
APPLE II
in the laboratory

A.F.KUCKES & B.G.THOMPSON
School of Applied and Engineering Physics. Cornell University

The nght oftlrt'
Unircrsity of Cambridge

to print and St•ll
all manner of booL

was want<'d hy
Ht•nry VIII in 1534.

The Unil'NSity has flrintnl
and published continuously

since 1584.

CAMBRIDGE UNIVERSITY PRESS

Cambridge

New York New Rochelle Melbourne Sydney

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 lRP
32 East 57th Street, New York, NY 10022, USA
10 Stamford Road , Oakleigh, Melbourne 3166, Australia

©Cambridge University Press 1987

First published 1987

Printed in Great Britain at the University Press, Cambridge

Brilish Library Ca1aloguing in Publica/ion Da1a

Kuckes, A. F.
Apple II in the Laboratory.
I. Physics- Experiments- Data processing
2. Apple IT (Computer)
l. Title II. Thompson, B. G.
530'.028'54165 QC52

Library of Congress Cmaloguing in Publica1ion Dala

Kuckes, Arthur F.
Apple II in the Laboratory.

Bibliography:
Includes index.

1. Physical Laboratories- Data processing.
2. Apple II (Computer) I. Thompson , B. G. II. Title.
III. Title: Apple 2 in the laboratory. IV. Title: Apple
two in the laboratory.
QC52. K83 1987 004.165 86-21531
ISBN 0 521 32198 0

Applesoft as referred to in this
book is a Registered Trademark of
Apple Corporation.

Achilles: Before we start, I just was wondering, Mr. Crab-what are all
these pieces of equipment , which you have in here?

Crab: Well, mostly they are just odds and ends- bits and pieces of old
broken phonographs. Only a few souvenirs (nervously tapping the
buttons), a few souvenirs of-of the TC-battles in which I have
distinguished myself. Those keyboards attached to television
screens, however, are my new toys. I have fifteen of them around
here. They are a new kind of computer, a very small, very flexible
type of computer-quite an advance over the previous types
available. Few others seem to be quite as enthusiastic about them
as I am , but I have faith that they will catch on in time.

Achilles: Do they have a special name?
Crab: Yes ; they are called "smart-stupids", since they are so flexible , and

have the potential to be either smart or stupid, depending on how
skillfully they are instructed .

From Godel, Escher, Bach: an Eternal Golden Braid by Doug las R. Hofstadter.

Copyright© 1979 by Basic Books Inc, publishers. Reprinted by permission of the

publisher.

Contents

1 Introduction 1
1.1 How to use this book 3
1.2 Chapter summary 3

2 Instrumentation structures and using the APPLE II computer 5
2.1 Making graphs 5

Ex2.1.1 Starting out 6
Ex2 .1.2 Simple graphing 8

2.2 Addresses and data , RAM and ROM 9

3 Thermistor experiments 11
3.1 Using the analog to digital converter 11

Ex 3.1.1 Using the ADC 12
Ex 3.1.2 Programming the ADC 13

3.2 Analog to digital converters 14
Ex3 .2.1 ADC and sampling 15
Ex 3 .2 .2 Audio digital sampling 17

3.3 Thermistor resistance vs. temperature characteristics 17
Ex 3.3 .1 Thermistor mathematical models 18
Ex 3.3 .2 Specific heat and power 20
Ex 3.3 .3 Temperature lag 22
Ex 3.3.4 Thermistor resistance measurement 23

Ex 3.3 .5 Data arrays 23

3.4 Making and retrieving sequential data files 23
Ex 3.4.1 WRITE data file 23
Ex 3.4.2 Test data WRITE 24
Ex 3.4.3 READ data file 25

Ex 3.4.4 Temperature and thermistor resistance data file 25

3 .5 Plotting the experimental data 26

Ex 3 .5 .1 Thermistor data plot 26
Ex 3.5 .2 Logarithmic plot 26
Ex 3 .5.3 Linearized thermistor data plot 27

3.6 A least squares fit to the data 27

Ex 3.6.1 Least squares fit to data 28
Ex 3.6.2 Plot of residuals 29

viii Contents

3.7 Data modeling 29
3.8 Errors in data and parameters 31

Ex 3.8.1 Errors in thermistor data 33
3.9 Digital signal processing 33

3.10 Generation of output using basic 34
Ex 3.10.1 Square wave output 34
Ex 3.10.2 Square wave output on PB3 36

3.11 POKE and PEEK 36
3.12 Using a HEXFET to control the heater 36

Ex 3.12.1 Temperature contoller 37
Ex 3.12.2 Temperature controller with hysteresis 38

4 Timing 39
4.1 Timing loops in BASIC 39

Ex 4.1.1 Square wave output (BASIC) 39
4.2 Stepping motors 40

Ex 4.2 .1 Single step of stepping motor 41
Ex 4.2.2 Maximum stepping rate 42
Ex 4.2.3 Positioner 43

4.3 Number systems 43
Ex 4.3.1 LED binary number display 46

4.4 Generation of square waves by the 6522 48
Ex 4.4.1 Square wave on PB7 VIA 6522 49

4.5 Making an interval timer 49
Ex 4.5 .1 T1-T2 interval timer 49
Ex 4.5.2 Beeper 50

5 Thermal diffusion 52
5.1 Heat flow equation 52

Ex 5.1.1 Impulse heat diffusion solution 53
Ex 5.1.2 Graphing the heat diffusion equation 54

5.2 Numerical integration of the heat diffusion equation 55
Ex5 .2.1 Integration algorithm 56

5.3 Experimental setup and program development 56
Ex 5.3 .1 Heat impulse to rod 57

5.4 Voltage amplifier 57
Ex 5.4.1 Amplifier check 59
Ex 5.4.2 Heat flow real-time plot 59

5.5 Data analysis 59
Ex 5.5 .1 The thermal conductivity and specific heat of copper 60
Ex 5.5.2 Time shift of heat flow data 61

6 APPLE architecture and assembly language programming 62
6.1 Inside the APPLE 62
6.2 The 6502 Microprocessor 63

Contents ix

6.3 Writing machine language programs 65
Ex 6.3.1 Machine language square waves and BSA VE 69

6.4 Operation of a DAC 69
Ex 6.4.1 DAC sawtooth wave (BASIC) 71
Ex 6.4.2 DAC sine wave (BASIC) 71

6.5 Indexed addressing 71
Ex 6.5 .1 DAC output in machine language 72

6.6 The CALL and RTS connection 73
Ex 6.6.1 BASIC- machine language connection 73
Ex 6.6.2 DAC sine wave (BASIC and machine language) 73

6.7 An X-Y plotter 73
Ex6.7.1 Lissajous figures on DAC X-Y plotter 74

6.8 Boolean algebra 74
Ex 6.8.1 AND 75
Ex 6.8.2 ORA 76
Ex 6.8 .3 EOR 77

6.9 Branching instructions 77
Ex 6.9 .1 Masking and branching 77

6.10 Subroutines and use of the stack 79
Ex 6.10.1 JSR 81

6.11 Assembly language timing loops 81

Ex 6.11.1 Machine language timing loops 83
6.12 Indirect addressing 83

7 Viscosity measurement 84
7.1 Force required to move a solid body through a fluid 84

Ex 7.1.1 Stokes' law 87
Ex 7.1.2 Approach to terminal velocity 88

7 .2 The experimental apparatus 88
Ex7.2.1 Cadmium sulfide cell resistance and voltage changes 90

7.3 The need for using machine language 90
Ex 7.3.1 Speed of a sphere in air 91

7.4 Machine language program to record fall of a sphere through
glycerine 93

Ex 7.4.1 Light beam sensing and timing 93
7.5 Graphing scales 94

7.6 Double precision addition and subtraction 95
Ex7 .6.1 Double precision addition 95
Ex 7.6.2 Quadruple precision subtraction 96

7 .7 The viscometer 96
Ex 7.7.1 The viscometer and the viscosity of glycerine 96
Ex 7.7.2 The wall effect 98
Ex 7.7.3 Temperature variation of the viscosity of glycerine 99
Ex 7.7.4 The viscosity of aqueous solutions of glycerine 99

X

7.8

8
8.1
8.2

8.3

8.4

9

9.1

9.2

9.3

9.4
9.5
9.6

Contents

Using an EPROM 100

Ex 7.8.1 Blasting and using an EPROM 100

Interrupts 102

Interrupts and the CPU 102

User controlled interrupt 105

An ISR 106

Ex 8.3.1 Running an interrupt program 106

T2 generated interrupts 111
Ex 8.4.1 Writing an interrupt program 111

Other topics 112

Hardware for data acquisition and control 112

Serial data communication 112
Ex 9.2.1 Serial communication 114
Parallel data communication 114

Ex 9.3.1 Parallel communication via IEEE 488 protocol 116

Sensors and transducers 116

Software for data acquisition and control 117

Where to go from here 118

Appendix A Laboratory materials and sources 119

Appendix B Merging programs: use of the RENUMBER

program 125

Appendix C APPLE lie memory map 129

Appendix D Connections and logic of the ADC 131

Appendix E VIA data sheets 133
Appendix F Solution for heat flow in one dimension 156
Appendix G Finite impulse heat flow in a rod 159
Appendix H Bootstrap sequence 162

Appendix I Machine language instructions 164

Appendix J EPROM blaster program 191
Appendix K Bibliography and sources 203

Index 205

Acknowledgements

We wish to thank the students who struggled with us through the first semester of this

course and Professor Bruce Kussc and Tom Hughes for their constructive comments

on the notes. We also thank Helen Savey and Bonni Jo Davis for the hours of typing

and retyping of the drafts. Andy Draudt drew the pictures of the apparatus .

1 Introduction

The microprocessor has become commonplace in our technological society.
Everything from dish washers to astronomical telescopes have chips control­

ling their operation. While the development of applications for computers
has been in constant flux since their introduction, the principles of computer
operation and of their use in sensing and control have remained stable.
Those are the primary subjects of this course. Once a basic understanding of
the principles has been built, further detailed knowledge can be acquired
later as the need arises.

This book is designed to be acompanied by extensive laboratory work.
Over the years the engineering curriculum has focused more and more on
the lecture/recitation format. This has led to an ever increasing emphasis on
theoretical developments and a loss of contact with the physical basis of
engineering and science. The laboratory provides a vital experience in
linking theory with physical reality. It also provides the satisfaction of
building something and making it work.

Not all computers are suitable for laboratory use. Large mainframe
computers are fast and can handle large amounts of data but are awkward to
connect to laboratory equipment. At the other end of the scale, microproces­
sors are included in many laboratory devices but are programmed to
perform only a restricted set of duties. Mini and microcomputers have
enough speed and memory for all but the most demanding applications but
yet are small enough to be dedicated to individual projects and therefore are
widely used in the laboratory.

With the technological strides of recent years, microcomputers (or per­
sonal computers) have prodigious capabilities. Since they are also used in
business, many languages and programs are available; some of which are
even useful in a laboratory. With a single microcomputer, an engineer or
scientist can acquire data and control an experiment, analyze the data,
display the data and analysis as graphs or tables, and write a report or journal
article. Remember that it can't do the thinking!

Microcomputers come with many built-in features. Those included
depend on the designers' decisions as to what will sell the most computers.
Since the demands of the laboratory are so varied, no computer when taken
out of the box can hope to fulfill them. Hence to be useful, a computer must
be able to change its capabilities after manufacture. This is done in two ways.
One is provide a method of communication (serial or parallel) between the

2 Introduction

computer and the laboratory devices (analog to digital converters, voltmet­
ers, etc.) and rely on the devices to be intelligent enough to communicate.
Generally this means that the devices need a microprocessor built in which

is preprogrammed to communicate with a certain protocol. The other way is
to have slots (connectors) in the back of the computer so that circuit boards
can be inserted to perform the desired tasks such as analog to digital
conversion of serial communication. The computer can then be configured
exactly as needed for a particular application. Even the video display or
microprocessor can be changed when desired . Further, 'slot machines ' are
generally the least expensive way to computerize the laboratory.

The APPLE lie (upon which this book is based) and the IBM-PC (which
is the subject of a companion volume) are 'slot machines'. The APPLE lie
(and predecessors, the APPLE II and APPLE II+) is of an older design but
has proved its usefulness in innumerable times. Its simple yet versatile
architecture makes the computer easy to use and understand but limits its
analysis and data volume capabilities. The IBM-PC is a newer design which
is faster and has more memory but is slightly more complicated internally.
They are both quite suitable for laboratory use . Beware of the APPLE lie
which is a slotless version of the Tie ; it will not be able to accept the circuit
cards which are necessary for the exercises in this book. IBM-PC clones
(design copies) can be used instead of the IBM-PC as long as they have slots
where data acquisition boards can be placed.

A computer can be treated as a black box which responds in a predictable
way to an input; however, that type of use requires a complete knowledge of
the possible inputs and responses . An understanding of how it works inside

allows the user to figure out how the computer will respond to an input , or
even if it can respond . The capabilities and limitations become transparent.
Throughout the book a gradual understanding of what goes on inside a
computer will be developed.

Other devices which are used are various sensors, analog to digital
converters, digital to analog converters, timers, digital input and output
devices, optical encoders , stepping motors, and analog amplifiers. They
provide the interface between the computer's digital world and the physical
phenomena being studied.

At first , APPLESOFT BASIC is used for programming. This allows
simple input and output to be done as one's understanding of the computer
grows. Graphing and curve fitting is also dealt with. Later , when the
limitations of BASIC become restricting, programs are written in assembly/
machine language . The speed difference become evident very quickly.

A ll of this computer work is done in the context of doing physics
experiments. These experim'ents cover subjects not usually emphasized in
introductory courses but which have a wide applicability. They show that ,
with computer control , conceptually sophisticated experiments can be
performed with simple apparatus. In particular, physics of activation tem­
perature , heat diffusion and motion in fluids are explored.

1.2 Chapter summary 3

1.1 How to use this book
In this book much of the programming material will be presented by

way of example. Programs will be given from which you will be expected to
deduce the essence of what is going on and thereby proceed to write your
own programs. After seeing and using programs, the more precise and legal
description of instructions given in the manuals become easier to com­
prehend .

This book is written in a tutorial manner in which the exercises and
experiments are distributed throughout the text. It would be nice to read up
to an exercise and then sit down at the computer to do it. However, the time
in the laboratory is short so that this becomes impossible. Before going to the

laboratory , read through the text you expect to cover and organize your
thoughts about what you will be doing . Also , jot down flow charts and write
out programs which you will enter in the computer at the laboratory. Even if
they do not run the first time they can be easily changed once the program is
in a file. The essence of learning is going through the struggle of getting
things to function properly, whether it be in writing programs, building
experimental apparatus, or understanding theoretical descriptions.

Many of the details of BASIC programming and machine operation can
be found in APPLE II User's Guide by L. Poole , M. McNiff and S. Cook or
a complete set of APPLE manuals. Assembly language programming is not
covered. A source for that is 6502 Assembly Language Programming by L.
Leventhal or SY6500 Microcomputer Programming Manual by MOS
Technology.

The appendices contain reference material and extended discussions.
They are separated from the main text to improve the flow but contain
important information and so should be perused once in a while .

1.2 Chapter summary
Chapter 2 begins with an introduction to the operation of the

APPLE lie computer. The AMPERGRAPH utility and APPLESOFT
BASIC are used to make some graphs . There is also a brief look inside the
APPLE at addresses , data and different types of memory.

Chapter 3 introduces the first Input/Output (I/0) device , the Analog to
Digital Converter (ADC). It is used to measure the temperature/resistance
characteristics of a thermistor. Further BASIC programming is used to do a
least squares fit to the data. The I/0 capabilities of a 6522 Versatile Interface
Adapter (VIA) are used to control a HEXFET switch on a heater to make a
temperature controller.

In Chapter 4, simple BASIC timing loops are used to control a stepping
motor. The operating speed of BASIC statements is measured. Then the
more sophisticated counters of the 6522 VIA are used to make an accurate
interval timer.

Chapter 5 concerns an experiment in thermal diffusion. A heater at one
end of a copper rod is turned on for a set interval under program control. The

4 Introduction

ftow of this heat pulse down the rod is then measured at two locations for
about 30 s. A theoretical model is fitted to these data to determine the
thermal conductivity and heat capacity of copper. An analog amplifier is
used to boost the signal from the thermistor to the ADC.

