
Operation: X - M NZCIDY
A A ===
(Ref: 7.8)
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Immediate CPX #Oper E@ 2 2
Zero Page CPX Oper E4 2 3
Absolute CPX Oper EC 3 4
CPY Compare memory and index Y CPY
Operation: Y - M N2CIDV
& i A e
(Ref: 7.9)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Immediate CPY #Oper co 2 2
Zero Page CPY Oper C4 2 3
Absolute CPY Oper (80 3 4

Machine language instructions

DEC

DEC Decrement memory by one

175

DEC

Operation: M - 1 » M NZ2CIDV
Pl i
(Ref: 10.7)
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Zero Page DEC Oper cé 2 5
Zero Page, X DEC Oper, X D6 2 6
Absolute DEC Oper CE 3 6
Absolute, X DEC Oper, X DE 3 7
DEX DEX Decrement index X by one DEx
Operation: X - 1 » X NZ2CIDV
(Ref: 7.6) B
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied DEX CA . 2
DEY DEY Decrement index Y by one DEY
Operation: Y - 1 + Y NZCIDV
Ff smis
(Ref: 7.7)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied DEY. 88 i 2

176 Appendix |

EOR

EOR “Exclusive—Or’ memory with accumulator

EOR

Operation: A ¥ M > A NZ2CIDYV
(Ref: 2.2.3.2) /I ———
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Immediate EOR #Oper 49 2 2
Zero Page EOR Oper 45 2 3
Zero Page, X EOR Oper, X 55 2 4
Absolute EOR Oper 4D 3 4
Absolute, X EOR Oper, X 5D 3 4%
Absolute, Y EOR Oper, Y 59 3 4%
(Indirect, X) EOR (Oper, X) 41 2 6
(Indirect),Y EOR (Oper), Y 51. 2 5%
* Add 1 if page boundary is crossed.
l“c INC Increment memory by one I“c
Operation: M+ 1 + M NZ2CIDUV
VY -
(Ref: 10.6)
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Zero Page INC Oper E6 2 5
Zero Page, X INC Oper, X F6 2 6
Absolute INC Oper EE 3 6
Absolute, X INC Oper, X FE 3 7
INx INX Increment Index X by one INx
Operation: X + 1 + X N3B3CIDV
o —— ==
(Ref: 7.4)
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied INX E8 1 2

Machine language instructions

INY

INY /ncrement Index Y by one

177

INY

Operation: Y + 1 > Y NZ2CIDVY
o/
(Ref: 7.5)
Addressing Assembly Language OopP No. No.
Mode Form CODE Bytes Cycles
Implied INY Cc8 1 2

JMP

IMP Jump to new location

JMP

Operation: (PC + 1) - PCL NZCIDV
Ref: 4.0.2)
+ PCH (A
e+ & (Ref: 9.8.1)
Addressing Assembly Language (0)3 No. No.
Mode Form CODE Bytes Cycles
Absolute JMP Oper 4C 3 3
Indirect JMP (Oper) 6C 3 5
jSR JSR Jump to new location saving return address jSR
Operation: PC + 2 4, (PC + 1) » PCL NzZCIDV
(PpC+2)>PCH e ————
(Ref: 8.1)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Absolute JSR Oper 20 3 6

178

Appendix |

I.DA LDA Load accumulator with memory I.DA
Operation: M » A NEgECIDV
(Ref: 2.1.1) rf e
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles
Immediate LDA # Oper A9 2 2
Zero Page LDA Oper A5 2 3
Zero Page, X LDA Oper, X B5 2 4
Absolute LDA Oper AD 3 4
Absolute, X' LDA Oper, X BD 3 4%
Absolute, Y LDA Oper, Y B9 3 4%
(Indirect, X) LDA (Oper, X) Al 2 6
(Indirect), Y LDA (Oper), Y B1 2 5%

* Add 1 if page boundary is crossed.

le LDX Load index X with memory le

Operation: M » X NZC.I BN
(Ref: 7.0) £ o
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Immediate LDX +# Oper A2 2 2
Zero Page LDX Oper Ab 2 3
Zero Page, Y LDX Oper, Y B6 2 4
Absolute LDX Oper AE] 4
Absolute, Y LDX Oper, Y BE 3 4%

* Add 1 when page boundary is crossed.

Machine language instructions

179

lDY LDY Load index Y with memory lDY
Operation: M » Y NZLIDN
- ===
(Refi 7.1
Addressing Assembly Language opP No No
Mode Form CODE Bytes Cycles
Immediate LDY #Oper AQ 2 2
Zero Page LDY Oper A4 2 3
Zero Page, X LDY Oper, X B4 2 4
Absolute LDY Oper AC 3 4
Absolute, X LDY Oper, X BC 3 4%
* Add 1 when page boundary is crossed.
I-SR LSR Shift right one bit (memory or accumulator) I.SR
Operation: § — El.lu — C NZ2CIDV
A
(Ref: 10.1)
Addressing Assembly Language OoP No No.
Mode Form CODE Bytes Cycles
Accumulator LSR A 4A % 2
Zero Page LSR Oper 46 2 5
Zero Page, X LSR Oper, X 56 2 6
Absolute LSR Oper 4E 3 6
Absolute, X LSR Oper, X S5E 3 T
NOP NOP No operation NOP
Operation: No Operation (2 cycles) Racioy
Addressing Assembly Language oP No No.
Mode Form CODE Bytes Cycles
Implied NOP EA i 2

180 Appendix |

ORA ORA “OR ' memory with accumulator ORA

Operation: A VM + A N&ZC€CIDV
" N—
(Ref: 2.2.3.1)
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Immediate ORA #Oper 09 2 2
Zero Page ORA Oper @5 2 3
Zero Page, X ORA Oper, X 15 2 4
Absolute ORA Oper ?D 3 4
Absolute, X ORA Oper, X 1D 3 L*
Absolute, Y ORA Oper, Y 19 3 4%
(Indirect, X) ORA (Oper, X) g1 2 6
(Indirect), Y ORA (Oper), Y el 2 5

* Add 1 on page crossing

PHA PHA Push accumulator on stack PHA

Operation: A v NZ2CIDV
(Ref: 8.5) T T 7
Addressing Assembly Language opP No. No.
Mcde Form CODE Bytes Cycles
Implied PHA 48 1 3

PHP PHP Push processor status on stack PHP

Operation: P+ NZ2CIDV
(Ref: 8.11) T T T T 77

Addressing Assembly Language opP No. No.