Chapter 6 is an introduction to assembly language programming and the
architecture of the APPLE. The increase in processing speed over BASIC is
vividly displayed by sending a square wave to the output port. A digital to
Analog converter (DAC) is used to make an X-Y plotter.

In chapter 7, an experiment is constructed which measures the viscosity of
glycerine by measuring the speed of a falling sphere. The physics of
turbulent as well as smooth fluid flow is discussed. LEDs and photocells are
used as position sensors to measure the speed of the sphere. The machine
language portion of the data acquisition program is blasted into an EPROM
(Erasable Programmable Read Only Memory), which is used to acquire
velocity data .

Chapter 8 introduces the concept of interrupt processing . A clock display
runs as other computer operations are performed. A modification of this
program rings the bell every two seconds while other programs are run.

Chapter 9 contains various topics which are important but do not have a
direct bearing on the experiments done in the previous sections.

2 Instrumentation

Fig. 2.1.1nstrumentation
structures
Process: eg temperature as
function oftime, position as
function of temperature.
Sensor: eg temperature or
position converted to voltage.
Signal condit ioner : eg amplifier,
filter.
* Conversion: analog to digital.
*Storage/playback: eg silicon
memory, magnetic, papertape.
* Representation : eg numbers,
pictures (1000 words of
memory!).
*Modeling : mathematical fit to
data.
*Control: eg change
temperature or position .
The computer has a part in all
items with a *.

structures and using
APPLE 11 computer

The purpose of an instrument is to make measurements of a particular
parameter in a physical process. This requires at least a sensor which
responds to the parameter and a display which lets the user record readings
which are in some way proportional to the parameter being measured. A
thermometer is an instrument which indicates the temperature by quantita­
tively showing the expansion of a liquid with a temperature increase. A more
complete description of the measurement process is shown in Figure 2.1.
The arrows show possible but not necessary routes for the flow of informa­
tion. The computer is able to do many of the tasks which were formerly done
by separate units of an instrument. This lets the designer reduce the number
of components required to a bare minimum as the experiments in this book
show. Many times all that is needed is a sensor to translate the process into
an electrical signal.

Another way to think of the computer is as an interface between the
experimenter and the experiment (or the user and the measurement). It is
able to translate the unintelligible signals from the sensor into a form which
is understandable using human senses . One of the best ways of communi­
cating information is by picture . 'A picture is worth a thousand words .' (In
fact, it takes roughly a thousand words of computer memory to display a
video graphics screen.)

2.1 Making graphs
Graphing experimental data and mathematical expressions is an

important aspect of the work you will do in this course; we will go through a

6 Instrumentation structures

few programs which will show how such graphics programs are written . The
APPLESOFT BASIC interpreter , which you will be using for programming
the machine has only rudimentary plotting instructions incorporated in it;
the AMPERGRAPH utility appends to the usual APPLESOFT instructions
additional graphing instructions which are easy to use. AMPERGRAPH is
automatically linked to APPLESOFT BASIC at system start up time. Refer
to your AMPERGRAPH manual for descriptions of AMPERGRAPH
commands and to the APPLE BASIC programming manual or Poole for
APPLESOFT commands.

Exercise 2.1.1 Starting out
(a) To get started insert the SYSTEM START disk into the DISK

DRIVE unit and turn the computer power switch on. The machine
is set up so that it will 'wake up' in APPLESOFT BASIC whose
prompt is] . The AMPERG RAPH utility and other programs are on
the SYSTEM START disk. To see what files are on this disk, type
CATALOG CR (CR means press the key labeled RETURN). On
the screen , a listing of the programs will appear. Up to 18lines of the
catalog entries are presented. If this does not include all the files on
a particular disk , you can see more by pressing the space bar. The
entries marked with an 'A ' are APPLESOFT programs .

(b) AMPERGRAPH: you will now type into the computer memory a
sample APPLESOFT/AMPERGRAPH plotting program. First
clear out other programs which may be in the machine by typing
NEW CR . Then type in the Program 2.1.1 in Figure 2.2; each line
should be followed by CR. Be sure to read the comments in Figure
2.2 to understand each program step . HIMEM is particularly
important.

(c) Listing: the LIST command will make the APPLESOFT program
which you have entered appear on the screen; check the program
for errors. The spacing may appear slightly changed but that is
normal. To correct any errors simply retype the line number and
statements which are incorrect ; the old line will be erased. To delete
a line , simply type the line number followed by a CR. As you get
further along in writing programs, you will find it useful to go
through the APPLE manual to learn some further editing features
of the APPLE. Notice that the numbering of the statements is not
consecutive. This is a good practice in BASIC programs in case you
want to put additional program lines between existing lines. To
insert a new line between two lines simply type a line with a number
between the two line numbers.

(d) Printing: next, print a listing of the program on the printer: first turn
the power switch to the printer on . Then to direct output to the

2.1 Making graphs

Fig. 2.2. An elementary graphing example.

5 REM PROGRAM 2.1.1 REMark is a way of recording program

6 REM ELEMENTARY EXAMPLE documentation,itisnotaninstruction

which is executed.

8 HIMEM:16383

10 HGR2

HIM EM will limit the usage of memory

for APPLESOFT programs to addresses

lower than 16383, You must include this

before any executable (non-REM)

APPLESOFT statements in programs

using AM PE RG RAPH statements to

insure that APPLESO FT doesn't write

over the AMPERGRAPH program in

memory. See Appendix C for the location

of AM PERGRAPH in memory.

HGR2 erases all 'dots' stored on page 2

of high resolution graphics and switches

the screen to display that page. We will

use HGR2 instead of HGR1 in our

programs. (Appendix C)

7

20 &SCALE,0,10,-1.2,1.2 All instructions beginning with a & are

AMPERGRAPH instructions, read manual

for details.

25 LX$="X"
27 LY$="COS X"

30 &LABELAXES,2,.2

In BASIC all variables ending with a$ are

string variables which are used to

manipulate text. These variable names

(LX$ and L Y$) are special to

AMPERGRAPH

An AMPERGRAPH instruction .

40 for X=O TO 10 STEP 0. 2 An ordinary APPLESOFT BASIC

instruction.

50 &DRAW, X, COS(X) AnAMPERGRAPH instruction.

60 NEXT X An APPLESOFT BASIC instruction.

LIST CR A DOS Command.

8 Instrumentation structures

printer, type PR#l CR. This will direct subsequent output to the
printer as well as to the CRT. Now type LIST CR. To turn off output
to printer, type PR#O.

(e) Running the program: to run the above program type RUN CR. If
the program is correct the graph of cos (x) should appear on the
screen. If not , find the errors and correct them (debug the program).
At this time memory locations devoted to high resolution graphics
are being displayed; to get back to displaying text on the screen,
type TEXT CR (type carefully since you won't see what you are
entering). To get back to viewing the high resolution graphics
without wiping out what's there (which the HRG2 instruction will

do), type POKE -16304,0:POKE -16299,0 CR.
To print out the graphics display, a control signal must be sent to

the printer (actually to the circuit card which controls the printer).
The details of this are discussed in the documentation for the printer
card you are using. For a MICROBUFFER, to print out the graph

you have drawn, type TEXT CR (to see what you are typing),
PR#l CR (to send output to the printer), PRINT CHR$(9)
"G2" CR (to print the graph).

(f) Formatting a disk: throughout the course you will need to make use
of programs and data which you have written or obtained before.
The disk is the medium by which these are stored. To save APPLE­
SOFT programs, you first need to initialize a blank disk. Initializing
is like erasing the blackboard and then drawing lines on it where the
words or numbers will go. The command ' INIT filename CR' does
this and also places the program presently in memory into the first
part of the disk with the filename given in the command. Only use
this command the first time you store a program on a disk since it
erases all the existing files on the disk. Later programs are saved on
disk with the APPLESOFT command: 'SAVE filename CR'. Place
your blank disk into the drive and save this first program on your
blank disk with the command: INIT PROGRAM 2.1.2 CR.

Exercise 2.1.2 Simple graphing
Write and run a program that plots the curve Y = X 2 - 1 from
X= -2 to +2 with the X and Y axes labeled and a grid super­
imposed on the plot with a grid line for every increment of 1 for X

and 2 for Y. In addition, plot on your graph the data points X, Y as
open circles for the points

X y
-1.8 3.5
-1.2 1.0
-0.5 -1.0

0.0 -1.3

2.2 Addresses and data, RAM and ROM

0.5
1.2
2.0

0.3
0.5
3.5

9

The BASIC statements READ and DATA are useful in this
program . Save the program as an APPLESOFT program on
diskette; (SAVE filename) then load (LOAD filename) and RUN
it again. Print out the program and the graph on the printer.

For success in writing programs complete small pieces at a time and devise
methods so that each piece can be tested separately; then incorporate these
pieces into larger sections of the main program. It is also usually a good idea
to first write out in words and block diagrams what you are trying to do with
the program and/or apparatus. Apparatus B contains a description of
RENUMBER, a useful utility on the SYSTEM START disk for merging
separate program pieces to facilitate this process .

One note: if you get an error message which reads 'SYNTAX ERROR IN
LINE 5xxxxx' where the xs can be any number, the error is in your
AMPERGRAPH statements. Also certain programs are incompatible with
AMPERGRAPH. If you have used RENUMBER or INTEGER BASIC/
MINI-ASSEMBLER and you want then to use AMPERGRAPH, you will
need to RUN AMPERGRAPH LOADER on the SYSTEM START disk.
Be careful to save your program before you do this.

2.2 Addresses and data, RAM and ROM
Inside the APPLE there is an integrated circuit microprocessor

which controls the operation of the computer. Connected to it are 16 address
wires and 8 data wires which are used to communicate with other parts of the
computer. The 16 binary bits of the address wires allow the microprocessor
to specify 65536 unique locations. The information transfer is done on the
data wires. Eight wires allow 256 unique numbers (or characters) to be
represented at one time. It is like having a telephone system which has 65536
telephone numbers and in which the caller can choose from 256 words to
send a message . All the calls go through the central switchboard (the
microprocessor).

The address wires are connected to several different types of memory and
to devices which allow communication between the computer and the
outside world. The microprocessor first places the binary representation of
the location to be accessed on the address wires. Then after waiting for the
computer circuits to select the unique location to which this refers, it either
sends or receives a byte of data on the data wires. At the lowest level, this is
all that a computer does.

Modern computers usually have several types of memory; early computers
had only Random Access Memory (RAM). RAM is essential for any

10 Instrumentation structures

computer since the fundamental principles of computer operation require
the Central Processing Unit (CPU) to repeatedly store and retrieve program
instructions , data and memory addresses. The term 'Random Access
Memory' means that it may be written to or read from in any order. A severe
disadvantage of semiconductor RAM is that it doesn ' t remember anything
after its power is turned off. Some computers have vital portions of their
RAM protected by having a battery to provide the power in case of a power
line failure.

Read Only Memory (ROM) has data stored in its memory cells at the time
of manufacture which it retains permanently. It can be randomly accessed
but that access is restricted to the read operation only. A ROM chip can be
moved from one place to another without the data being lost as no power is
needed to maintain data stored. There are several ROMs in the APPLE
computer. One contains the monitor routines which are activated when the
computer is turned on. Programs in the monitor initialize the computer and
load the Disk Operating System (DOS) and INTEGER BASIC into RAM.
The second ROM contains the APPLESOFT BASIC interpreter program
which interprets BASIC program instructions. Appendix C contains a
description of how the APPLE lie memory is organized.

3 Thermistor experiments

In the first set of experiments you will make temperature measurements
using a thermistor and an ADC. A thermistor is a device whose resistance
varies with temperature. The ADC converts an analog voltage (continuous
voltage levels) to a digital representation (discrete voltage levels) which can
be read by the computer under program control.

3.1 Using the ADC
The ADC 0817 which is installed on the interface card in the APPLE

is an eight-bit converter, this means that the range 0- 5 V will be divided into
28 = 256 parts . It also is able to select one of 16 input lines on which it will do
the conversion. To use the ADC from BASIC is quite easy: an instruction to
initiate a voltage conversion is given; a second instruction then reads the
result of that conversion. Of the 16 analog input lines (channels) of the
ADC, 8 have been brought out onto the prototyping board. Channels 0-7
are on pins 1-8 on the Dual Inline Plug (DIP) connector on the prototyping
board . Appendix D has a description of how the ADC works.

The 6502, which is the CPU in the APPLE, uses a system called memory
mapping for input and output. To initiate a conversion of the voltage on
channel 0 of the ADC you issue the BASIC instruction POKE 49312,0 . This
instruction would normally mean: store the number 0 ('data') in memory
location 49312; however, in this case , the ADC ignores the data , and
initiates the conversion of voltage on channel 0. To initiate a conversion in
channel 1, the instruction POKE 49313,0 is used; for channel 2, POKE
49314,0 etc. Shortly after issuing the instruction (in considerably less time
than the APPLE takes to execute a single BASIC instruction), the result of
this conversion can be found in memory location 49312 , regardless of which
channel was converted; thus POKEing and PEEKing access are completely
different functions for the ADC. To set a variable, eg, A, equal to the
converted value in the memory location 49312, use the instruction
A = PEEK(49312) . PEEK will read the contents of memory location 49312
and will assign an integer in the range 0--255 to the variable A. It is good
programming practice to use variable names which resemble their meaning.
In this case, a better name for the variable A is ADC or AD CDA T A.
However you must be careful ; APPLESOFT BASIC will only look at the
first two letters and the suffix(% or$) to distinguish between variables . Thus
ADC1 and ADC2 are the same variable.

12

Fig. 3.1. Potentiometer
connections and proto board DIP
plug.

Thermistor experiments

+
Power 5 v
supply

Exercise 3.1.1 Using the ADC
To get the idea of how to use the ADC connect a 5 kD potentiometer

across the 5 V power supply on your bench (Figure 3.1) and observe
the voltage of the wiper (the center connection on the potentio­
meter) on the oscilloscope. NOTE : The ground lead of the oscillos­
cope probe should be connected to the ground of the system, ie, the
green wire of the potentiometer. Never connect the oscilloscope
probe ground to any point of a circuit which is not ground. Also , it
is extremely important that the negative output of the power supply
be connected to ground of the APPLE at all times .

Before connecting the wiper of the potentiometer to the APPLE
observe the voltage of the wiper on the osci lloscope: set the scope
trigger control to AUTO so that a continuous trace appears on the
screen; be sure the small switch on the probe tip is set to lx; set the
vertical scale to 1.0 V/DIV and the VARIABLE knob to the
CALibrated position ; set a 0 V baseline by using the ground switch
and vertical position knob on the scope .

Turn the knob of the test potentiometer back and forth, the
voltage output of the wiper should vary between 0 and 5 V. Now
connect the wire from the wiper arm of the potentiometer to the

Red

Green

Protoboard

Notch

0000 1 16
0000 2 D 15 ------
0000 3 I 14
()()CX) 4 p 13 Cable to
c)(X)() 5 p 12 APPLE computer
[)()(X) 6 L 11
'X)(X) 7 u 10 --- -- -
l()(X) 8 G 9

To ground
'-----• on protoboard

111111111111111111111111 1111111111111111111111

111111111111111111111111 1111111111111111111111

Proto board connection layout

3.1 Using the ADC 13

channel 2 ADC analog input on the protoboard; this is pin 3 of the
DIP connector . Clear the program currently in the computer (NEW
CR) and enter the following BASIC program:

5 REM PROGRAM 3.1.1
10 AD=49312
20 POKE AD+2,0
30 V=PEEK(AD)
40 PRINT V
50 FOR I=O to 100: NEXT I: REM DELAY

LOOP
60 GO TO 20
RUN
Rotate the potentiometer shaft and note how the voltage on the
scope and the computer display changes. The program should print
integers in the range 0-255 on the video screen which are propor­
tional to the voltage on the potentiometer. Your particular ADC
may not show a count of255 for 5 V. This is a calibration error which
can be corrected for by determining that the range of your ADC is
0-xxx rather than 0-255 for a 0-5 V input. The instructions on line
50 in the program are only there to use up time so that the repetition
rate between making measurements is sufficiently low to give a
readable output on the CRT. To stop the program, simultaneously
push the CONTROL key and C (CTL-C). Release them and press
RETURN (CR) .