Mode Form CODE Bytes Cycles

Implied PHP ¢8 1 3

Machine language instructions 181

Pu PLA Pull accumulator from stack Pu
Operation: A * NZCIDV
F o e o e
(Ref: 8.6)
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Implied PLA 68 1 4
PlP PLP Pull processor status from stack Plp
Operation: P ¢ NZ2CIDV

From Stack

(Ref: 8.12)
Addressing Assembly Language oP No No.
Mode Form CODE Bytes Cycles
Implied PLE 28 3 4
ROl ROL Rotate one bit left (memory or accumulator) ROL
Mor A
Operation: a « [C] +« NZCIDV
Y VY - ==
(Ref: 10.3)
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Accumulator ROL A 2A 1K 2
Zero Page ROL Oper 26 2 5
Zero Page, X ROL Oper, X 36 2 6
Absolute ROL Oper 2E 3 6
Absolute, X ROL Oper, X 3E 3 7

182

Appendix |

ROR ROR Rotate one bit right (memory or accumulator) ROR

Operation: 7]£L5[“l312]1“|_J N2CIDV

(Ref: 10.4) S ahl
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Accumulator ROR A 6A 1 2
Zero Page ROR Oper 66 2 5
Zero Page,X ROR Oper,X 76 2 6
Absolute ROR Oper 6E 3 6
Absolute,X ROR Oper,X 7E 3 7

Note: ROR instruction will be available on MCS650X micro-
processors after June, 1976.

RTI RTI Return from interrupt RT'
Operation: P4+ PC# NECIDV
{Eeft 9.5) From Stack
Addressing Assembly Language op No. No.
Mode Form CODE | Bytes Cycles
Implied RTI 46 1 6

RTS RTS Return from subroutine RIS

Operation: PC+, PC + 1— PC RECIDVY
(Refiz 8,20 = TTTEEE

Addressing Assembly Language opP No. No.

Mode Form CODE | Bytes Cycles

Implied RTS 60 i 6

Machine language instructions 183

SBC SBC Subtract memory from accumulator with borrow SB(
Operation: A - M - C > A NZ2CIDV
Note: C = Borrow (Ref: 2.2.2) YAV A ==
Addressing Assembly Language OopP No. No.
Mode Form CODE Bytes Cycles
Immediate SBC #Oper E9 2 2
Zero Page SBC Oper E5 2 3
Zero Page, X SBC Oper, X F5 2 4
Absolute SBC Oper ED 3 4
Absolute, X SBC Oper, X FD 3 4%
Absolute, Y SBC Oper, Y EF9 3 4%
(Indirect, X) SBC (Oper, X) El 2 6
(Indirect), Y SBC (Oper), Y Fl 2 5%
* Add 1 when page boundary is crossed.
SEC Set carry flag SEC
Operation: 1 -+ C NZ2€IDJV
(Ref: 3.0.1) == L e =
Addr-ssing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied SEC 38 il 2

SED Set decimal mode

SED

Operation: 1 = D NZCIDYV
S — l e
(Ref: 3.3.1)
Addressing Assembly Language OoP No. No.
Mode Form CODE | Bytes | Cycles
Implied SED F8 1 2

184

Appendix |

SEI

SEI Set interrupt disable status

SEI

Operation: 1 ~»> I NZ2CIDYV
—— — l ——
(Ref: 3.2.1)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Implied SEI 78 1 2
STA STA Store accumulator in memory STA
Operation: A > M NECIDY
(Ref: 2.1.2) 7
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Zero Page STA Oper 85 2 3
Zero Page, X STA Oper, X 95 2 4
Absolute STA Oper 8D 3 4
Absolute, X STA Oper, X 9D 3 5
Absolute, Y STA Oper, Y 99 3 53
(Indirect, X) STA (Oper, X) 81 2 6
(Indirect), Y STA (Oper), Y 91 2 6
STx STX Store index X in memory STx
Operation: X > M NZ2CIDV
(Ref: 7:2)
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Zero Page STX Oper 86 2 3
Zero Page, Y STX Oper, Y 96 2
Absolute STX Oper 8E 3 4

Machine language instructions

STY

STY Store index Y in memory

185

STY

Operation: Y > M NZCIDYV
(Ref: 7.3)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Zero Page STY Oper 84 2 3
Zero Page, X STY Oper, X 94 2 4
Absolute STY Oper 8cC 3 4
TAx TAX Transfer accumulator to index X TAx
Operation: A -+ X NB2CIDV
b JOPRERG
(Ref: 7.11)
Addressing Assembly Language op No. No.
Mode Form CODE Bytes Cycles
Implied TAX AA i 2
TAY TAY Transfer accumulator to index Y TAY
Operation: A > Y NECGLDY
FY ST ——
(Refs: 7.13)
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied TAY A8 I 2
TYA TYA Transfer index Y to accumulator l 'A
Operation: Y - A NZC€L DV
i i v
(Refi 7.14)
Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied

98 1 2

186

TSX

Operation:

Appendix |

TSX

TSX Transfer stack pointer to index X

TXA

Operation:

XS

Operation:

S =X NaGLDYV
(Ref: 8.9) ¥ s
Addressing Assembly Language OopP No. No.
Mode Form CODE Bytes | Cycles
Implied TSX BA 1 2
TXA Transfer index X to accumulator TXA
X > A Na2CIDUV
(Ref: 7.12) ¥ 2
Addressing Assembly Language OoP No. No.
Mode Form CODE Bytes Cycles
Implied TXA 8A i 2
TXS Transfer index X ‘o stack pointer sz
X~ N&GCT DV
(Ref: 8.8 T TTT 77
Addressing Assembly Language opP No. No.
Mode Form CODE Bytes Cycles
Implied TXS 9A 1 2

Machine language instructions 187

5.5 ABSOLUTE ADDRESSING

Absolute addressing is a 3-byte instruction.

The first byte contains the OP CODE for specifying the operation and
address mode. The second byte contains the low order byte of the effective
address (that address which contains the data), while the third byte con-
tains the high order byte of the effective address. Thus the programmer
specifies the full 16-bit address and, since any memory location can be
specified, this is considered the most normal mode for addressing. Other

modes may be considered special subsets of this 16-bit addressing mode.

Example 5.5: Illustration of absolute addressing

Clock
Cycle Address Bus Program Counter Data Bus Comments
1 PC PC + 3 OP CODE Fetch OP CODE
2 PC + 1 PC + 2 ADL Fetch ADL,
Decode OP CODE
3 PC + 2 PC + 3 ADH Fetch ADH,
Hold ADL
4 ADH, ADL PC % '3 Data Fetch Data
5 PC + 3 PC + 4 New Fetch New
OP CODE OP CODE,
Execute 0l1d
OP CODE

The basic operation of the microprocessor in an Absolute address mode
is to read the OP CODE in the first cycle while finishing the previous
operation. In the second cycle, the microprocessor automatically reads
the first byte after the OP CODE (in this case the address low) while
interpreting the operation code. At the end of this cycle, the microproces-
sor knows that it needs a second byte for program sequence; therefore, 1
more byte will be accessed using the program counter while temporarily
storing the address low. This occurs during the third cycle. In the
fourth cycle, the operation is one of taking the address low and address
high that were read during cycles 2 and 3 to address the operand. For ex-
ample, in load A, the effective address is used to fetch from memory the
data which is going to be loaded in the accumulator. In the case of stor-
ing, data is transferred from the accumulator to the addressed memory.

As was illustrated in the review of pipelining, depending on the in-
struction, it is possible for the microprocessor to start the next instruc-
tion fetch cycle after the effective address operation and independent of
how many more internal cycles it may take to complete the OP CODE. The
only exception to this is the case of "Jump Absolute' in which the address
low and address high that are fetched in cycle 2 and cycle 3 are used as
the 16-bit address for the next OP CODE. The jump absolute therefore only
requires 3 cycles. In all other cases, absolute addressing takes &4 cycles,
3 to fetch the full instruction including the effective address, the fourth

to perform the memory transfer called for in the instruction.

188

Appendix |

5.4 IMMEDIATE ADDRESSING

Imnmediate addressing is a 2-byte instruction.

The first byte contains the OP CODE specifying the operation and ad-
dress mode. The second byte contains a constant value known to the pro-
grammer. It is often necessary to compare load and/or test against cer-
tain known values. Rather than requiring the user to define and load con-
stants into some auxiliary RAM, the microprocessor allows the user to

specify values which are known to him by the immediate addressing mode.

Example 5.4: 1Illustration of immediate addressing

Clock
Cycle Address Bus Program Counter Data Bus Comments
& PC PC# 1, OP CODE Fetch OP CODE
2 PC + 1 PC + 2 Data Fetch Data,
Decode OP CODE
3 BC 4 2 PC + 3 New Fetch New
OP CODE OP CODE,
Execute 01ld
OP CODE

6.1 ABSOLUTE INDEXED

Absolute indexed address is absolute addressing with an index
register added to the absolute address. The sequences that occur for

indexed absolute addressing without page crossing are as follows:

Example 6.6: Absolute Indexed; With No Page Crossing

Address Data External Internal
Cycle Bus Bus Operation Operation
1 0100 OP CODE Fetch OP CODE Increment PC to 101,
Finish Previous
Instruction
2 0101 BAL Fetch BAL Increment PC to 102,
Interpret In-
struction
3 0102 BAH Fetch BAH Incrgment PC to 103,
Calculate BAL + X
4 BAH,BAL+X OPERAND Put Out
Effective
Address
5 103 Next OP Fetch Next Finish Operations
CODE OP CODE

BAL and BAH refer to the low and high order bytes of the base address,

respectively. While the index X was used in Example 6.7, the index Y
is equally applicable.

Machine language instructions

External
Cycle Address Bus Data Bus Operations
1 0100 OP CODE Fetch
Instruction
2 0101 New ADL Fetch
New ADL
3 01FF
4 O1FF PCH Store PCH
5 O1FE BCL Store PCL
6 0102 ADH Fetch ADH
Z ADH, ADL New Fetch New
OP CODE OP CODE

* S denotes "Stack Pointer."

189

Internal

Operations

Finish Previous
Operation; Incre-
ment PC to 0101

Decode JSR;
Increment PC to 0102

Store ADL

Hold ADL, Decre-
ment S to OLFE

Hold ADL, Decre-
ment S to OLFD

Store Stack Pointer

ADL -~ PCL
ADH -+ PCH

In this example, it can be seen that during the first cycle the micro-

processor fetches the JSR instruction. During the second cycle, address

low for new program counter low is fetched. At the end of cycle 2, the

microprocessor has decoded the JSR instruction and holds the address low

in the microprocessor until the stack operations are complete.

NOTE: The stack is always stored in Page 1 (Hex address 0100-01FF).

The operation of the stack in the MCS650X microprocessor is such that

the stack pointer is always left pointing at the next memory location into

which data can be stored.