The potentiometer is an example of a zero-order instrument; that is, it is a
transducer whose output is in direct proportion to its input : Vout = KVin
where K is the static sensitivity or calibration factor. A perfect zero-order
instrument will produce at its output the exact replica of the input signal with
only a scale or units change. Of course no instrument or transducer can live
up to the perfect response represented by a mathematical formula; all
instruments have a range of input values over which tolerable errors occur.
It is the responsibility of the designer to determine this range and report the
tolerance in the instrument specifications and the responsibility of the user
to pay attention to them.

Exercise 3.1.2 Programming the ADC
(a) Modify the program and potentiometer connections so that the

voltage on channel 5 is read and displayed. Determine what the
ADC reading is for the maximum voltage, and what the maximum
voltage is .

14

Fig. 3.2. Output of a three bit ADC
with input range of 0-5 V.
Dashed line is the ideal, solid line
the actual response.

Thermistor experiments

(b) Modify the program and add a second potentiometer so that the
program reads the voltage on channel 0 and then , as soon as

possible , the voltage on channel 5, the two results should be
displayed on the CRT on a single line with a few spaces between the
two measurements. Look up the details of the PRINT statement in
the reference manuals. Make the program also compute the actual
voltage and print them too. The program should make 25 measure­
ments of this kind and then halt. When you get everything running,
print out the results on the printer. Also make a printed listing of the
program you have written and SAVE the program on your disk.

3.2 ADCs
ADCs come in many sizes and flavors each with a range of useful­

ness . The following is a description of the most important considerations for
choosing and using them.

An ADC has a defined range of input voltages (for example 0-5 V) which
it can accurately convert. This range is divided into a number of equal sized
pieces (voltages). The integer number output by the ADC corresponds to
the number of these which equal the input voltage at the time of the
conversion . Figure 3.2 shows how a three binary bit converter converts an
input signal to a digital number. Using an ADC is like using a ruler which is
graduated in say !" markings. All measurements are then made to the
nearest !". Also it can only measure lengths which are less than the length of
the ruler. (You can hop-frog a ruler but you can't do that with an AD C.)

The goal of digital measurements is to get an accurate representation of
the input signal. In order to do this the ADC must be able to resolve voltage
differences which are significant in the measurement being done. That is, the
input voltage range of the ADC must be divided into enough pieces by the
digitizer that the voltage change represented by each piece is smaller than
the accuracy needed . In the laboratory , the 8-bit converter breaks up the
input analog voltage range into 28 = 256 pieces so that the resolution of the
converter is 1/256 = 0.4% of the full rangt> or (5- 0)/256 = 0.019 V. Digital

,-_
111 ...,

" .D
E; 110
"' "' c 101

"' "' 100 e
:; 011
0.
:; 010
0

u 001
Ci

" " ~
000 "

2 3 4 5
Input voltage (volts)

3.2 ADCs 15

audio recording systems use 16-bit converters so that the digitization process
is not audible on playback . The ear is a very sensitive detector.

Most of the ADCs on the market are 8, 10, 12 , or 16-bit converters. Those
above 12-bit require extra care in use since the digitization level is below 1
mV. Extraneous noise from computers or other circuits can creep into the
desired signal. Common input voltage ranges are (0 to 5), (-5 to 5) and (-10
to 10) . External electronics can be used to shift the voltage from a sensor into
the proper range.

Exercise 3.2.1 ADC and sampling
(a) The resolution in voltage of an ADC is a V/2" where a Vis the total

input range and n the number of bits of the digital output. What is
the resolution of a 13-bit ADC with input range of+ 5 to -5 volts?
Express your answer in millivolts.

(b) Since the amplitude of an analog signal can be adjusted by an
amplifier circuit to fill the input range of the ADC, the resolution
can be better described by the dynamic range ; this is the ratio of the
maximum to the minimum voltage measurable by the ADC. The
maximum is the ADC input range and the minimum is the resolution
calculated above . What is the dynamic range of the 13-bit ADC?
The 8-bit used in class? The ratio is usually expressed in decibels
(dB) , eg, DR = 20 log (ratio) in dB . Give your answers in both
forms; a ratio and in dB .

_\ nother metnod of conver: ;r "" an analog signal to digital is to input the
signal to an electronic circuit (a Vcl tage Controlled Oscillator or VCO)
whose output is a frequency which is proportional to the amplitude of the
input voltage, ! out = fo + K1 V;n . The computer can then measure the
frequency of the signal by measuring the time for one cycle of the waveform.
To work properly the rate at which the analog input voltage varies must be
much less than the frequency output and so the VCO is used for slowly
varying signals . The accuracy of this method is also limited.

In order to measure a signal accurately , the rate at which the measure­
ments are taken (the sampling rate) must also be considered . This must be
fast enough that all the frequencies contained in the signal can be repro­
duced. As a quick illustration of the problem, the signal peak in Figure 3.3
will be totally missed ifthe sampling is done at the time marked with crosses .

As Fourier (1768-1830) showed , any signal can be considered as a
superposition of sinusoidal signals of various frequencies . These frequencies
generally range from zero (DC) to some maximum frequency , f max , which
depends on the physical characteristics of the system generating the signal.
The fundamental frequencies of piano range from 27 to 4200Hz. But the
overtones (harmonics) go to much higher frequencies.

16

Fig.3.3. Sampling the signal with
an ADC at a rate which is too
slow. The peak is missed.

Fig. 3.4. The solid curve is the
input waveform. The dashed
curve is the waveform
reconstructed from the sampled
data ; (a) 1 sample per cycle, (b)
1.5 samples per cycle, (c) 2
samples per cycle (the Nyquist
frequency).

Thermistor experiments

x- X-X__.....
X.--

/
X

Time

x_....-

x_..­
x-x­x---

Sample
period

In order to accurately reconstruct the original signal from a sampled
signal, the ADC sample rate should be at least twice the highest frequency
in the input signal, !max. This result is known as the Sampling Theorem and
was formulated by Shannon in 1949 building on earlier work by Nyquist
(1924). Note that it reads ' the highest frequency in the input signal' not 'the
highest frequency of interest'. Even if you are not interested in higher
frequencies in the input signal, they must be sampled correctly . If they are
sampled at a rate which is less than 2fmax (the Nyquist frequency) , they will
masquerade as lower frequency signals (Figure 3.4) . This is called aliasing .
A good rule of thumb is use a sample rate of at least 2.5fmax. E lectronic filters
(like the treble and bass controls on a stereo) can be used io limit the
frequency range of signals so that the sampling rate can be lowered.

As an example , in the digital recording of music , the audio frequency
range of 20-20000 Hz must be faithfully sampled. Since fmax = 20000 Hz,
the Nyquist frequency is 40 000 samples/second. The actual rate used is
48 000 Hz . An ADC which converts the signal in at least 20 f.LS is needed .

(a)

(b)

(c)

/
/

3.2 ADCs 17

ADCs come in a wide variety of speeds. From low-power devices which
convert in milliseconds to fast (less than 10 J.LS) ones. The first are used in
battery operated equipment such as digital multimeters. The fast ones are
used in audio and video digital systems.

Exercise 3.2.2 Audio digital sampling
An eight channel digital recording studio wants to faithfully record
the audio spectrum from 20 to 20 000 Hz . What must be the sample
rate for each channel? The studio wants to use a single multiplexed
16-bit ADC to digitize the signals (the ear is a sensitive detector) ;
what is the maximum conversion time the ADC can have? It is

found that ADCs this fast are only available to the military (and at
military prices!), but there are some available which are three times
slower; how can the system be changed to accommodate slower
ADCs and still have the full frequency capability?

There are various ouptut formats for the data coming from ADCs to the
computer. This is usually not a large concern when buying them since the
computer can convert any format into the one most suitable for its use . Table
3.1 shows some standard output codes for an eight-bit converter with an
input range of -10 to 10 V. One LSB (Least Significant Bit) represents

20/256 = 0.078 V .

Table 3.1 Comparison of ADC numbering systems

Input volts 2s complement Offset binary Sign bit

+ 10 0111 1111 1111 1111 1111 11 11
+10- LSB 0111 1110 1111 1110 1111 1110

+ l LSB 0000 0001 1000 0001 1000 0001
0 0000 0000 1000 0000 1000 0000
-1 LSB 1111 1111 0111 1111 0000 0001

-10 + LSB 1000 0001 0000 0001 0111 1110
-10 1000 0000 0000 0000 0111 1111

3.3 Thermistor resistance vs. temperature characteristics
The first real application to which the ADC will be put is to measure

the resistance variation of a thermistor with temperature. The electrical
resistance of conductors (metals) increases with increasing temperature.
This is a result of the change in the mean free rate between collisions of the
free electrons in the conductor with the lattice (stationary ions) . As the

18 Thermistor experiments

system heats the increased amplitude of thermally generated lattice vibra­
tions (phonons) results in increased resistance. Yet for a thermistor , R
decreases with increasing temperature according to the relation
R = R0 exp(T0/T). (You may want to make a quick plot of y = exp(l/x) to
see the rough behaviour of this function.) In this expression, R is resistance
(ohms); R0 is a resistance value corresponding to infinite temperature ; T0 is
an activation temperature (K); T is the absolute temperature (K)
(0 oc = 273.16 K). The difference is that the thermistor is made from
semiconducting materials. In a conductor, every atom donates one or more
electrons to the conduction electrons and thus the number of conduction
electrons is fixed at a rather large number ""1022/cm3

. In a semiconductor the
electrons are more tightly bound to the atoms. The energy required to
liberate electrons from the atoms is £ 8 = k8 T0 where k8 = Boltzmann's
constant. The probability of an electron being liberated from any given atom
by thermal agitation is p = exp(- Egfk 8 T) = exp(- T0/T). Thus the number
density of free electrons in a semiconductor varies as n = n0 exp(- T0/T).
Note that for T ~ T0 , n goes to 0 and the semiconductor becomes an
insulator. Since the resistance of a conductor depends inversely on both the
number of charge carriers and the mean free path of the carriers the rapid
variation of n with T dominates the resistance of a semiconductor over-riding
the temperature effect on the mean free path , which can be ignored to a good
approximation .

Exercise 3.3.1 Thermistor mathematical models

To show that this last statement is true consider two models of
thermistor behavior

R 1 = R0 exp(T0/T)
and

R2 = AT exp(T0/T)

where R0 , T0 and A are constants, R2 includes the effects of the
mean-free-path variation with temperature. Plot log(R 1) vs. 1/Tfor
T = 3000 K and R0 = 0.02 0 in the temperature range 280-400 K.
Now plot log R2 for the same T0 and adjust A so that R 2 = R 1 at 300
K. Show mathematically that R 1 should and R2 should not plot as a
straight line on this type of plot. Despite this R2 does appear to be a
straight line in this temperature range and so it can be modeled with
the equation R2 = R0 exp(T0/T). From the graph, find T0. Where
does the behavior of R2 start to differ significantly from R 1 , at low
temperatures or high?

The thermometer/thermistor protoboard, has the circuit diagramed in
Figure 3.5. NOTE: when any wiring is done or changed be sure to turn off

Fig. 3.5. Thermistor and heater
circuit.

3.3 Thermistor resistance vs. temperature 19

6.7 n
Heater +

Gnd

the power supply. Even though the wiring is very simple it is still a good idea
to become accustomed to using wire color codes to help you. Red is used for
positive power supply connections, green for ground and the standard
electronic color code (Table 3.2) if there is an easy correspondence to data
line numbers. Taking the time to do this will make it easier to trace the
circuit to find errors when something doesn 't function correctly. In addition
it is much easier to find test points when a scope or other test instruments are
to be used . The voltage across the thermistor should be read into channel 0
of the ADC (ADCO). The push button switch makes it possible to turn the
heater on and off manually.

Table 3.2 The standard electronic color
code and resistor identification

Color code

0 Black

1 Brown
2 Red
3 Orange

4 Yellow
5 Green
6 Blue

7 Violet
8 Grey
9 White

5% Gold
) Tolerance

10% Silver

20 Thermistor experiments

Exercise 3.3.2 Specific heat and power
This exercise is a warm up for Chapter 4 and uses the thermistor

circuit but not the computer. The specific heat of a substance is the

ratio of the amount of heat added (~Q) to the corresponding

temperature rise (~T) per unit mass (m):

C = ~Q!m!::J.T (3.3.1)

The power P is defined to be the change in heat with a change in

time,

p = dQ!dt (3.3 .2)

so the amount of heat added to the aluminum block by the heater is
the power times the time: !::J.Q = P!::J.t. Where the power is the
voltage drop v times the current i, P = iv or by using Ohm's law
P = v2/R for a resistance R.

(a) While pushing the button, determine how rapidly the temperature

rises (degrees/second). By estimating the mass of the aluminum
block , estimate its specific heat. In the CRC Handbook of Chemistry
and Physics it lists the specific heat of aluminum as 0 .215 cal/g oc
and the specific gravity as 2.702 g/cm 3

. Convert the specific heat to

SI (kg-m-s) units and compare with your rough results. Where does

error enter this estimate?

(b) Also measure the rate at which it cools and calculate the heat lost
per unit time (the power output) due to conduction and convection.
Is this result significant for the measurement made in part (a) ?

(c) When you release the button , why doesn't the temperature stop

rising immediately?

The thermometer used to measure the temperature of the block has thus
far been considered a zero-order transduce r (like the potentiometer in
Section 3.1). In reality it takes a finite amount of time for the mercury in the

glass bulb to heat up in response to the increase in temperature of the block.

It is thus a first-order instrument whose response is determined by the
differential equation: T(dTuu/ dt) + Tout = KTin where Tout is the change in
the reading on the thermometer (output) , Tin is the change in the block
temperature (input), Tis the characteristic response time , and K is the static

sensitivity or calibration factor. The solution of this equation for the case of

a sudden change in temperature of the block is Tout = KTin[l - exp(-tiT)]
whose graph is shown in Figure 3 .6. This shows that if changes happen
quickly enough , the thermometer response does not keep up and the
readings will be in error. Notice that if t = r, the temperature has risen to

(1 - exp(- !))or about~ of the step input change (see Figure 3.6). This

provides a quick way to estimate r

Fig. 3.6. Graph of the time
response (dashed line) of a
thermometer (first-order
transducer) to a step
temperature change (solid line)
in the surroundings.

3.3 Thermistor resistance vs. temperature 21

1.20

1.00 ----- --
;:s 0.80 /

/

h" /
/

/

"' / z 0.60 /

"' / ... / "' 0. /

~ 0 40 I
!- . I

I
I

0.20 I
I

I
I

0.00
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

Time (t/r)

Higher-order instrument response characteristics are also common in
instrumentation systems. For example, a damped spring used for weighing
objects or as an accelerometer is usually modeled by a second-order
differential equation. Three parameters are then needed to predict the
response to a particular input: the calibration K , the damping constant o,
and the resonant frequency fo. Each frequency of the input signal is affected
in a different way as it passes through the system. In systems of order two or
higher a graph of the gain or calibration factor as a function of frequency is
useful for designing instruments using a particular transducer. The fre­
quency response characteristics of cassette tape or a stereo phonograph are
many times displayed in their advertising literature. The frequency and
phase vs. frequency for a second-order transducer is shown in Figures 3.7(a)
and (b). Note that at the resonant frequency a large response can occur if the
damping is weak.

In the laboratory , both the thermometer and the thermistor are first-order
transducers and so have finite time reponses to a change in temperature.
However , the time constant of the thermometer is much larger and so it
dominates the response of the system. The time constant of the thermometer
can be estimated to be about 1.5 s by watching the temperature reach
eq uilibrium after the power input is stopped (the button is released). In the
following, the purpose is to estimate the temperature lag of the thermometer
behind the block temperature for a constant power input (ie when the button
is kept pushed down , how far behind the actual temperature is the measured
temperature?)

As before , the differential equation of the response of a first-order
temperature transducer is

r d Tj dt + To = T;

22

Fig. 3.7. Frequency response of
a second order transducer for
the damping constant i5 = 0.1
(solid line) and for the damping
constant i5 = 1.0 (dashed line).
(a) Amplitude vs. frequency: (b)
phase vs. frequency.