Return from Subroutine (Example)

External Internal
Cycle Address Bus Data Bus Operations Operations
1 0300 OP CODE Fetch Finish Previous
OP CODE Operation, 0301 » PC
2 0301 Discarded Fetch Dis- Decode RTS
Data carded Data
3 01FD Discarded Fetch Dis- Increment Stack
Data carded Data Pointer to Ol1FE
4 O1FE 02 Fetch PCL Increment Stack
Pointer to O1lFF
O1FF 01 Fetch PCH
0102 Discarded Put Qut PC Increment PC by 1
Data to 0103
F) 01C3 Nex:t Fetch Next
OP CODE OP CODE

As we can see, the RTS instruction effectively unwinds what was done

to the stack in the JSR instruction.

190

Appendix |

The action and events are as follows:

The microprocessor user

pushes the panic button; the panic switch sensor causes an external

device to indicate to the microprocessor an interrupt is desired; the

microprocessor checks the status of the internal

interrupt inhibit

signal; if the internal inhibit is set, then the interrupt is ignored.

However, if it is reset or when it becomes reset through some program

reaction, the following set of operations occur:

Example 9.2: Interrupt Sequence

Cycles Address Bus Data Bus External Operation Internal Operation

5 PC OP CODE Fetch OP CODE Hold Program Counter,
Finish Previous
Operation

2 PC OP CODE Fetch OP CODE Force a BRK
Instruction, Hold
P-Counter

) O1FF PCH Store PCH on Stack Decrement Stack
Pointer to OlFE

4 O1FE PCL Store PCL on Stack Decrement Stack
Pointer to 01FD

5 01FD P Store P on Stack Decrement Stack
Pointer to O1lFC

6 FFFE New PCL Fetch Vector Low Put Away Stack

i FEEF New PCH Fetch Vector High Vector Low -
PCL and Set I

8 Vector OP CODE Fetch Interrupt Increment PC to

PCH PCL Program PC# 1

As can be seen in Example 9.2,

the microprocessor uses the stack to

save the reentrant or recovery code and then uses the interrupt vectors

FFFE and FFFF, (or FFFA and FFFB), depending on whether or not an interrupt

request or a non maskable interrupt request had occurred. It should be

noted that the interrupt disable is turned on at this point by the micro-

processor automatically.

Example 9.3: Return from Interrupt

Cycles Address Bus Data Bus External Operation Internal Operation
L 0300 RTI Fetch OP CODE Finish Previous
Operation,Increment
PC to 0301
2 0301 2 Fetch Next OP CODE Decode RTI
3 01FC ? Discarded Stack Increment Stack
Fetch Pointer to O1lFD
5 01FD P Fetch P Register Increment Stack
Pointer to OlFE
5 O1FE PCL Fetch PCL Increment Stack Point-
er to O01FF, Hold PCL
6 OlFF PCH Fetch PCH M>PCL, Store
Stack Pointer
7 PCH PCL OP CODE Fetch OP CODE Increment New PC

Note the effects of the extra cycle (3) necessary to read data from

stack which causes the RTI to take six cycles.

The RTI has restored the

stack, program counter and status register to the point they were at

before the interrupt was acknowledged.

Appendix J
EPROM blaster program

This listing is here so that you might get some tips from it on how to write
BASIC and assembly language programs.

Basic program for EPROM blaster
1PR#0
JLIST

10 EM EPROM.BLASTER

e REM A PROGRAM TO PROGRAM 2716 EPROMS
30 REM USING A J.BELL PROGRAMMER

40 REM B.THOMPSON

50 REM 15 NOV 83

60 REM
100 REM MACHINE PROG ENTRY ADDRESSES
105 ONERR GOTO 9000 This sets up error trap (see 9000)

110 BA = 28672: REM $7000 Position of EPROM machine
language program in memory

120 RE = BA + 3
150 W@ = BA + @ Entry locations
132 CL = BA + 9
135 ER = BA + 13

140 BU = 24576: REM BUFFER Buffer for your program
AT $6000

150 PRINT CHR$ (4);'"BLOAD
EPR.ASS" Load EPROM machine language
program
160 CALL BA Run initialization part
200 HOME Clear screen
210 VTAB 3: HTAB 10 Position cursor
220 PRINT "EPROM BLASTER
PROGRAM"

230 VTAB 6: HTAB 10
240 PRINT "FOR TYPE 2716 EPROM'S"

192

Appendix J

250
260
270
280
330
340
350
355
360
370

380
390

395

400

420
430
439
440
441
445
450
2000
2100
2110
2130
2165
2170
2180

2185
2190
2200
2210
2220
2225
2230

GOSUB 6100

GOSUB 6200

GOSUB 6300

GOSUB 6400

INVERSE

VTAB 20: HTAB 10
PRINT "SELECT A NUMBER;
NORMAL

GET S

IF (S > 0 AND S < 5)
GOTO 400

VTAB 22: HTAB 10

Print menu

Reverse video!

Get a character from keyboard
Check for out of range

PRINT CHR$ (7);"SELECTION

OUT OF RANGE"

PRINT TABC 10);"TRY AGAIN":

GOTO 330

ON S GOTO 2000,3000,
4000,420

HOME)
VTAB 10: HTAB 19
FLASH

PRINT "BYE" >
NORMAL

VTAB 24: HTAB 1
END J
REM CHECK ERASED EPROM
GOSuUB 6020

GOSUB 6100

GOSUB 6700

PRINT

INVERSE

PRINT : PRINT TAB(5);
""NOW PRESS CR TO CHECK
EPROM "';

NORMAL

INPUT " ";D$

CALL RE

GOSUB 6020

GOSUB 6100

VTAB 13: HTAB 10

IF PEEK (CL) < > 255

GOTO 2300

Go to selected part of program

If selection #, say goodbye

Start erased check

Set up screen

Call read program

If CL location = 255 then EPROM
is cleared

2240 PRINT "EPROM FULLY ERASED"

2250

GOSUB 6500

EPROM blaster program

2270
2300
2310
2320
2330

2335
2340
2350

3000
3100
3110
3120
3130
3130

3144
3145

3150
3160
3165
3170
3175
3180

51185

5190
3195
3200
3210
3220

3230
3240

3250
3260
3270

GOTO 200

PRINT CHR$ (7);"EPROM";
FLASH

PRINT "NOT";: NORMAL
PRINT "FULLY ERASED";
CHR$(7)

PRINT

GOSUB 6500

GOTO 200

REM BLAST EPROM

GOSUB

GOSUB 6200

GOSUB 6600

INVERSE

PRINT "HAVE YOU CHECKED
THAT YOUR"

HTAB 10

PRINT "EPROM IS FULLY
ERASED?

GET A%

IF A$ = "Y"
GOSUB 6020
VTAB 12: HTAB 15
FLASH

PRINT "YOU SHOULD":
NORMAL
PRINT :
PRINT
GOSUB 6500

GOTO 200

GOSUB 6600

INVERSE

PRINT "IS YOUR EPROM IN
THE HOLDER?"

NORMAL

GET A$: IF A$ < > "Y"
GOTO 3200

GOSUB 6600

INVERSE

GOTO 3200

PRINT ; PRINT :

193

Go back to menu

If CL not 255 then EPROM not
erased

Back to menu

Write EPROM

Set up screen

L Check up on operator

Check up again

Wait until “Y"

PRINT "ENTER THE FILENAME

OF THE"

194

Appendix J

5275
3276

3277
3280
3290
3300

3305
3310
3320

3400
3410

3420
3430
3440

3500
3510
3520

3530
3540

3550
3560

3600

3610

3620

3630
3640

3650
3660
3670
4100
4110
4120

HTAB 10

PRINT "'PROGRAM YOU WISH TO

RECORD"

HTAB 15

NORMAL

INPUT "";F$ Get filename of your program

VTAB 14: HTAB 10: GOSUB

6000

GOSUB 6600

PRINT "LOADING"

PRINT CHR$ (4);"BLOAD'"; Gogetfile (if file not found error

F$;" ,A$6000" occurs here, control switches to
9000)

GOSUB 6600

PRINT "PRESS CR TO BLAST

EPROM" ;

INPUT "'"';D$

GOSUB 6600

FLASH : PRINT "BLASTING":

NORMAL

CALL WR Call blasting routine

GOSUB 6600

E = PEEK (ER) + PEEK

(ER +1)*256 Check that it was succcessful

IF E < > 0 GOTO 3600

PRINT CHR$ (7);"A

SUCCESSFUL BLAST"

GOSUB 6500

GOTO 200

PRINT CHR$ (7);"THE

BLAST WAS";

FLASH:PRINT"NOT"; :

NORMAL

PRINT " SUCCESSFUL";

CHR$ (7)

PRINT

PRINT TABC 5);'"DO YOU

WANT TO TRY AGAIN?";

GET A%

IF A$ = "Y" GOTO 3400

GOTO 200

GOSUB 6020 Read EPROM

GOSUB 6300

GOSUB 6700

Report success

EPROM blaster program 185

4210
4215
4220
4225
4230

4240
4250

6000

6010
6020
6030
6040
6100
6110

6120
6200
6210

6220
6300
6310
6320
6400
6410

6420
6500
6510
6515
6520
6530
6600

6610

GOSUB 6500

CALL RE

GOSUB 6600

HTAB 1

PRINT "DATA AVAILABLE IN
MEMORY $6800 TO $6FFF"

GOSUB 6500

GOTO 200 Return to menu

CALL — 958: RETURN This will clear screen from cursor
to end of screen

CALL — 868: RETURN Clear to end of line

VTAB 10: HTAB 10 .

GOSUB 6000 Pﬁ&?oncugoMoV1QH10and

RETURN e

VTAB 10: HTAB 10

PRINT "1 CHECK ERASED
EPROM"

RETURN

VTAB 12: HTAB 10

PRINT "2 WRITE TO EPROM
(BLAST)"

Position to V10,H10 and print

PRINT "3 READ FROM EPROM"
RETURN

VTAB 16: HTAB 10

PRINT "4 EXIT TO
APPLESOFT BASIC"

RETURN

HTAB 10: INVERSE

PRINT "CR TO CONTINUE";
NORMAL

INPUT " ";D$

RETURN

VTAB 16: HTAB 10: GOSUB
6000

RETURN

PoanonandpnntMSG wait for

PositiontoV16,H10, clearto EOS

RETURN
VTAB 14: HTAB 10 \

196

Appendix J

6700
6710

6720

6730

6740

6750
9000
9010
9020
9030
9039
9040

9041
9045
9050
9060
9070
9100

VTAB 16: HTAB 5

PRINT "PLACE THE EPROM
IN THE HOLDER AND"
PRINT TAB(5);"LOCK THE
LEVER"

PRINT TAB(5);"BE SURE
THAT THE NOTCH"

PRINT TAB(C);"IS
ORIENTED CORRECTLY!"
RETURN

POKE 216,0

EC = PEEK (222)

IF EC < > 6 THEN 9100
VTAB 14: HTAB 10: FLASH
PRINT CHR$ (7);

PRINT "FILE "F$;" NOT
FOUND"

PRINT CHRS$ (7);

NORMAL

CALL — 3288

ONERR GOTO 9000

GOTO 3250

RESUME

Position and print

This routine checks for “file not
found” error (no 6). If this error
occurs control is returned to the
program else if a different error stop
program

EPROM blaster program

Assembly language program EPR.ASS

0010
0020

0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370

0380 ;

0390
0400
7000- 4C OF 70 0410
7003- 4C 42 70 0420

; Eprom Blaster for 2716s

197

; Using the John Bell eprom blaster and memory-mate
; interface.