Thermistor experiments

.,
"0
:::l

6.00

5.00

4.00

:g_ 3.00
E
<

2.00

1.00

o.oo L___l_ _ _L_L-.l:-=--=t::::===:I::~=-_j
0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20

(a) Frequency Wfo)

00

- 30.0

- 60.0

iA
~ - 90 .0

- 120.0

- 150.0

- 18o.o L___i _ _l__L__l==r:=::r:==r::=_j
0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20

(b) Frequency (f/[0)

where T0 is the temperature measured minus the initial temperature of the

system and Ti is the temperature change input to the system. The power
input to the block is P = .:l V 2

/ R with R the heater resistance . The power is
also the amount of heat energy per unit time which goes into the block
P = dQ /dt . Since the heat capacity of the block is Cv = dQ/VdT, then
Cv = Pdt/VdT or the change in temperature of the block with time is
dT/dt = p !CvV. Since dT/dt = dT0 /dt , substituting into the differential
equation above gives

To - Ti = T PICvV

Exercise 3.3.3 Temperature lag
For the experimental apparatus used in the laboratory, estimate the
lag of the thermometer temperature behind the block temperature

Fig. 3.8. Flow chart for Exe rcise
3.3.4.

Manually input
temperature

from thermometer
reading

3.4 Sequential data files 23

for a constant power input. Assume r = 1.5 s for the thermometer
and estimate the block volume . Do the same estimate for the
thermistor using r = 0.4 s for the time constant. What is the
difference between the thermometer lag and the thermistor lag?

Exercise 3.3.4 Thermistor resistance measurement
Write a program which will allow you to enter manually a tempera­
ture reading you observe on the thermometer using an INPUT
statement and which will then read the thermistor voltage by using
the ADC. Check the voltage readings printed out on the CRT
scree n with those which you get with the oscilloscope. Make a
printout of the program when it works . Once you get this working
write a few additional statements so that the actual resistance of the
thermistor is computed and printed. Follow the flow diagram in
Figure 3.8. This can be calculated from the voltage divider relation­
ship shown on Figure 3.5:

(3.3.3)

Make a quick check of the computer code by doing a calculation by
hand.

Exercise 3.3.5 Data arrays
Modify the program in Exercise 3.3.4 so that the computer makes a
series of measurements and stores them in arrays, ie , T(I) , R(I) .
These symbols mean that measurement number I had a thermome­
ter reading of T(I) and a resistance measurement of R(I) . Print the
whole array after the last measurement is made. To get out of the
input loop use some absurd value of the temperature T (say 0 or
1000) as a flag that no more input is desired . (Make sure that this last
val ue is not included in the data.) Shortly, you will add additional
steps so that these data can be stored on the disk as a data file .

3.4 Making and retrieving sequential data files
A subroutine which will produce a data file of temperature and

resistance data (T(I) and R (I)) is given below. Please read the sections in the
reference manuals on subroutines and on data files to supplement the
discussion.

Exercise 3.4.1 WRITE data file

E nter the following program and save it on your disk .

1000 REM WRITE DATA FILE
1005 REM PROGRAM 2.3.1

24 Thermistor experiments

1010 PRINT CHR$(4) "OPEN"F$
1020 PRINT CHR$(4) "WRITE"F$
1030 PRINT N : REM NUMBER OF DATA

POINTS
1040 FOR I= 1 TO N
1050 PRINT T(I)

1060 PRINT R(I)
1070 NEXT I
1080 PRINT CHR$(4) "CLOSE"F$
1090 RETURN

CHR$(4) is a control character which the disk operating system of
the APPLE will interpret to mean that disk instructions follow. The instruc­
tion "OPEN"F$ means open the file whose title is stored in the variable F$.
The print statement following (line 1020) will also be interpreted as an
instruction by the DOS because of the CHR$(4) ; it says that subsequent
print statements are to be interpreted as writing data to the disk.

Each PRINT statement following these two will record a piece of data , eg,
one number ; multiple pieces of data cannot be incorporated in a single
PRINT instruction (hence the two lines 1050 and 1060). Since the data will
be recorded sequentially , it is the programmer's responsibility to know the
order and amount of the data recorded . In this case the first data value put in
the file (line 1030) is the number of pairs (T, R) to follow. The program
reading this data file can then use this value so that it doesn 't read past the
end of the file and stop with an error message (OUT OF DATA) .

The final PRINT statement (line 1080) has a CHR$(4) so that it will be
interpreted as containing a DOS instruction to CLOSE the file F$. It is vital
that every OPEN instruction have a CLOSE instruction . The CLOSE
instruction will also have the effect of restoring the PRINT instruction so
that it will send data to the screen and/or the printer.

In APPLES OFT BASIC, the computer can only send or receive data from
one source at a time. While it is set up to write to or read from the disk do not
try to input data from the keyboard or output to the screen. Always make the
disk access a separate part of your program .

Exercise 3.4.2 Test data WRITE
Test the subroutine with the following program:

10 REM RECORD TEMP/RES DATA
15 REM PROGRAM 3.4.2
20 INPUT "OUTPUT FILENAME: ";F$
30 REM CREATE SOME DUMMY DATA
40 DIM T(100), R(100)

3.4 Sequential data files

50 N=20
60 FOR I = 1 TO N
70 T(I) = I
80 R(I) = I*I
90 NEXT I

100 GOSUB 1000
110 END

25

Remember to merge this program with the subroutine (Program
3.4.1) before you RUN it. After running the program, type
CATALOG CR and look for the filename you entered.

The critical (and useful!) part of making files is being able to read them
back . The following subroutine will do this for this data file:

2000 REM READ DATA FILE
2005 REM PROGRAM 3.4.3
2010 PRINT CHR$(4) "OPEN"F$
2020 PRINT CHR$(4) "READ"F$
2030 INPUT N : REM GET NUMBER OF DATA
2040 FOR I = 1 TO N
2050 INPUT T(l)

2060 INPUT R(I)
2070 NEXT I
2080 PRINT CHR$(4) "CLOSE"F$
2090 RETURN

As you can see, its form is quite similar to the previous WRITE subroutine.

Exercise 3.4.3 READ data file
A program which uses this subroutine follows; use it to test the
READ subroutine.

10 REM OBTAIN TEMP/RES DATA FROM DISK
15 REM PROGRAM 2.3.4
20 INPUT "INPUT FILENAME: "; F$
30 DIM T(1000), R(100)
40 GOSUB 2000
50 REM MAYBE PRINT TO THE SCREEN HERE
60 END

Exercise 3.4.4 Temperature and thermistor resistance
data file
Modify your thermistor program (Exercise 3.3.5) so that tempera­
ture and thermistor resistance arrays are recorded on a diskette . Do

26 Thermistor experiments

enough tests to be confident that the program you have written
generates a disk file and that you are able to read it back.

Using the manual on/off switch on the heater, make a series of
measurements of temperature and resistance (about 10-15) of the
heater block between room temperature and about 100 a c. Record

them as a disk file . Read the data back and print them so that you
know you have them.

3.5 Plotting the experimental data

Exercise 3.5.1 Thermistor data plot
Using your knowledge of the AMPERG RAPH instructions and the
program examples given in the AMPERGRAPH documentation,
write a program to get the data from the disk file and plot as open
circle data points the thermistor resistance on the ordinate (y) and

the temperature on the abscissa (x). Use degrees Kelvin. Be sure to

read about the problems in using RENUMBER and AMPER­
GRAPH in Appendix D.

The value of graphical plots is that they are capable of displaying and

conveying much information very quickly. One obvious weakness of the
linearly scaled display of the resistance vs. temperature plot which you have
made is that it is difficult to get a good display of the lower values of
resistance. When the numerical value of a parameter to be plotted spans a
large range , scaling the axis logarithmically is very useful. On a linearly

scaled axis each increment of length is proportional to an increment of the
parameter being plotted. On a logarithmically scaled axis each increment of
length is proportional to the fractional change in the value of the parameter.
(If y = log(R) , then dy = dR/R.) Often it is more significant to note the
fractional change in a parameter than the change in the value of the

parameter itself. For example , when plotting stock exchange prices and their
change in time, it is much more useful to plot the stock prices on a
logarithmic ordinate scale than a linear one.

Exercise 3.5.2 Logarithmic plot
Modify your plot to use an appropriate logarithmic scale on the
ordinate. To use a logarithmic scale you must use the &LOGY
instruction before the &LABELAXES instruction . Details are
given in the AMPERGRAPH documentation. Note that using a
logarithmic scale is different than plotting logarithmic values on a
linear scale.

3.6 Least squares fit to the data 27

This logarithmic plot is a very useful one to display the resistance of a
thermistor vs. temperature for purposes of manually detemining the resis­
tance for a given temperature. However, for comparison with mathematical
theory it is better to use a different plot. The form of the plot is determined
by the particular phenomena being studied . As shown in Section 3.3, the
variation of the resistance of a thermistor can be written as:

R = R0 exp(T0/T) (3.5.1)

where R0 (D) and T0 (K) are constants. To display graphically the extent to
which the measured dependence conforms to this theoretical dependence, it
is useful to plot the resistance vs. temperature using a scale such that the
resulting plot becomes a straight line . This is easily done by taking the
natural logarithm of the resistance for the ' linear' ordinate length and 1/Tfor

the 'linear' abscissa length scale. Taking the logarithm of Equation (3.5.1)
gives

ln(R) = ln(R0) + (T0 /T)
and by setting

y = ln(R) A= T0

Equation (3.5.2) becomes

y =Ax+ b

(3.5.2)

x = 1/T B = ln(R0) (3 .5.3)

(3.5 .4)

which is a straight line. (You'll notice , on close inspection , that the previous
plot in Exercise 3.5 .2 is not a straight line.)

Exercise 3.5.3 Linearized thermistor data plot
Make a plot of your resistance vs. temperature measurements using
a logarithmic scale for R (as in Exercise 3.5.1) and liT for the
abscissa. Tis the absolute temperature in degrees Kelvin. Check to

see if your data conforms to the model equation (Equation 3.5.1).

3.6 A least squares fit to the data
Finding good values for the parameters R0 and T0 in Equation

(3.5.1) are important in their own right for investigating the physics of the
device; having good values for them is also important for making the
temperature controller which you will be shortly called upon to do. By
finding values for A and B from the linear plot of Exercise 3.5.3, values for
R0 and T0 can be easily calculated via Equation (3.5.3). This can be done
graphically or by a least squares fit of the data.

In doing the experiment, you have acquired data at a sequence of values
of temperature Ti or alternatively Xi = l!Ti. Each of these temperatures Ti
yielded an experimental resistance value Ri or alternatively Yjx = ln(Ri) ·
Equation (3.5.1) yields a theoretical resistance value Rj11 for each tempera­
ture , ie , for each Xi a theoretical value Y)" = ln(R)") is given. The task is to
find values for A and for B to minimize the error between the experimental

28 Thermistor experiments

and theoretical values, E; = Y}11
- Y7' . A common type of analysis

minimizes the sum of the squares of the individual errors. Calling the total
square of the error ET, we get

ET = L £7
i) (3 .6.1)

To minimize this error with respect to the parameters A and B we take
derivatives with respect to A and Band set them to zero:

aET!aA = o = L 2X;(AX; + B - Yj')
i

aET!aB = o = ~ 2(AX; + B - YT')
i

Taking A and Bout of the summations and collecting terms gives

ASxx + BSx = Sxy
ASx + BS = Sy

where

Sxx = ~XI Sy = ~ Y7'
i i

Sx =~X; S = ~ 1
i i

Sxy = L X;Yi'
i

Then solving for A and B

D = SSxx- Sl
A = SSxy- SxSy

D

B = SxxSy- SXYSx
D

Exercise 3.6.1 Least squares fit to data

) (3.6.2)

} (3 .6.3)

1 (3.6.4)

(3.6.5)

Write a program to find values for A and Busing a least squares fit
and plot this theoretical fit as a line together with your experimental
values for temperature and resistance as open circles . Use a
logarithmic scale for R and 1/T for the x scale. Also obtain the
corresponding values for T0 and R0 .

The least squares fit assumes that the measured data will be randomly
scattered about the theoretical fit. The plot in Exercise 3.6.1 does not show
this clearly . A quick visual test of this assumption is to make a plot of the
difference between the data and the fit ie, plot the errors E;. These are the
residuals .

3.7 Data modeling 29

Exercise 3.6.2 Plot of residuals
Make a plot of the difference between the measured data and the
theoretical fit for the data of Exercise 3.6.1. By inspection determine
if the assumption of random errors is satisfied.

3.7 Data modeling
The purpose of data modeling is to obtain a mathematical model

which represents a set of experimental data. First a model is chosen either on
the basis of a theory of the physical process or by guessing the mathematical
form which approximates the data . The model will have some parameters
which can be adjusted to give a best fit. For example , the model may be a
straight line y = mx + b with the slope m andy intercept b as parameters.
These can be varied so that the line fits a set of data points .

Many times a model can be fitted to data to sufficient accuracy by hand
plotting. The best fit is then subjective to some degree. More accurate
determinations of model parameters can be obtained mathematically and
computationally. The first step is to form a mathematical estimate of how
well the model fits the data. One common measure of the total error in the
fit is the sum of the squares of the difference between they value predicted
by the model , Y;modcl and they data value , yfata

N

Total error = e2 = L (y;model - Y?ata)2
i= l

(3.7.1)

where N is the number of data points. The difference is squared so that it is
always positive . A negative error (point above the curve) adds as much to the
total error as an equal positive error. Another measure of the error which is
sometimes used is the sum of the absolute values of the difference:

N

el = L IYiodeJ - yratal (3.7.2)
i= l

The total error can be calculated for a set of model parameters . The best
fit will be that set which leads to the smallest total error. A brute force way
to find the smallest error is to calculate the total error for a wide variety of
parameters. The search can be narrowed to smaller parameter variations as
the minimum is approached.

This method is sometimes the only possible way to proceed . However for
many models, the minimum error can be found by mathematically rather
than computationally varying the parameters . Since the model is a function
of the parameters ytodel = f(p 1 , • • • , pq; x;) so is the errore = f(p 1 , • •• ,

pq; x;, yf"1
") . The minimum of a function of a variable is found by solving

the equation given by differentiating the function and setting the result equal
to zero . In this case the minimum with respect to changes in the parameters
is wanted so q equations are formed:

30 Thermistor experiments

ae/api = O; ae!ap2 = O; ... ; ae/apq = o
These can then be solved simultaneously for the parameters PI, p2, ... , Pq
that give the minimum . (Here it is assumed there is only one minimum and
no maximum as is generally the case for physically real models.)

For example: consider the case of the simplest one parameter model ,

y = PI; that this, the data can be represented by a constant. The total error is
N

ez = L (PI - Yi)
i= I

With its derivative
N

ae2!ap, = 2: 2(p, - Yi) = 0
i=l

So

PI = L y)L 1 = L y) N
where the sums go from 1 toN. This is just the average value (mean) of the
Y data.

As a second example: consider the case where the data is to be fit to a

straight line y =PI + p2x where p2 is the slope and PI they intercept. Then

ez = 2: (plxi + Pz - YY
ae2/api = P1 2: x7 + Pz 2: xi - 2: xiyi = 0

ae2/apz =PI 2: xi+ Pz 2: 1 - 2: Yi = 0
These equations can be solved directly or by forming a matrix representation

(
L x1
LXi

L xi)(P1) = (L xiyi)
L 1 Pz L Yi

and using Cramer's rule from linear algebra to obtain the solution

D = N 2: x f - (2: xi) 2

PI= (NL: XiYi- 2: xi LYi) /D

P2 = (2: x7 L Yi- L xi L XiYi) / D
which are equivalent to Equations (3.6 .5). A three parameter polynomial fit
y = p 1 + p 2x + p 3x 2 (parabolic) can be treated in the same way.

As a final example: consider again a one parameter fit to the data but this
time use the absolute value total error

Then

where

N

e1 = 2: IPI - Yil
i= l

N

ae 1/ap 1 = 2: sgn(pi - Yi) = 0
i=l

sgn(x) = { ~
-1

x>O
X= 0
x<O

3.8 Errors in data and parameters 31

This means that p1 is adjusted to balance the number of y values which are
greater than p 1 with the number less than p 1 (the number of + ls and -1s

must be equal to make the sum zero) . Thus p 1 = median(Yi· .. YN)· The
median can be calculated by sorting the yi; then, p 1 = y1/2N. In some
situations the median is a better average than the mean value. If an
experiment took two days to produce one number and after six days these
numbers came out to be 42 , 33 and 377, would you believe the mean value of
151 or the median of 42?