; This version
; interface in

PORT1
PORTZ2
J1
J1DD
J2
J2DD
J3
J3DD
J&
J4DD

ECONTROL
EDATA
EADDL
EADDH

7 4

PGM
\OE
\POWER
\V24

’

PROGDATA
EPROMDATA

4

ADDR
ADDS

7

.DE
.DE
.DE
< DE
.DE
.DE
« DE
«DE
«DE
.DE

.DE
«DE
=DE
.DE

.DE
.DE
.DE
.DE

.DE
.DE

.DE

.DE

.BA

JMP
JMP

is for the Apple Ile with a 6522

slot 5

$C500

$C580

PORT1+1
PORT1+3
PORT1+0
PORT1+2
PORT2+1
PORT2+3
PORT2+0
PORT2+2

J2
J1
J.5
J4

%0001
%0010
%0100
%1000

$6000
$6800

$06

$08

$7000

INIT
READ

VIA addresses:

Control bits for2716s (information only)
Pin 18, % indicates binary

Pin 20, \ indicates negative (bar).

Pin 24

Pin 21

Parameters.

Zero page.

198

7006-

7009-
700B-
700D~

700F-
7011~
7014~
7016-

7019=
701B=
701D~
701F-
7021-
7022=
7024~
7027-
7028-
702A-

702C=
702E-
7031-
7034~
7037-
7039=
703C-
703E-

7041-

7042-
7044~
7047-
7049-
704C-
704E-

7051~

4C

A9
8D
A9
8D

A2
AQ
A9
Al
c8
DO
EE
E8
EO
DO

A9
8D
8D
8D
A9
8D
A9
8D

60

A9
8D
A9
8D
A9
8D

A9

91

60
07
00
06

00
00
FF
06

FB
07

08
F3

FF
02
83
82
00
03
OF
00

FF
09
68
07
00
06

00

70

00

00

00

c5
c5
€5
C5

C5

70

00

00

0430

Appendix J

0440 ;

0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0802
0830
0840
0850
0860

CLEAR
TIME
ERROR

" 4
INIT

v 4
READ

JMP

.DS
.DS
.DS

LDA
STA
LDA
STA

LDX
LDY
LDA
STA
INY
BNE
INC
INX
CPX
BNE

LDA
STA
STA
STA
LDA
STA
LDA
STA

RTS

LDA
STA
LDA
STA
LDA
STA

LDA

WRITE

2
2
2

#H,PROGDATA
ADDR+1
#L,PROGDATA
ADDR

#0

#0

HSFF
(ADDR) ,Y

A
ADDR+1

#308
A

HSFF
J2DD
J3DD
J4DD

#0

J1DD
#%1111
ECONTROL

#SFF
CLEAR

#H,EPROMDATA

ADDR+1

#L,EPROMDATA

ADDR

#300

Initindirect pointer

Put FF in all of program buffer.

Set up VIAs.

Input for now

Turn EPROM off.

Init clear flag.

Init indirect pointer

Set up VIAs for read.

7053-
7056~
7059-
r05C=
703E-

7061-
7064~
7066-
7068-
706B

706D-
706F-
7072-
7075-
7078~
707A-
707C-
707F-
7082~
7084~
7087-
7088-
7089-

708B-
708D~
7090-

7091-
7093-
7096~
7098-

709B-
709D-
70A0-

8D
8D
8D
A9
8D

AD
c9
FO
8D
AO

91
EE
AD
8D
c9
DO
EE
AD
29
8D
EA
EA
DO

A9
8D
50

A9
8D
A9
8D

A9
8D
8D

81
80
03
08
00

01
FF
03
09
00

06
06
06
81
00
E5
07
07
07
80

D6

OF
00

60
07
00
06

00
80
81

5
c5
C5
C5

€5

70

00
00
c5

00

00

c5

c5

00

00

€5
c5

0870
0880
0890
0900
0910

EPROM blaster program

0920 ;

0930
0940
0950
0960
0970

0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1081
1090
1100
1110

1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280

' 4
RLOOP

OKFF

STA
STA
STA
LDA
STA

LDA
CMP
BEQ
STA
LDY

STA
INC
LDA
STA
CMP
BNE
INC
LDA
AND
STA
NOP
NOP
BNE

LDA
STA
RTS

LDA
STA
LDA
STA

LDA
STA
STA

EADDL
EADDH
J1DD
#%1000
ECONTROL

EDATA
#SFF
OKFF
CLEAR
#300

(ADDR) ,Y
ADDR
ADDR
EADDL
#3$00
RLOOP
ADDR+1
ADDR+1
#307
EADDH

RLOOP

#%1111
ECONTROL

#H,PROGDATA

ADDR+1

#L,PROGDATA

ADDR

#300
EADDH
EADDL

189

+24 off, +5 on.

Set data from EPROM.
Check if EPROM data cleared.

Store EPROM data in memory pointed
to by ADDR.

Test end of page
Go to next page.

Strip high bits.

Done.
Turn off EPROM.

Init indirect pointer

Set up ports

200 Appendix J

70A3- A9 02 1290 LDA #7%0010
70A5- 8D 00 C5 1300 STA ECONTROL
70A8- A9 FF 1310 LDA #S$FF All outputs
70AA- 8D 03 C5 1320 STA J1DD
1330 ;
1340 ;
70AD- A0 00 1350 WLOOP LDY #$00 Set data from memory.
70AF- B1 06 1360 LDA (ADDR),Y
70B1= C9 FF 1370 CMP #S$FF No need to do FFs.
70B3- FO 27 1380 BEQ NEXTADD
70B5- 8D 01 €5 1390 STA EDATA
1400 Start hot blast.
70B8- A9 03 1410 LDA #7%0011
70BA- 8D 00 C5 1420 STA ECONTROL
1430 Start timer, 50 ms.
70BD- A9 80 1440 LDA #$80
70BF- 8D 0B 70 1450 STA TIME
70C2- A9 FO 1460 LDA #$FO
70C4- 8D 0C 70 1470 STA TIME+1
70C7- EE OB 70 1480 TLOOP INC TIME
70CA- AD 0B 70 1490 LDA TIME
70CcD- DO FB 1500 BNE TLOOP
70CF- EE 0C 70 1510 INC TIME+1
70D2- AD 0OC 70 1520 LDA TIME+1
70D5- DO FO 1530 BNE TLOOP
1540 End timer.
70D7- A9 02 1550 LDA #%0010 Stop hot blast.
7009- 8D 00 c5 1560 STA ECONTROL
1570 ;
70DC- EE 06 00 1580 NEXTADD INC ADDR Next data.
70DF- AD 06 00 1590 LDA ADDR
70E2- 8D 81 C5 1600 STA EADDL
70E5- DO Cé6 1610 BNE WLOOP
70E7- EE 07 00 1620 INC ADDR+1
70EA- AD 07 00 1630 LDA ADDR+1
70ED- 29 07 1640 AND #$07 Strip high bits.
70EF- 8D 80 C5 1650 STA EADDH
70F2- EA 1660 NOP
70F3- EA 1661 NOP
70F4- DO B7 1670 BNE WLOOP
1680 ;
1690 Done.
70F6- A9 OF 1700 LDA #%1111 Turn off EPROM.