The model equations used in calculating the total error need not be as
simple as those considered so far . An example would be the resistance
variation with temperature of a thermistor R = R0 exp(T0/T). In this case
by taking the logarithm and a change of variables , it can be expressed as a
linear model :

y=ax+b

where

y = ln(R), a= T0 , X= liT, b = ln(R0)

However , the model equation may not linearize. For example the expres­
sion for the heat flow in a rod T = T1 (t1 It)

112 exp(t 1 It) has this characteristic.
You must start from the error expression, differentiate and solve the
equations.

For some expressions not even this is possible; the trial and error method
can be used. However , by using the computational speed of the computer,
there is a more elegant way of searching for the best parameters. T he
Simplex algorithm is an iterative procedure which systematically explores
the parameter values of the model. It has the virtue that any computable
function can be used as a model and that no derivatives are needed. Another
method commonly used is the Levenberg-Marquardt method which
requires the use of error function derivatives. A good description of these
algorithms can be found in the References.

3.8 Errors in data and parameters
In fitting data to a theoretical model in the least squares method

used in Section 3.6, the implicit assumption has been made that each data
point has been measured with the same reliability. This is often not the case
and it is then important to include a measure of the data reliabi lity when
fitting a model to these data . Another result of frequent interest which is not
obtainable by the simple least squares fit is to determine how much the fitted
parameters can vary without straining the fit to the data (how good is the
fit?) .

To make a statement of how good a measurement is we usually quote the
value measured together with an expected error; for example a voltage is
V ± Ll V volts. An accepted definition of Ll Vis that it is the root mean square
(rms) value of the random error inherent in the measurement.

32

Fig. 3.9. Plot of experimental
data together with a theoretical
fit and errors bars inherent to
each data point: Y]x­
experimental data points,
e;- error in experimental data
points, Y(X)- proposed
theoretical fit.

Thermistor experiments

Y(X)
y f

X

Consider the plot of experimental data and of a proposed theoretical fit
indicated in Figure 3.9 . It shows the results of a series of measurements
which yield the values Yi ± ei at a series of parameter values Xi. Assume the
Xi are well determined. The true variation of Y(X) is given as some function
of X. For sake of discussion assume that Y is of the form Y(X) = AX+ B
where the parameters A and Bare to be determined.

The total error can now be written as

(3.8.1)

where ei is the error in the data point Yi . A small error ei at data point Yi will
cause the difference between the model and the data point to be weighted
heavily in the sum. Thus the points with small errors have a stronger affect
on the fit. Proceeding as in Section 3.6 gives the same formula for A and B
(Equation 3.6.5) except that now

Sxx = 2: X7te7

Sx = 2: X Je7

(3 .8.2)

S = 2: 11e7
i

By means of error propagation analysis, the errors in the estimates of A
and B are determined to be

d =SID } d = SxxiD (3.8.3)

WhereD = SSxx- Si asbefore(Equation3.6.5).Thegoodnessoffitof
the data to the model can also be calculated :

G = l _ p(N - 2 Er)
2 ' 2 (3.8.4)

3.9 Digital signal processing 33

where P(a , x) is the incomplete gamma function which is tabulated in most
statistics books . If G is greater than 0.1, the fit is good; if less than 0.001 then
your model does not fit the data very well. Please see Press et al. Numerical

Recipes for further information.
Keep in mind that the estimation of the parameters A ± eA and B ± e8 by

the least squares method is a statistical one. That is, given the data and the
model function, the calculated parameters A and Bare the most likely ones
for the system. The method assumes that the errors made in the measure­
ments are random . It does not consider any systematic errors which may be
lurking in your data . These last need to be ferretted out by careful thought
and expe rimentat io n.

Exercise 3.8.1 Errors in thermistor data
Make an evaluation of the error in your resistance determinations
with the ADC and reanalyze the thermistor data with error con­
sidera tions. To simplify the error analysis, assume some reasonable
constant error (flR; = !lR for all i) and simplify the e rror equations
by factoring the error out of the sums.

3.9 Digital signal processing
Proper use of the ADC requires analog signal conditioning before

the ADC samples the data as described in Section 3.2. Once in the computer,
a series of samples can then be analyzed to emphasize various features of the
data.

If the data has some noise mixed in with a broad trend , a smoothing
process can be used to suppress the noise. One common method is to apply
an averaging scheme as shown in Figure 3.10. The new point z; is a weighted
average of the old pointY; with its neighbors . Specifically,

Z; = HYi- 1 + 2y; + Yi+I) (3.9.1)

Equation (3.9 .1) can be extended to more points if more smoothing is

required.
This way of smoothing data is one example of a digital low-pass filter ; it

suppresses the high frequency components of the time series . Another way
of making a digital filter is by the recursive procedure :

Z; = (1 - a)y; + Cl'Z; _ 1 (3.9.2)

When app lied to a time series , Equation (3.9.2) approximates a low-pass
analog resistor-capacitor filter with the parameter a setting the frequency
cut-off. Again, more smoothing can be done by including more terms in the
recursion. Both recursive and non-recursive filters can be constructed which
will act as high-pass filters if the interesting part of the signal is not the trend

but the time varying part.

34

Fig. 3.10. Data smoothing
example.

Thermistor experiments

12.0

10.0

8.0

y
6.0

4.0

2.0

+ +

4.0 6.0 8.0 10.0 12.0 14.0 16.0
X

+ y = [- 0.08 (x - 10)2 + 8]+ noise

-.-y,.=!(y,._, +2y,.+yi+i)

A reminder: digital filtering in no way replaces analog filtering before
sampling the signal. Aliasing occurs when the data is sampled and cannot be
remedied later.

Much more elaborate signal processing is often required to analyze a set
of data . The references contain further information.

3.10 Generation of output using BASIC
The next task you will work on is to use the thermistor in a

temperature controller. The computer will not only be measuring the
temperature of the block but will turn the heater on and off to maintain the
predetermined temperature. To get a feeling of how to send output from the
computer you will use a program written in BASIC to generate square waves
at an output port of the 6522 VIA interface .

Exercise 3.1 0.1 Square wave output
Connect the oscilloscope probe of CH 1 to the terminal marked PBO
of port B of the APPLE interface board . Set the switch on the scope
probe to 1x, the oscilloscope triggering to AUTO and the CH 1
amplifier to 2.0 VOLTS/DIY. The sweep time should be set to move
at a rate of 1 DIY every 2 ms (2 x 10-3 s) . Also set the MODE switch
to CH 1.

Type in the following program; the program and comments are
explained after the program.

3.10 Generation of output using BASIC 35

5 REM EX 3. 10. 1
10 POKE 50178,1 Send1toDDRB, setsupDRBforoutputonPBO.

20 POKE 50176,1 Send1toDRB,makesPBOgoHI.

30 POKE 50176,0 SendOtoDRB,makesPBOgoLO

40 GO TO 20 Loop back to instruction 20.

Run the program; on the oscilloscope you should see two parallel
lines , which are really square waves. To see them more clearly push
the TRIGGERING LEVEL switch in on the oscilloscope and
adjust the triggering level to get a steady picture. Measure and
record the time the output is HI (ie , +5 V) and the time which it is
LO (0 V). Be sure that the VARIABLE potentiometer knob on the
SWEEP TIME/CM control (the red one) is in the CAL(ibrated)
position.

Line 10 of the program instructs the machine to store the data value 1 in
memory location 50178; line 20 to store 1 in memory location 50176, etc . The
6502 CPU uses a memory-mapped system of I/0. This means that certain
memory addresses may not really be memory locations but may be con­
nected to the outside world . In this case , memory address 50176 is Port B to
which the oscilloscope is connected . The ADC registers at locations 49312-
49320 , which you used before, are another example.

Inside the APPLE a circuit board has been inserted on which is mounted
a 6522 IC which is referred to as a VIA (Versatile Interface Adapter). This
TC controls two output ports sometimes referred to as Port A and Port B.
Port A is memory location 50177 , Port B is 50176. The 6522 controlling
Port A and Port B can do many things (therefore the name 'versatile') . For
example , the wires from Port B can be programmed to be used either as
inputs or as outputs. Line 10 of the program stores a 1 in location 50178. This
sets up line PBO as an output line ; storing a 0 in this location would have set
up PBO as an input line. Location 50178 is referred to as DDRB (Data
Direction Register B). It is a memory location which controls the direction
of data flow of Port B. Port B is sometimes referred to as ORB (Data
Register B).

The 6502 is an eight-bit CPU. This means that each operation in the CPU
is performed eight bits at a time. When memory is addressed , a byte of data
(eight bits) is taken from or written to memory by the CPU . Each memory
location is eight bits wide . One manifestation of this is that there are eight
lines coming out of Port B labeled PB7 .. . PBO. A numerical value is
ascribed to each line, PB7 is 128, PB6 is 64, PBS is 32 , etc. Line PBO has a
value of 1. Each of the lines PBO-PB7 has a direct correspondence to one of
the data lines of the 6502 CPU.

Each line of Port B is individually programmable for either input or
output. Storing 128 in DDRB (location 50178) will program line PB7 for

36 Thermistor experiments

output and leave all the rest as input lines , storing 80 = 64 + 16 in DDRB
will set up PB6 and PB4 as output lines and leave the rest as input lines. The
binary (base 2) representation of 80 is 0101 0000 which shows the easy
correspondence of the binary representation with the 110 lines . Thus , as
stated before, sending a 1 to location 50178 in line 10 of the program sets up
PBO to be an output line and all the rest input lines. The program then
proceeds to send ls and Os alternately to DRB , ie, location 50176, to
generate the square waves which you see on the oscilloscope . IfPB7 were an
output line , sending 128s and Os to DRB would generate a square wave on
PB7. In the computer a 1 is represented by approximately +5 Von a wire , 0
by approximately 0 Von a wire. To stop the program , which is trapped to run
forever ; press CTRL-C.

Exercise 3.1 0.2 Square wave output on PB3
Rewrite program 3.10.1 to generate square waves on line PB3.
When you get the program running satisfactorily, stop, print it out

and save it on disk.

3.11 POKE and PEEK
POKE and PEEK are conjugate instructions when used with ordi­

nary RAM. The instruction POKE X, Y means store the number Yin
memory location X. Conversely Y=PEEK(X) will read the number stored
at address X and assign it to variable Y. Since the 6502 is an eight-bit
processor (eight data lines) the number Y will range from 0 to 255 (256 = 2x) .
The 6502 has 16 address lines and so is capable of directly addressing 65536
memory addresses (65536 = i 6

) . Thus X in the POKE statement ranges

from 0 to 65535 . Memory address 36864 is a RAM location in which eight bits
of data can be stored and retrieved without disturbing programs in the
computer. The instruction POKE 36864,45 will store the number 45 in
address 36864. Type in this instruction in the immediate mode (no line
number). The PEEK (X) instruction will read the number stored in memory
address X. The number returned will be between 0 and 255. To demonstrate
this , enter the immediate instruction PRINT PEEK (36864). The value 45
should be returned if it was preceded by POKE 36864,45. Experiment with
other combinations .

3.12 Using a HEXFET to control the heater
The digital signals coming out of the APPLE are feeble and in

general cannot drive external circuitry loads directly . HEXFETs are one
variety of enhanced mode power FETs (Field Effect Transistors) which are
particularly suited for controlling large amounts of power by using the digital
control signals coming out of a computer.

Fig. 3.11. HEXFET connections
and pin diagram for thermistor
apparatus.

3.12 Using a HEXFET to control the heater

6.7 n
Heater +

5V

or
IRF 520 Ground

0
IRF 510

HEXFET IR~~ 20
Source

Dram
Gate

+----V__,T_ to ADCO

Thermistor

37

To see how these devices are used, set up the circuit as shown in Figure
3.11. It will act like the push button switch you used earlier but will be
contro lled by the computer. When a HI signal is applied to the gate of a
HEXFET, the device conducts current like a closed switch; when a LO
signal is applied, the device acts like an open switch, ie, it has infinite
resistance. Connect the gate of the HEXFET to PBO after resetting the
computer with a CTRL-RESET CR. This initiates Port B (as well as the
other ports) as an INPUT port so that no potentially dangerous outputs are
generated when the computer is idle. The 47 kD resistor which is connected
between the HEXFET gate and ground is to insure that the HEXFET will
be off in the absence of a signal specifically to put it on. That is the case if the
port is set as an INPUT line with reset.

Test the circuit using the immediate mode of BASIC. To turn on the
HEXFET (and thus the heater) it is first necessary to set Port B up as an
OUTPUT port ; type in POKE 50178,1 CR (50178 = DDRB) . Now, a
POKE 50176,1 (50176 = DRB) should turn the pilot light on indicating that
the heater is on. To turn the heater off type POKE 50176,0 CR. In doing this
and subsequent experiments you must take care that the heater is not left on
indefinitely ; that will heat the system continuously and destroy the
thermometer. To turn to off use POKE 50176,0 or turn the power supply off.

Exercise 3.12.1 Temperature controller
Write a program for a temperature controller following the flow
chart in Figure 3.12. The program should ask you to type in a

38

Fig. 3.12. Flow chart for
temperature controller.

Thermistor experiments

Obtain temperature from thermistor T

temperature . The computer should then turn the power to the
heater on and off in response to the thermistor voltages read. Run
the program and demonstrate that the thermometer does stabilize
to the temperature typed in. When testing be sure the Light
Emitting Diode (LED) (and heater) are off after you halt your
program (POKE 50176,0 CR).

For those interested , try using the statement ON ERR GOTO to
detect the control C you used to stop the program and then to ensure
that the heater is off before stopping. See the reference manuals.

Exercise 3.12.2 Temperature controller with hysteresis
So that heater is not turning on and off rapidly at the desired

temperature , modify the program to turn on the heater when the
temperature is below desired temperature minus 1.0° (To - H) and
turn off the heater when it is above the desired temperature plus 1.0°
(To+ H) .

The process of turning the heater on and off used in the program of
Exercise 3.12 is called hysteresis. It is used in many process control situations
to stabilize the system. A thermostat for a household furnace uses hysteresis
so that the furnace doesn ' t turn on and off too quickly. In a later section you
will be using a Schmitt trigger which uses hysteresis to stabilize voltages.

4 Timing

In many experiments , the measurement of interest is the change with time of
a particular quantity (eg, dx/dt). One of the most useful capabilities of a
computer is to provide accurate and varied timing signals so that these
measurements can be made. Indeed , the internal operation of the computer
requires the orchestration of many events to the beat of the internal clock.
In this section several ways of generating time intervals will be presented .

4.1 Timing loops in BASIC
A simple method of generating time intervals is to use the time

required by the computer to execute BASIC instructions. This method is
neither precise nor constant but nevertheless is useful in situations where
those qualities are not required .

Exercise 4.1.1 Square wave output (BASIC)
(a) Run the following BASIC program which uses PBO as an output.

This is a program you have used before so you might have it on your
disk . (Note: disconnect the wires to the circuit of the previous
experiment before running.)

5 REM EX 4.1.1A
10 POKE
20 POKE
30 POKE
40 GOTO 20

50178,1
50176,0
50176,1

I nit DDRBO for output.

Put PBO to LO.
Put PBO to HI.

Repeat.

With the program running look at the output (PBO) with the
oscilloscope. You may need to adjust the oscilloscope triggering
level and time base to obtain a steady trace. Note the time it takes for
one period and the time PBO is HI and the time it is LO.

(b) Now try the following program :

3 REM EX 4.1.18
5 8=50176

10 POKE 8+2,1
20 POKE 8,0

8,1
20

40 Timing

Again measure the time PBO in Hi and the time is LO. Why are the
HI and LO times different? Why are the times different from those
of Program 4.1.1A?

(c) Now add the following program lines and LIST the program so you
see how they fit in.

REM EX 4.1.1C
8 N =10

35 FOR I = 1 TO N
38 NEXT I

Run the program and note the HI and LO times again. Try different
values of Nand determine the time required for one FOR-NEXT
loop in this program. Also try placing a statement in the middle of
the loop. Some interesting ones might be:

37 X= I* I + 1 (this is called a 'flop')
37 X= I~2 +1

37 REM
37 PRINT "A";
Be sure to keep a record of your results.

This type of timing loop could be placed anywhere in a program to provide
time base. However , it suffers from several disadvantages. First, since every
BASIC statement takes a different amount of time, it is very difficult to
predict the exact amount of time a loop will take. You must resort to trial and
error and use an oscilloscope to obtain a particular desired time. Second, the
BASIC interpreter is slow when compared to the capability of the micro­
processor itself. Frequently BASIC is just too slow to measure the time
interval between events in an experiment. A third disadvantage is that the
timing is not independent of the program statements. If you change a
program line or add a statement even elsewhere in the program, the timing
of the loop may change and you will need to readjust it.