70F8- 8D 00 C5 1710 STA ECONTROL

70FB- A9 00
70FD- 8D 03 C5
7100- 20 42 70

7103- A9 60
7105- 8D 07 00
7108- A9 00
710A- 8D 06 00
710D- A9 68
710F- 8D 09 00
7112- A9 00
7114- 8D 08 00
T117= A9 D0
7119= 8D OE 70
711C- 8D 0D 70
711F- A2 00
7121- AO 00
7123= B1 06
7125= D1 DB
7127- FO 08
7129- EE 0D 70
712C~ DO 03
712E~ EE OE 70
7T131= C&

7132- DO EF
7134~ E8

7135= EE 07 00
7138- EE 09 00
713B- EO 08
713D- DO E4
713F- 60

LABEL FILEz [

/PORT1=C500
/J1DD=C503
/J3=C581
/J4DD=C582
/EADDL=C581
/\0E=0002
/PROGDATA=6000
/ADDS=0008

EPROM blaster program

1720 LDA #3$00

1730 STA J1DD

1740 JSR READ

1750 ;

1760

1770 LDA #H,PROGDATA
1771 STA ADDR+1

1772 LDA #L,PROGDATA
1773 STA ADDR

1780 LDA #H,EPROMDATA
1781 STA ADDS+1

1782 LDA #L,EPROMDATA
1783 STA ADDS

1790 LDA #0

17971 STA ERROR+1
1792 STA ERROR

1800 LDX #$00

1810 LDY #$00

1820 CLOOP LDA (ADDR),Y
1830 CMP (ADDS),Y
1840 BEQ OKDATA

1850 INC ERROR

1860 BNE OKDATA

1870 INC ERROR+1
1880 OKDATA INY

1890 BNE CLOOP

1900 INX

1910 INC ADDR+1

1920 INC ADDS+1

1930 CPX #$08

1940 BNE CLOOP

1950 RTS

1960 -EN

/ =EXTERNAL 1

/PORT2=C580
/J2=C500
/J3DD=C583
/ECONTROL=C500
/EADDH=C580
/\POWER=0004
/EPROMDATA=6800
CLEAR=7009

201

Memory compare.

Next page

End for 2716s.

/J1=C501
/J2DD=C502
/J4=C580
/EDATA=C501
/PGM=0001
/\V24=0008
/ADDR=0006
TIME=700B

202

ERROR=700D
READ=7042
WRITE=7091
NEXTADD=70DC

//0000,7140,7140
>

Appendix J

INIT=700F

RLOOP=7061
WLOOP=70AD
CLOOP=7123

A=701F
OKFF=706B
TLOOP=70C7
OKDATA=7131

Appendix K
Bibliography and sources

General APPLE and 6502 programming

Apple lle Reference manuals, Apple Computer.
These are quite good and contain the fine details and all APPLE hardware and
software.

Poole, L., McNiff, M. & Cook, S., Apple II User’s Guide, Osborne/McGraw-Hill,
Berkeley, 2nd edn., 1983.
Good general reference on BASIC programming and the use of the
MINIASSEMBLER.

SYNERTEK 6502 Programming Manual, Publication No. 6500-50, Santa Clara,
CA 95051
Details of op-codes and their uses.

Leventhal, L., 6502 Assembly Language Programming, Osborne/McGraw-Hill,
Berkeley, 1979.
Easier to find than the SYNERTEK book.

General computing

BYTE Magazine.
Good general overview of microcomputing with frequent references to laboratory
applications.

General numerical analysis
Press, W., Flannery, B., Tenkolsky, S. & Vetterling, W. Numerical Recipes, The Art
of Scientific Computing, Cambridge Univ. Press, New York, 1986.

General electronics

Horowitz, P. & Hill, W., The Artof Electronics, Cambridge Univ. Press, New York
1980.
The best reference for designing laboratory electronics.

Physical data
Handbook of Chemistry and Physics,ed. R. Weast, 52nd edn, Chemical Rubber Co,
Cleveland, OH, 1971.

American Institute of Physics Handbook ,ed. D. E. Gray, McGraw-Hill, New York,
1957.

Mark’s Standard handbook for Mechanical Engineers, eds. T. Beaumeister, E. A.
Abalone & T. Baird, 8th edn, McGraw-Hill, New York, 1978

Physics
Any general introductory physics text will provide a good background.

Sensors and transducers
Doebelin, E. O., Measurement Systems, McGraw-Hill, New York, 1983.
A thorough overview of general design and specific devices.

204

Appendix K

Specific hardware

Witten, I. H., Welcome to the Standards Jungle, BYTE, pp. 14678, February, 1983.
This a close look at serial data communication.

Leibson, S., The Input/Output Primer, Part 3: The Parallel and HPIB (IEEE-488)
Interfaces, BYTE, pp. 186-208, April, 1982.

Clune, T. R., Interfacing for Data Acquisition, BYTE, pp. 269-82, February, 1985.
These two articles provide a good background in how the IEEE-488 works.

Hallgreen, R. C., Putting the Apple II to Work, Part 1: The Hardware, BYTE, pp.
152-64, April, 1984.
This and a succeeding article in BYTE in May 1984 describe a particular data
acquisition system.

General signal analysis
Bendat, J. S. & Piersol, A. G., Random Data, Wiley, New York, 1971.

Otnes, R. K. & Enochson, L., Applied Time Series Analysis, Wiley, New York, 1978.
Papoulis, A., Signal Analysis, McGraw-Hill, New York, 1977.

Specific signal analysis
Monforte, J., The Digital Reproduction of Sound, Scientific American, pp. 78-84,
December, 1984.
A good description of the sampling problem and digitization.
Cacerci, M. S. & Cacheris, W. P., Fitting Curves to Data, BYTE, pp. 340-62, May,
1984.
A description of the Simplex algorithm.

Report writing

Porawn, J. F., A Student Guide to Engineering Report Writing, United Western
Press, Soloma Beach, 1985.

Hofstaedter, D., Default Assumptions in Metamathecal Themas, Scientific
American, November, 1983.
For those interested in exorcising the spectre of maleness from their writing.

Sources
John Bell Engineering, Inc., 400 Oxford Way, Belmont, CA 94002
ADC board
6522 interface board
EPROM programmer.
MADWEST Software, P.O. Box 9822, Madison, WI 53715
AMPERGRAPH, for drawing graphs
AMPERDUMP, for printing graphs.
Electronic chips, stepping motors, etc.
Look in the back of BYTE mgazine for numerous sources for these items.

Index

absolute addressing 68 data smoothing 33
accumulator, CPU 64 digital to analog converters (DAC) 69ff
ACR (auxiliary control register) 48 DIM 24
ADC 11ff, 17ff, 131ff DIP connector 11
address lines 63 double precision arithmetic 95
address storage 67 drag 86
addressing DRA, DRB 35
absolute 68
index 71, 72 EPROM. BLASTER 100, 183ff
indirect 83 EPROMS 100
AMPERGRAPH 6
amplifier 57ff files 23ff
analog to digital conversion 11 files
AND operation 74 reading 25
APPLE architecture 62 writing 23, 24
APPLESOFT BASIC 6 fluids forces 84
arrays 23
ASCII 110, 111, 113 graphics viewing 8

assembly language programming 65, 164ff
heat capacity 52

base address 6522 48 heat flow 52ff
BEEP 50 heat flow equation 53, 54, 156ff, 159ff
binary number system 46, 47 hexadecimal number system 44
Boltzmann factor 18 HEXFET 36, 57
Boolean algebra 74 HGR 27
bootstrap 162, 163 HIMEM: 16383 7
branching instructions 72, 77
BRK instruction 93 1C 2716 100
buss 63 IC 6502 75, 81, 102
IC 6522 48, 49, 70, 93, 147

CA3140 amplifier 58 IC 74LSO4 45
calibration of ADC 13 IC LM339 89, 90
calling machine language programs from IEEE-488 114ff

BASIC 72 index addressing 71, 72
carry 96 indirect addressing 83
CATALOG 6 initializing disks 8
clock 63 INPUT 21
clock registers 93 INTEGER BASIC 65
coefficient of drag 86 interrupt enable register (IER) 105
coefficient of viscosity 84 interrupt flag register (IFR) 105
control C 13 interrupts 102ff
control character 24 IRQ (interrupt request) 102
control lines 63 ISR (interrupt service routine) 104
correcting programs 6
CPU 11, 62 IMP 68
DAC 69ff Kelvin temperature 18
data errors 31ff kinetic fluid pressure 86

data lines 63
data modeling 29ff latching 90

206 Index

least squares fit 27ff RTI (return from interrupt) 104
LED 44, 45, 88 RTS 73

LIST 7 ' RUN 8

LOAD 9

logarithm scale 26 sample rate 15

LOW-ORDER/HIGH-ORDER registers 49 saving machine language 68, 69
scaling, computer generated 94

machine language programming 67, 164ff Schmidt trigger 90
memory, types 62 SED instruction 106
memory map 129 serial data 114ff
merging programs 9, 125ff smoothing 33
MICROBUFFER 8 specific heat 20
Microprocessor 6502 62 stack 79
microprocessor execution 64 stack memory 64
MINIASSEMBLER 65 stack pointer 64, 80
monitor 65 stepping motors 40, 42
mother board 62 Stokes law 85

stop program loop 13, 67
negative numbers 46 storing programs 8
NEW 6 string variables 7
NOP 93 subroutines 79
Nyquist frequency 16 system start disk 6
operational amplifier 58 temperature control 37ff
OR exclusive (EOR) 76 TEXT 8
ORA operation 76 thermal conductivity 52
oscilloscope trigger 12 thermal diffusion S2ff
output generation 34 thermistor 11, 118ff
overflow 46 timing 48ff

timing loop (BASIC) 39
PA (PORT A) 35 timing loops, machine language 81
parallel data 114ff transducer
PB (PORT B) 35, 44 first-order 20
PEEK 11, 36 second-order 21
photoresistor 88 zero-order 13
plotting 6 triple precision 83
POKE 11, 36 truth table 74
potentiometer 12ff turbulence 84
PR#1, PR#0 8
pressure 86 UART 113
printer 8
printing graphics 8 VCO 15
process status register 64 velocity gradient 85
program counter 64 VIA (versatile interface adapter) 35, 48, 49,
prompts 65 93, 145
protoboard 11, 12 VIA timers 48

viscosity 84
RAM 100 voltage divider 19, 23
read/write line 63
reading binary files 69 WAIT 91
REM 7 wire color codes 19
RENUMBER 9, 123
resetting registers 77 X, Y registers 64
Reynolds number 10 X-Y plotting 73

ROM, 10, 100