Programming in assembly language (more on that later) can solve the first
two problems. However, the 6522 VIA which is discussed in Sections 4.4 and

4.5 provides an easier way to do timing which is fast, accurate and indepen­
dent of the program. The next section illustrates one use of BASIC timing
loops.

4.2 Stepping motors
Stepping motors are used to position apparatus of all kinds pre­

cisely. A stepping motor rotates a shaft a small increment of a turn for each
pulse of electric current it receives. An electric clock is a stepping motor: it
rotates a fixed, small amount for every pulse of current it receives from the
wall power outlet. The power outlet provides the current which reverses
polarity 60 times each second so that by using gears the hands rotate at the

4.2 Stepping motors 41

proper speed. A clock motor always rotates in a fixed direction (unidirec­
tional). Some stepping motors can be made to rotate either clockwise or
counter-clockwise under computer program control (bidirectional); the one
which you will use and the one in the disk drive which positions the reading
head are bidirectional.

Exercise 4.2.1 Single step of stepping motor
(a) To see how a stepping motor and controller IC are used, make

connections to PBO and PB1 as indicated in Figure 4.1. Write a short
BASIC subroutine to generate a single negatively going pulse out
on PBO by setting PBO and PB1 for output and PBO HI initially; then
send PBO LO then HI to pulse the motor once.

(b) Write a second subroutine which allows you to control the direction
of rotation by specifying the level of PBl. The awkward voltage
programming for the motor itself is done by the 4202 control
Integrated Circuit (IC) so that you need only specify the direction
by setting the polarity of the direction control and then applying a
short pulse to the stepping input.

Fig.4.1.Steppingmotor +SV
controller (4202) connections.

PB I >-------'
directio n

The mechanics of a stepping motor are shown in Figure 4.2. The rotor is a
permanent magnet with 12 sets of north and south poles ; the stators each
have 12 sets of fingers which can be magnetized electrically. Each stator has
2 coils of wire inside it, labeled C and D. If coil Cis energized the fingers
marked A become north poles , those marked B become south poles. Coil 0
energizes the stator with reversed current direction relative to the stator so
that A becomes a south pole and B a north .

Figure 4.2(a) shows the motor pulled apart to show the relationship of the
stators and the rotor. Figure 4.2(b) shows the rotor unravelled with its north
and south poles lying next to one another. There are two sets of stators, the
fingers of each are displaced from one another in azimuth as shown in Figure

42

Fig. 4.2. Stepping motor opened
up. (a) Stators 1 and 2 each have
12 pairs of poles (A1, 81, A2, 82)
and 2 coils (C1, D1, C2, D2).
Current in coil C makes A poles
north and B poles south and
current in coil D makes A poles
south and B poles north. (b)
Poles and rotor flattened out to
show staggering of stator 1 and
stator 2's poles. To move rotor
one position to the right from
the position shown, turn coil D1
off and D2 on (A2 is then south
and 82 north). To move once to
left, turn D1 off and C2 on (A2
north and 82 south).

Timing

4.2(a). With the rotor unravelled as shown , it can be pulled to the right by
energizing the A2 B2 stator set with coi l 0 2 so that A 2 becomes a south pole
and B2 a north pole. The rotor will then move over one step so that the north
poles of the rotor lie under the south poles of the stator 2.

The controller IC has two inputs : a direction control and a step control. A
HI level on the direction control signals movement in one direction, a LO
level in the other. The controller is set so that each time the voltage goes
from LO to HI on the step control input, the stepping motor wi ll advance two
steps in the appropriate direction. Between pulses the step control should be
left HI. In the case of the stepping motor illustrated , one step is 360/(4 x
12) = 7S since it has 12 poles and each step moves the rotor one fourth of
a pole distance. Thus one pulse on the step control line will move the shaft
15°. The controller IC regulates the current flow in the four windings of the
stator. If has logic circuitry within it so that it knows which coil must be
energized to step in the specified direction from where it is. This saves you
the trouble of programming these details. If the stepping motor shaft is
connected to a gearbox with a 200:1 gear ratio , the output shaft will turn one
revolution for every 200 revolutions of the motor shaft (200: 1 gear ratio).

(a)

(b)

(a)

Exercise 4.2.2 Maximum stepping rate
You have seen that it is only necessary to use two POKE statements
which make PBO go LO and then back to HI to step the motor once.
The stepping motor is a mechanical device which is inherently slow ;
thus it is important that there be a reasonable amount of time
between pulses. By using a FOR-NEXT loop to waste time between
pulses, determine the maximum number of pulses per second that

Stator I StJtor 2 Ro tor

B2 A I A2 B 1 B2 A I A2 B I B2
~ c::=:::::J c=:J c::=:::::J ~ ~ ~ ~ ~ ... Stators

~

N
~

N
~

s
. .. Rotor

4.3 Number systems 43

the motor will respond to. Do this by varying time delay of the loop
and watching to see whether the motor responds properly or not.
For example , a program which give 200 pulses to the stepping motor
of Figure 4.2 with the gearbox attached should turn the gearbox
output shaft 15°. Use the oscilloscope to measure the time beween
pulses.

(b) Write a subroutine , to be used by later programs, which will step the
motor in the direction specified before entering. The program
should delay the proper amount of time for the stepping motor
before returning. Set the delay time of the loop so that you never ask
the motor to rotate faster than! the maximum rate. This will ensure
reliable operation .

Exercise 4.2.3 Positioner
Using the subroutine in Exercise 4 .2.2 write a program which moves
the output shaft of the gearbox to a specified angle . Since it is only
the number of pulses and not their detailed timing which is impor­
tant , a simple BASIC program is adequate. At the outset the
current position of the stepping motor should be INPUT to the
program. The program should then ask you for the angular position
of interest and step the motor to that angle. After it is at this position
the program should come back and ask for the next desired position.
To avoid truncation errors in calculating the angle, keep track of
steps not degrees. The program should accept the position or
negative numbers of any magnitude and turn the shortest route to
the angle .

4.3 Number systems
To work with 110 devices and with assembly language programs , it

is necessary to go back and forth among the representations of numbers in
decimal , hexadecimal and binary. Except for a few commands, BASIC
statements use decimal (base 10) representations for numbers. However,
internally the computer represents all numbers and characters in binary
(base 2). This internal conversion to binary is usually not important to the
user but becomes so when connecting I/0 devices to the computer. Then a
binary representation directly corresponds to signal levels on the I/0 lines.
Hexadecimal numbers (base 16) are a convenient shorthand notation for
long binary numbers .

When a decimal number is written down , say 348, what is really indicated
is that there are 3 hundreds , 4 tens and 8 ones (Figure 4.3). This can be
described by the equation

348 = 3 X 102 + 4 X 101 + 8 X 10° (4.3.1)

44

Fig. 4.3. Decimal, binary, and
hexadecimal number
representations.

Timing

0-9 0-9 0-9 0-9

0-F 0-F 0-F 0-F

Decimal

Hexadecimal
$

0, I 0, I 0, I 0, I 0, I 0, I 0, I 0, I

In exactly the same spirit a hexadecimal number with the characters 1234,
represents

$1234 = 1 X 163 + 2 X 162 + 3 X 161 + 4 X 16°

It is useful to remember that 163 = 4096 , 162 = 256 , 161

(4.3.2)

16, and 16° = 1.

Hexadecimal numbers are often indicated by a$ sign preceding the number .
Sometimes a period is used to indicate a decimal number even if it is an
integer (for example 348.). Each of the characters 1, 2 , 3 , 4 in Equation
4.3.2) could be a number from 0 to 15 just as in the decimal representation
each place (column) has a number between 0 and 9 (Figure 3.3) . In
hexadecimal , to represent 10, A is used, 11 , B, etc., as shown in Table 4.1.
As an example 348. = $15C = 1 x 256 + 5 x 16 + 12 x 1.

A number will be preceded by a % sign to indicate that the characters
which follow are a number in binary representation. Thus

% 0101 = 0 X 23 + 1 X 22 + 0 X 21 + 1 X 2° (4.3.3)

The magic numbers here are 27 = 128, 26 = 64, 25 = 32, 24 = 16, 23 = 8,
22 = 4, 21 = 2, 2° = 1. In writing down binary numbers it is convenient to
write them down in groups, four digits (bits) at a time. This makes it easy to
identify the position in which each bit belongs . It also makes it easy to go
back and forth between binary and hexadecimal since 4 binary bits = 1
hexadecimal character. Thus , 348. = $15C = %0001 0101 1100.

To get a feel for the above ideas , use Port BB of the 6522 board to display
the output of the eight data lines PBB7-PBBO on eight LEOs (a schematic

Fig. 4.4. LED number display
wiring. Schematic of LEDs on
PBB. The 74LS041C is a BUFFER/
DRIVER to provide current drive
for LEDs. A 'HI' on a PBB line will
illuminate an LED.

4.3 Number systems

Table 4.1 Correspondence between binary,
hexadecimal, and decimal characters

Binary
%

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Hexadecimal
$

0
I
2
3
4
5
6
7
8
9
A
B
c
D
E
F

Decimal

0
I
2
3
4
5
6
7
8
9

10
11
12
13
14
15

45

wiring diagram for this is shown in Figure 4.4). Anytime a 1 is put into a
particular bit of Port BB the correspoding LED will light up. Data lines
PBB7- PBB4 are connected to four red LEOs, data lines PBB3-PBBO are
connected to green LEOs. The 74LS04 integrated circuit between the actual
data port lines and the LEOs has what are called line drivers or buffers ; they
provide the 15 or 20 rnA of current required to light up the LEOs. The data
lines alone are not capable of generating enough power.

PBB7

PBB6

PBBS

PBB4

PBB3

PBB c

PBBI

PBBO

Gree n
LEDs

+ 5 v

46 Timing

Exercise 4.3.1 LED binary number display
(a) Write a BASIC program which sets up all the data lines of PBB for

output and sends various numbers to PBB . (DDRBB = 50306,
DRBB = 50304) .
(i) Make data PBB3 , PBBS and PBB7 HI and the rest LO.
(ii) Send the numbers $28 and $C3 to PBB ; remember to convert
to decimal. Verify that the expected LEDs light up .
(iii) Send the number % 1010 0111 to PBB. What is this in hexa­
decimal?

Even though PBB is set up for output it is possible to read the data
which is in PBB using the PEEK statement in the usual way. Store
several numbers in DRBB and note their hexadecimal equivalents
and their binary equivalents (the lights which light). Also read them
back into the memory using the PEEK instruction and PRINT them
out.

(b) To get a feeling for counting in binary , enter and run the program
below.

5 REM EX 4.3.18
6 BA=50304

10 POKE BA+2,255 Set up all PBB lines fo r output.

20 FOR I=O TO 255
30 POKE BA,I
40 FOR J=O TO 200 Insert time delay.

50 NEXT J
60 NEXT I

The representation of negative numbers in a computer is one somewhat
differently than in common computations . In many ways the system is more
logical than the customary one, and it certainly makes things much simpler
in a computer. Imagine a continually incrementing binary four-bit counter.
A counter is a device which increments each time a pulse is applied. Table
4.2 shows the sequence of digits as the count pulses are added (start at 0 and
read upwards) . The correspondence to the ordinary number system is shown
in the column to the right. Being a four-bit counter the 'readings' repeat
every 16 counts , that is, the count after 1111 gives 0000. (This transition is
called overflow.) A representation of the numbers 0-15 is naturally done
through the correspondence to the counter readings of 0000-1111. One
possible way to represent positive and negative numbers is to assign the
numbers between -8 and 7 to the counter readings of 1000-011 1. This is
called the two's complement representation . As shown in Table 4.2, -1
becomes 1111, -2 becomes 1110, etc. Notice that the most lefthand bit takes

4.3 Number systems 47

Table 4.2 A four-bit counter

Negative No-negative
Four-bit numbers numbers
binary interpretation interpretation

1111 -1 15
1110 -2 14
1101 -3 13
1100 -4 12
1011 -5 11
1010 -6 10
1001 -7 9
1000 -8 8

0111 7 7
0110 6 6
0101 5 5
0100 4 4
0011 3 3
0010 2 2

==1
0001 1 1 Add
0000 0 0

Subtract
1111 -1 15
1110 -2 14
1101 -3 13
1100 - 4 12
1011 -5 11
1010 -6 10
1001 -7 9
1000 -8 8

on a special meaning ; if it is 1, a negative number is being represented, if 0,
a positive one.

Within the computer a particular bit combination , say % 1011 will repre­
sent 11 one time and -5 at another. An example of this is in the numbering
of memory addresses. There is RAM available between $9000 and $9FFF
which is normally not used by APPLE routines and can be safely used. Now
for instance,

$94AC = 38060. = % 1001 0100 1010 1100 = -27476.

Thus typing POKE 38060,163 CR followed by either PRINT PEEK (38060)
or PRINT PEEK(-27476) will bring back the number 163 (try it).

Also note that the four-bit counter will repeat its reading every 16 counts.
Thus the decimal numbers 11 ,27, 43 , etc. , will all be represented by the same
binary combination in a four-bit counter. If we count down 16 counts from
11 we come back to the same binary reading ; thus 11 and -5 (which is 11-16)
are repesented by the same binary string. Similarly in a 16-bit counter, the
bits will repeat every 65536 counts (216 = 65536). By the same reasoning the
number 38060 and the number -27476 will both be represented by the same
16-bit string since 38060- 65536 = -27476.

48 Timing

4.4 Generation of square waves by the 6522
You have used the data output capability of the 6522 VIA to control

the heater in the experiment in Chapter 2 and to light the LEOs in Section
4.3. The VIA can do other functions as shown in the data sheets in Appendix
G. You need not concern yourself with the details of each function but some
practice in deciphering these often cryptic descriptions is valuable. As you
work through this section read the data sheets about functions which you
have already used and about timers 1 and 2.

There are actually two 6522 VIAs on the card plugged into the APPLE .
You have used the VIAl with registers at memory locations $C400-$C40F
to control the heater and VIA2 with registers at memory locations $C480-
$C48F to control the LEOs . Port A (ORA) and Port B (DRB) are used as
1/0 ports , the I/0 function of each line is controlled by DORA and DDRB.
The timers in the 6522 can be programmed to run in several different modes
by writing (POKEing) various bit combinations into a special control
register called the Auxiliary Control Register or ACR (see Appendix E ,
Figure 14) . The ACR is at memory location 11 (ie, hexadecimal $B) above
the base address and so will be at $C400 + $B = $C40B for VIAl. The mode
we will use is with timer 1 (Tl) operating continuously and generating a
square wave output on PB7. (In Appendix E, read the paragraphs under the
heading 'Timer 1 Free-Run Mode', don 't worry about ' interrupts' now.)
Therefore , bits 7 and 6 in the ACR must bel. For now , the rest of the bits
can be 0, so the ACR should contain % 1100 0000 = $CO = 192.

The Tl counter counts down at the rate of the internal clock of the
APPLE. This rate , called <1>2 , is set by a quartz crystal oscillator to a
frequency of approximately 1.022727 MHz. The Tl counter counts down at
this rate from the 16-bit value loaded into registers 4 and 5 (TlL and T1H) .
Since Tl is a 16-bit counter , it takes two 8-bit bytes to fully define the PB7
rate. When the counter reaches zero several things happen: the state of PB7
is changed (ie, 0 goes to 1 or 1 goes to 0) , the numbers which were originally
in the counter registers are automatically reestablished , and counting down
begins again . So to obtain a desired rateR at PB7 , you need to: calculate the
number N of <P2 cycles in R , make two 1-byte numbers from Nand place
these into registers 4 and 5 (neglecting the '1.5 ' and '2' cycle corrections
shown in Figure 16 of the Appendix E) . As an example, suppose it is desired

to have PB7 invert every 0.008 s. This is 8000 J.LS , soN = 8000 x 1.022727 =
8182. = $1FF6. HIGH-ORDER = $1F = 31.; LOW-ORDER = $F6 =
246. The following program will cause PB7 to invert every 0.008 s. (Note that
the period of the square wave is 0.016 s.)

5 REM PROGRAM 4.4.1
10 BA = 50176 BaseaddressofVIA1 , $C400.

20 POKE BA+11,192 Set ACR for T1 free run, ie, store $CO in

BA + 11 = ACR.

4.5 Making an interval timer

30 POKE BA+2,128

40 POKE BA+4,246
50 POKE BA+5,31

49

Important! Enable PB7 as an output pin,

ie, store $80 in DDRB.

Load low-order T1 , $F6.

Load high-order T1 , $1 F and start

countdown.

RUN the program and look at PB7 with the scope . Notice that the timer
keeps operating even after the program has stopped! Press CTRL RESET
to stop its operation.

Exercise 4.4.1 Square wave on PB7 VIA 6522
Modify Program 4.4.1 to invert PB7 every 0.005 s; ie, a square wave
of period 0.01 s.

4.5 Making an interval timer
Experiments frequently require the measurement of time intervals.

The combination of the T1 control of output on PB7 (you have used above)
with the pulse counting mode of counter T2 (described below) can provide
this on the APPLE. In the ACR, bit 5 controls the mode of operation ofT2.
When set to 1, the value in the T2 counter registers (low-order is register 8,
high-order is register 9) decrements on each HI to LO transition of a signal
input to PB6. (Described further in Appendix E, Figures 17 and 19 and text
under the heading 'Timer 2 Pulse counting mode'.)

Exercise 4.5.1 T1-T2 interval timer
Put a wire from PB7 to PB6 on the protoboard . This will allow T2
to count the number of PB7 periods (remember the PB7 rate is
controlled by T1). The following program will start T2 counting
down at the rate of 0.1 s which is coming from PB7.

5 REM EX 4.5.1
10 BA = 50176
20 POKE BA+11,224

30 POKE BA+2,128

40 POKE BA+8,255

50 POKE BA+9,255
60 POKE BA+4,192

Base address of VIA 1.

Set ACR bits 7,6,5 to 1, others to

0 (%1 110 0000)

Enable PB7 as output, PB6 (and

also PB5-PBO) as input (put

%1000 0000 in DDRB).

Initialize T2 low-order counter to

maximum value $FF.

Initialize T2 high-order counter.

Initialize T1 low-order to $CO.

50 Timing

70 POKE BA+5,199 Initialize T1 high-order to $C7 and

start counter and square wave

generation .

100 T = 256 * PEEK(BA+9) GetT2H(highbyte)eachunit =

110 T = T + PEEK(BA+8)
120 PRINT "T ="; T

256 PB6 HI to LO transitions.

Get T2L (low byte) and add toT

Print T2 va lue.

In this program T2 is set to its maximum value $FFFF. At each
HI-LO transition on PB6, the timer/counter decrements one count
(eg, T2 = FFFF, FFFE , FFFD , ...) . Since these transitions on PB6
are wired to PB7 , they occur every 0.1 s (which is twice the T1 rate).

Now, periodically run the part of the program from instruction
100 on to see that the counter is indeed decrementing. To do this use
the command 'GOTO 100 CR' which will pick up the program from
where it ended with variable values left as they were . This is
different from the command RUN 100 in that the latter will first set
all variables to zero (eg, BA) and then begin executing at 100 giving
nonsense results .

Subtracting successive values of T which appear on the screen
should give you the time elapsed between the two PEEKs in units of
0.1 s. check with a watch to see that this is indeed true.

Exercise 4.5.2 Beeper
Write a program which BEEPS the terminal 'bell ' at one second
intervals . The statement to ring the bell is 'PRINT CHR$(7);' Run
PB7 at 0.01 s per cycle. In this program the T2 counter should be set
up as in the above program. Then read TIL and T2H periodically
and take differences to obtain the desired one second interval.

The one second timing program in Exercise 4.5.2 may be in error when T2
counts down past $0000 because the subtraction done will give a negative
time interval. For instance , if the first time determined is $005F = 95. and
the second is $0050 = 80., subtracting the second from the first (as is
normally done) gives $000F = 15 ., a valid number. But if the first is
$005F = 95. and the second is $FFF5 = 65525 ., the result is - 65430 but
should be 107.

There is another problem which occurs when reading the value of time T2 .
In the statement:

T2 = 256*PEEK(TH) + PEEK(TL)

(where THis the high byte ofT2 and TL the low byte) the peek to THis done
before the PEEK to TL. If a count should come into the timer between the
two PEEKs and ifTL is at $00 when THis PEEKed , an error will occur. For
example:

4.5 Making an interval timer 51

TH
28
28
2A

TL
01
00
FF

PEEK(TH) occurs here.

PEEK(TL) occurs

here. Gives: T2=256* ($2B)+($FF)=256*43+255.

Both of these problems can be fixed by using additional BASIC statements
in your program.

5 Thermal diffusion

Fig. 5.1. The flow of heat in a rod
of specific heat C (J/kg K) and
thermal conductivity k (W/m K).

Cross section A
~

T2

The experiments which you will be called upon to do in this chapter give you
a chance to apply the 6522 timing concepts and to review the use of the ADC
while learning about the phenomenon of diffusion. Specifically, you will be

studying thermal diffusion but many of the concepts encompass a variety of
other phenomena.

5.1 Heat flow equation
In this section you will explore some of the physical and mathe­

matical considerations of one-dimensional heat diffusion. When heat is
added to a material there are two parameters which affect the distribution of

temperatures: the specific heat (or heat capacity) and the thermal con­
ductivity. The specific heat indicates how much heat is added to a mass of
material for a specified temperature rise. The thermal conductivity indicates
how fast the thermal energy is transported through the material.

Consider the flow of heat in a rod as shown in Figure 5 .1. The specific heat

C of a material is the ratio of the amount of heat added dq (Joules) to the

resulting rise in temperature d T(degrees Kelvin) per unit mass dm (kg); thus
C = (dqldT)Idm, (see Equation (3.3.1)). For a rod of cross-sectional area
A , the vo lume d V = Adz and dm = p d V where p is the density. So , the
amount of heat added to the length dz of the rod is

dq = CpAdTdz = sAdTdz (5 .1.1)

where sis the volumetric heat capacity, Cp.
When one end of the rod is hotter than the other there will be a net flow of

energy from the hot end to the cool end. The power P (Watts) of this heat
flow down the rod is the heat energy per unit time flowing past a point on the

rod P = dq ldt (Equation 3.3.2)). For one-dimensional heat flow , P is
proportional to the temperature gradient d Tldz , the thermal conductivity k
(W/m K) and the cross-sectional area;

P = -kA (dT/dz) (5.1.2)

There is a minus sign because heat flows from higher to lower temperatures .
In writing this equation, it is assumed that the rod is insulated; no heat

escapes from the rod by conduction, convection or radiation . The net heat
gain pe r unit time dq/dt in the piece of rod between z and z + dz is given by
the difference in the power flowing in at z and the power flowing out at
z + dz, so

5.1 Heat flow equation 53

dqldt = P(z)- P(z + dz) = -(aP/az)dz (5.1.3)

Combining Equations (5 .1.1) , (5.1.2) and (5.1.3) gives the differential
equation for heat flow in a rod

s(aT/at) = k(a2T!al-) (5.1.4)

This equation has many solutions ; if a quantity of heat is added to the rod
quickly (a heat pulse), the solution can be written as follows:

B 1 = constant
B2 = constant
T(t, z) = B1 + B2 exp(-z 2s/4kt)!t112

} (5 .1.5)

Details of how this solution can be obtained are found in Appendix F.

Exercise 5.1.1 Impulse heat diffusion solution

(a) Show that Equation (5 .1.5) is a solution of Equation (5.1.4).
(b) Show that B1 can be interpreted as the starting temperature ; that is ,

T(t , z)att = Oforz=/=0 . B 1 = T5 •

The solution (5 .1.5) describes the temperature at any point in the rod as a
function of time after an impulse of heat has been added at z = 0. Before
proceeding furth er it is useful to examine the graphs temperature T vs .
distance z of the solution at various times after the impulse . These are shown
in Figure 5.2. In this figure, T = T(t , z)- T5 • At times near zero , the heat ,
and thus the excess temperature , is concentrated near z = 0. As time
progresses the heat diffuses away from the center to larger and larger values
of z with the peak temperature decreasing in time.

Fig. 5.2. Heat flow in a rod, 1.20
temperature vs. distance where
t = t 'slk ..

1.00

......
~

"' 0.80 ~
~
C)l

~ 0.60
.;
.3
"' 0.40
" 0.
E
" f-o

0.20

1.2 2.5 3.7 5.0 6.2 7. 5 8.7 10.0
Distance, z

54 Thermal diffusion

An important point to note is that the solution is symmetric with respect
to z, just as much heat diffuses up as down the rod. Since there is no heat flow
across the cross section at z = 0, cutting the rod at z = 0 will not modify the
form of the solution although now all the heat added goes one way. This
half-space rod is the configuration which you will study experimentally .

To obtain a theoretical expression convenient for analyzing a quantitative
experiment, it is useful to relate the constant B2 in Equation (5 .1.5) to the total
heat Q added to the rod (from z = 0 to z =co) by integrating Equation (5.1.1).
Consider T as the excess temperature above T(O), ie, T = T(t, z) - T,
= T' - T,; integrating Equation (5 .1.1) from temperature T, to T' gives

dq = sAdz(T'- T,) = sATdz (5.1.6)

To integrate from z = 0 to z = co, use Equation (5.1.5) to describe the
variation of temperature at any z and t. Then

Q _ J"' A B2 exp(-rs/4kt) d = sA - s 1/2 z 112
z=O l l

B2 J~ exp(-z2s/4kt)dz

- s B 71' t - B (k)li2A A J/2 (4k)112
-- z-- - z71'S

t 112 2 s
(5.1.7)

solving for B2 and inserting into Equation (5.1.5)

T() = Q 1 exp(- z
2
s/4kt) + T

t , z A (71'kS)1/2 tl/2 s (5.1.8)

As written Equation (5 .1. 8) is not in an optimum form for displaying some
of the important features it contains. It is often very helpful, particularly for
purposes of recognizing the domain of behaviour in a given physical
situation , to relate the quantities in an equation to physically significant
parameters rather than simply measuring time in seconds, temperature in
degrees centigrade , etc. You saw this before in the equation for the
thermistor resistance as a function of temperature of Chapter 2. The natural
parameters there being R0 and T0 . For displaying the change in temperature
T as a function of time tat a fixed z, Equation (5 .1. 8) can be written in terms
of a characteristic time t1 and a characteristic temperature T1 as

TIT1 = (t1/t)
112 exp(-t1/t)

t1 = sz214k

T1 = 2Q!Azs71'112

T = T(t, z) - Ts
} (5.1.9)

Equations (5.1.9) immediately show several important points. First, the
variation of temperature with time at a constant z can be related to just two
parameters t1 and T1. Second, the characteristic time scale t1 is proportional
to z2

; this is a general property of diffusion phenomena.

Exercise 5.1.2 Graphing the heat diffusion equation
(a) Use the AMPERGRAPH utility program to plot TIT1 as a function

of tlt1 from tlt1 = 0.1 to tlt1 = 10.

5.2 Numerical integration of heat flow equation 55

(b) Show that the temperature T1 is proportional to the temperature
rise which a quantity of heat Q would produce if absorbed by a
length z of the rod with the heat distributed over the length of the
rod . Find the constant of proportionality.

(c) The temperature T 1 can also be related to the maximum values
which T assumes, show that the maximum occurs at tlt 1 = 2 and at
the maximum TIT 1 = 0.43 .

5.2 Numerical integration of the heat flow equation
Appendix F shows a solution to the differential equation for one­

dimensional heat flow for an impulse of heat at t = 0. For other starting
conditions or parameter dependencies the equation could be much harder,
if not impossible , to solve. For example, the thermal conductivity k is really
temperature dependent k = k(T) and so cannot be treated as a simple
constant parameter. An analytical solution quickly becomes impossible and
you must resort to numerical solutions.

General numerical integration of partial differential equations is a broad
and difficult subject. The following will be a simple procedure which works
in this case but must be used with care. It is really only meant to illustrate a
general approach . For further discussion see Numerical Recipes The Art of

Scientific Computing, by Press et al. in the bibliography.
The basic equations for the flow in a rod are the static equation for the heat

capacity Equation (5.1.1) and the dynamic equation with the thermal
conductivity Equation (5.1.2) which are combined to form the differential
equation , Equation (5 .1.4). Howeverfor purposes of numerical integration,
it is best to leave them separate and write them in this form :

~Q = -kA ~T ~tl~z

~T = ~Q/As ~z

where~ is assumed to approach zero.

(5 .2.1)
(5.2.2)

Now break up the rod (Figure 5.1) into N z pieces of length ~z each and
consider the ith piece; the heat flowing into this piece in the time~~ will be:

Q;n = kA(T;- 1- T;) ~tl~z (5.2.3)

If the temperature in element i - 1 is hotter than in the element i then Q;n
will be positive . The heat flowing out of the piece will be:

Q out = kA(T;- Ti+ l)~t/~z (5.2.4)

The difference of the two is the heat gained or lost in the element:

(5 .2.5)

This heat changes the temperature of the element in proportion to its heat
capacity:

~T; = ~Q;!As ~z (5.2.6)

and so

56 Thermal diffusion

Exercise 5.2.1 Integration algorithm
(a) Equations (5 .2.3)-(5.2.6) can be used to determine the temperature

in any element at any time (which is all we want out of a solution to
the differential equation) as follows:

First specify ~z and Nz and the temperature T; in each of the
elements i = 1 . . . Nz at the start, which in the case of the laboratory
experiment will be T1 = Q (from heater)/As~z and T2 , T3 , . . . ,

T Nz = 0. Also specify the time step desired M.

Next , make the calculations in Equations (5 .2.3)-(5 .2.3) for each of
the elements using the old temperatures to give new temperatures.

Repeat the last step until the desired time is reached .

Now repeat the whole procedure but with a smaller ~z and/or
smaller !::.t. Compare these results with the previous ones to make
sure that they are not sensitive to the size of the steps used . If they
are, reduce the step size again.

Since the theory deals with an infinite rod, another parameter which
needs to be examined is the length of the rod Nz ~z . Make sure that
it does not affect the results.

(b) With a working program in hand, the results can be checked by
comparison with the analytical solution. But now the analysis can be
taken further; consider the following questions and how the pro­
gram might change to answer them:

What is the effect of a short rod or a rod with one end clamped at a
constant temperature?

What is the effect of a thermal conductivity k which is a function of
temperature, eg, k = k' IT?

What is the effect of the heat impulse occurring over a longer
interval of time?

How does convective and radiative heat loss affect the temperature
distribution?

5.3 Experimental setup and program development
The apparatus you will use for these experiments is illustrated in

Figure 5.3 . In the top of the copper rod (#10 copper wire, 2.59 mm
diameter) is set a 3.3 D resistor which is used as a heater. Current can be
switched into the heater under program control using the IRF 520 HEXFET
in a manner similar to that used in Section 3.12. After generating a short
pulse of heat by momentarily turning on the HEXFET, the computer will
measure the increase in temperature at two positions down the rod using two
thermistors . The thermistor positions are as shown on Figure 5.3. A plot of

Fig. 5.3. Heat diffusion
apparatus.

Fig. 5.4. Flow chart for Exercise
5.3.1.

Input time TH to
put heater on.

!
Set up ACR to generate

square waves on PB7
and to count pulses

on PB6.
Set T2 to $FFFF.

1
Set T 1 to generate 0.01 s

period square waves on PB7.

1
Read T2L

(don 't need T2H).

l
Turn heater on.

l
Wait for T2L

to count down for
TH typed in.

l
Turn heater off.

5.4 Voltage amplifier

Copper­
rod

57

base

the temperature vs. time at each of these thermistors will yield values for the
heat capacity and thermal conduction constants of copper and also demon­
strate the functional dependence of heat diffusion on time and distance .

Exercise 5.3.1 Heat impulse to rod
Write a subroutine which uses the 6522 T1-T2 timing set-up of
Chapter 4 to turn the heater on for an amount of time which you

type as input data into the computer. Use P AO to control the
HEXFET. A flow chart outlining the steps in the program is shown
in Figure 5.4. Check your program and apparatus by putting an
oscilloscope probe between the heater and ground and then turning
the heater on for times ranging from 0.1 s to 2 s. Note the voltage
across the heater when it is on with the oscilloscope and compute
the power being put into the heater. (Remember: do not put the
alligator clip to any circuit point which is not at ground potential!)

5.4 Voltage amplifier
The change in temperature of each thermistor from an initial

temperature (T(t, z) - T0) is the significant quantity to measure in this
experiment. However the temperature increments and thus the voltage

58

Fig. 5.5. Voltage ampl ifier circuit
for heat flow apparatus.

Thermal diffusion

changes are very small; if the ADC is connected directly to the thermistor as

in Chapter 3, the changes are less than the step size of digitization . To
overcome this problem an amplifier is used to boost the voltage change. On
the proto board attached to the experimental apparatus is an amplifier using

a CA3140 operational amplifier; a schematic diagram is shown in Figure 5.5.

It is not necessary to understand the details of this amplifier circuit except to

note that the relationship between the three voltages VA (output) (pin 6), V1

(pin 2) and VT (pin 3) is given by

VA= G(VT- VI) (5.4 .1)

For the circuit components used, the gain G is equal to 21.

The amplifier output (VA) is constrained by the characteristics of the

CA3140 to be between 0 V and + 3 V. Since a rise in thermistor temperature
will lead to a rise in the output voltage of the amplifier , the potentiometer R 1

should be set so that the output voltage of the circuit starts near the lowest
voltage before a heat pulse is applied. This will allow the greatest voltage

swing as the thermistor heats up without exceeding the 3 V limit. Using the

oscilloscope to monitor the output voltage of each amplifier, set the poten­

tiometers (one for each amplifier-thermistor combination) so that the
amplifier outputs are about 0.20 V before you start each run. When this is
done each potentiometer R 1 has been adjusted to be essentially the same

resistance as the thermistor resistance RT before a temperature pulse is

applied. Since the amplifier gain is 21, the change in the output voltage .:1 VA

will be 21 times greater than the change in the thermistor voltage .:1 VT.

lkS1

+
5 v 6

to ADC

lkS1

Fig. 5.6. Flow chart for Exercise
5.4.1. use
PRINTPEEK(49312);" ";
-putting a semi-colon and
quotes with a few spaces will
make it possible to view what is
going on using the screen with a
minimum of programming.

Apply heat pulse of
specified time T

program of exercise 5 .3.1

I
!

Measure ADC output of
thermistor and amplifier
PRINT result on screen

I

Fig. 5.7. Flow chart for Exercise
5.4.2.

Wait for T2
to decrement by 50

(0.5 s) from last
sample time T(l-l)

5.5 Data analysis 59

Exercise 5.4.1 Amplifier check
Before writing a detailed program write a simple program to see
that the apparatus is functioning following the outline shown in
Figure 5.6 . When you run this program you should see on the
oscilloscope the voltage output rise and then slowly fall. It should
start above 0 V and not try to go above 3 V. Stop it after 20 or 30 ~
using CONTROL C.

Do the same to check thermistor 2, the lower thermistor. You will
need to let the apparatus cool down and reset the potentiometer
between heat pulses .

Exercise 5.4.2 Heat flow real-time plot
(a) The next task is to make thermistor ADC measurements at specified

times. To do this, modify the program by putting in waiting loops as
indicated by the Figure 5.7 . Note that a sample is taken before the
heater is turned on (A1(0) an A2(0)) . This records the baseline
ADC reading. The heating of the rod then changes the ADC
reading from this starting value.

(b) Now combine this with AMPERGRAPH so that these relatively
rough, unprocessed data are plotted in real time while they are
being collected . You have enough time (even though BASIC is very
slow) to read the time , A1(1) and A2(1) and to get them on a graph
as data points before the next reading must be taken! slater. the
AMPERGRAPH symbol plotting is too slow so use '&
DRAW,X,Y: & PENUP' for each point. In addition, it may be too
slow to convert the ADC readings to voltages so just leave them as
raw data. Also make a data file of the ADC readings A 1(1), A2(1)
and times T(I) together with the time the heater was kept on (T H).

5.5 Data analysis
Before proceeding to more data plots and analysis, here are some

additional mathematical considerations. We will assume that the tempera­
ture and voltage changes at the thermistor are small enough to that their
behaviors are adequately described by differentials . Thus: (change in
amplifier output voltage) = (gain) x (change in the input voltage)

dVA = GdVT (5 .5.1)

The relationship between VT and RT is similar to the thermistor experiment
of Chapter 3, ie, VT/V0 = R1/(R 1 + RT) with V0 = 5 V. The relationship
between dVT and thermistor resistance changes dRT can be obtained by
differentiation ; the result (which you should work out) is

dVT = _ dRT (1)
2

(5 .5.2)
V0 R 1 1 + RTIR 1

60 Thermal diffusion

Noting that R 1 and RT are adjusted to be nearly equal at the outset gives

dVT/Vo = -dRT/4RT (5 .5.3)

The next task is to relate change in the thermistor resistance to changes in
temperature. The relation between thermistor resistance and temperature is

RT = R0 exp(T0/Ta) as discussed in Chapter 3. Differentiation of RT with
respect to temperature Ta gives

dRT = _To dTa
RT Ta Ta

(5.5.4)

where Ta is the absolute temperature (K) (not the excess temperature,

T(t, z) - Ts) and d Ta is a small temperature change due to the heat pulse.
Thus if dTa is small, it can be approximated by the measured temperature
change of the apparatus (ie, the excess temperature) and Ta can be approxi­
mated by room temperature. Appropriately combining Equations (5.5 .3)
and (5.5.4) gives the result

dT, = T, _i_ Ta dVA (5.5.5)
' ' G T0 Vo

As Equation (5.5.5) shows, the change in output voltage in volts is not
important , only its ratio with V0 . This ratio d V AIV0 is equal to the ratio of the
change in ADC units to the ADC full scale reading.

Exercise 5.5.1 The thermal conductivity and specific
heat of copper
Plot the data which you have taken with the vertical axis 111

temperature change from the initial temperature-(Equation (5.5.5))

and the horizontal axis in seconds (T0 = 3440 K for the GB32J2

thermistor). As a first step in the analysis of these data use the
relations derived in Exercise 5. 1. 2(c), ie, visually estimate the
position Tpcak and height Tpcak of the peak and calculate 11 and T1

from these values. Use these estimates to draw a curve on your

graph of the data and check the fit. Then you may want to change
your estimate and try another fit.

When you are satisfied with your values of T1 and t 1 use them to
calculate, via Equation (5.1.9) , the diffusion constant D = kls, the
thermal conductivity k and the heat capacity c = sip where pis the

density . Make an estimate of the error made in differential evalua­

tion of the temperature change (Equation (5.5 .5)) compared with
actual temperature change . For doing this esti mate , use the
maximum change which can be measured using the amplifier circuit
employed.

One further consideration can be applied to the data analysis. In deriving
Equation (5.1.5) we assumed that the time during which the heater was on

5.5 Data analysis 61

(T) was very small in relation to the time the heat takes to diffuse down the
rod (t 1), ie , it was an impulse of heat (see Appendix F) . In doing your

experiments thi s approximation is valid as long as you make t = 0 on your

graph correspond to the midpoint of the heating time and if the heating time

is less than any t 1 • Appendix G gives the details.

Exercise 5.5.2 Time shift of heat flow data
Shift the time scale of your heat flow data by hand again estimate

T1, t1, D,sandk.

6 APPLE architecture and
assembly language

Fig. 6.1. Inside the APPLE I! e.

• programming

Thus far, there has been no need to understand the inner workings of the
computer in order to do useful experiments. It has been a black box which
responds in a reliable way when given instructions. Just as in using a car,
many times this is sufficient; however, to utilize its capabilities as a tool in the
laboratory fully, the internal operation of the computer should be under­
stood. In this chapter, we will look under the hood to explore the internal
organization of the APPLE and to learn to program the 6502 microprocessor
directly .

6.1 Inside the APPLE
A first glance under the cover of the APPLE shows a circuit board

with a row of connectors which contain other circuit boards standing
vertically . The horizontal board (the mother board) contains the 6502
microprocessor chip and various other chips which control the keyboard and
screen and contain the memory cells. The microprocessor is the CPU which
controls the system and executes the program instructions. The boards in the
connectors perform a variety of other functions. Figure 6.1 shows the general

User
slots--.

6502 l'p
Buss boss

Internally
connected

The buss 16 address wires
8 data wires

26 auxil iary wires

Fig. 6.2. 6502 Timing in the
APPLE lie.

~
Q)
OJ)

~
0

6.2 The 6502 microprocessor 63

organization. The different chips and boards communicate with each other
via the buss: a group of 50 wires which carry digital signals. There are 16
address lines, 8 data lines, and 26 auxiliary lines . The data lines contain the
8 bits of data which are to be transferred by the CPU. The bits on the address
lines contain the binary number of the location from or to which the data will
be transferred. The operation of the computer is, at the lowest level, a
controlled transfer of bits of data among the various devices.

The CPU uses the auxiliary lines to control the data transfers. The
READ/WRITE (R/W) line signals whether the data will be transferred to
the CPU (a READ, R/W HI) or out from the CPU (a WRITE, R/W LO) .
Another auxiliary line is controlled by the oscillator which is the clock that
determines how fast the CPU operates and thus, how fast the data transfers
will take place. The one in the APPLE generates about one million cycles
per second (Figure 6.2). At the beginning of each clock cycle, the CPU puts
the binary bits defining an address on the address wires and sets the RIW line
to indicate the direction of the data transfer. In the second half of the clock
cycle the data transfer takes place on the data lines . The time lag between the
first and second parts of the cycle is used by the memory circuits to locate the
unique memory cell being addressed.

Since the 6502 CPU has 8 data lines, it is called an 8-bit microprocessor.
These 8 binary bits (or 1 byte) can represent various things. They could be a
binary data value, a machine instruction code (op-code) or one half of a
16-bit address. The electronic protocol for transferring the data is always the
same no matter what the data may represent.

6.2 The 6502 microprocessor
Programs are ultimate]~' stored in the computer as a series of data

bytes . All programs written in other languages (eg, BASIC, FORTRAN,
Pascal) are translated into this form (by another program!) before they can
be executed . The machine language program is executed by the CPU by the
following steps:

The CPU (1) reads the next instruction code (op-code) in the series,
(2) decodes the instruction,

5

~Address bits on address lines, R/W set

- -

-490 ns-

> 0

Data bits taken off data ~imes)
by CPU or by memory

I I I

2 Time (liS)

Fig. 6.3. 6502 Internal registers.

Apple architecture and assembly language 64

(3) if necessary, reads additional data (such as an address or data
byte),

(4) executes the instruction,
(5) starts at step (1) again.

In the 6502 each machine instruction requires 2-7 clock cycles to execute.
There are approximately 150 different op-codes of which 56 are funda­
mental.

The 6502 CPU has six internal memory locations which it uses for
executing instructions and to keep track of where it is in the program. These
are called registers (Figure 6.3). The most sophisticated instructions are
done with the eight-bit accumulator (A register). This is the arithmetic
register whch can do addition and subtraction as well as logical operations .
The X and Y registers are auxiliary eight-bit registers used principally for
counting. The program counter (16 bits) contains the address of the next
byte to be accessed in the program. The stack pointer contains the address
of the top of the stack which is a group of memory locations used predomin­
antly for executing subroutines. The 6502 uses the memory between $0100
and $01FF for the stack. You will learn more about how this works in Section
6.10. Notice that the high byte of the stack pointer is always $01; only the low
byte varies. The last register is the process status (P or F, Figure 6.3) register
which is used for a variety of housekeeping chores. Each bit in the register

ADH

Y register
8 bits

X register
8 bits

Accumulator
8 bits

Process status register

Program I counter
16 bits wide

Stack pointer (8 bits vary)

ADL

ADH (always $01) ADL

IN I vI IBID I I I z I c I

I

Processor status register

Carry

Zero result

Interrupt disable
Decimal mode
Break command

Expansion

Overflow

Negative result

6.3 Writing machine language programs 65

indicates a different state of the CPU . The branch machin e instructions
(Section 6. 9) use the bits in this register to determine whether or not a branch
should be taken.

6.3 Writing machine language programs
In the APPLE computer , short machine language programs are

conveniently written using the 'MINIASSEMBLER' which is in the
INTEGER BASIC package of programs loaded into the RAM in the
language card when the machine is bootstrapped with the SYSTEM START
DISK (the bootstrap procedure is described in detail in Appendix H). The
MINIASSEMBLER makes it possible to write programs using mnemonics
which directly represent the machine instructions to be executed by the
CPU. A program written with these mnemonics is called an assembly
language program . When using the MINIASSEMBLER the program is
actually stored in machine language (ie, binary op-codes and data) but is
displayed in assembly language (ie, mnemonic characters).

Starting with the APPLESOFT prompt (])on the CRT screen, turn the
printer on by typing PR#l CR to get hard copy for your reports . Put the
machine under control of INTEGER BASIC by typing INT CR; this will
produce the prompt character of INTEGER BASIC, (>) . Then type
CALL-2458 CR ; this will run the MINI ASSEMBLER program which starts
at memory location -2458. , the MINI ASSEMBLER program prompt is ' !' .
With the! before you , type the program indicated below. SP means press the
space bar ; CR means press the RETURN key (the spaces marked with SP
are mandatory, the other spaces are optional).

Program 6.3.1.
9300: LDA #01 CR Load the accumulator (A) with the number $01.

SP STA C402 Store the contents of A in memory location

$C402, (OORB)

SP LDA #01 CR
SP STA C400 CR
SP LDA #00 CR
SP STA C400 CR
SP JMP 9305 CR
$9300L CR

$9300G CR

Load A wi th $01.

Store in ORB.

Store 0 in ORB.

Jump to instruction coded in location $9305.

Monitor command to li st program steps starting

at $9300.

Monitor com mand to run program starting

at $9300.

Figure 6.4 shows what the screen and printer should look like after this is
completed . Appendix I contains useful information about assembly
language programming.

Connect the oscilloscope to the line PBO ; you should see square waves.
The above program which you have typed into the machine and set running
is the machine language equivalent of the BASIC program used to generate

Fig. 6.4. Assembly language JINT Go to INTEGER BASIC
program listing and comments. >CALL-2458 Go to MIN IASSEMBLER

!9300:LGA#01 Type in; start loc: instruction

APPLE responds

9300- A9 01 LDA #$01 Type in space after instruction
I STAC402

9302- 8D 02 C4 STA $C402 APPLE responds

! LDA#01

9305- A9 01 LDA #$01
I STA C400

9307- 8D 00 C4 STA $C400 Etc

! LDA#00

930A- A900 LDA #$00
I STA C400

930C- 8D 00 C4 STA $C400
! JMP 9305

930F- 4C 05 93 JMP $9305 Type $9300L CR

!$9300L - sends control to monitor

9300L- disassembles

9300- A9 01 LDA #$01 starting at 9300

9302- 8D 02 C4 STA $C402
9305- A9 01 LDA #$01
9307- 8D 00 C4 STA $C400
930A- A9 00 LDA #$00 Disassembled program

930C- 8D 00 C4 STA $C400 starting at 9300

930F- 4C 05 93 JMP $9305
9312- FF ??? Garbage

9313- FF ???

9314- 00 BRK 9300L disassembles

9315- 00 BRK 20 instructions

9316- FF ??? 9300LL would do 40

9317- FF ??? 9300LLL would do 60 etc.

9318- 00 BRK
9319- 00 BRK
931A- FF ???

9318- FF ???

931C- 00 BRK
931D- 00 BRK
931E- FF ???

!$9300G Type $9300G CR

$sends control to monitor

9300G starts program running

Fig. 6.5. Comparison of
equ ivalent machine language,
assembly language and BASIC
programs.

6.3 Writing machine language programs 67

square waves in Exercise 3.10.1. Figure 6.5 shows the parallel statements
between the two programs. To display the square waves set the SWEEP
TIME/DIY on the oscilloscope to 5 ,us/DIV. Note the time ratio between the
machine language program and the BASIC program.

The lines you typed in with the $ as the first character are instructions to
be executed by another set of subroutines in the APPLE called the monitor
(prompt *). When the MINIASSEMBLER finds a$ as the first character of
a line , it sends the rest of the line to the monitor for execution. The line
$9300L instructs the monitor to go to memory location 9300 (hex) and to
translate the machine codes into assembly codes which are then displayed
alongside the machine code (Figure 6.4). This process of translating a
machine language program into assembly language is called disassembly .
$9300G starts the program execution at 9300 (hex). To stop the program
which loops back to itself continually, press CONTROL-RESET.

It is informative to look at the details of this program as displayed to gain
insight in the operation of the computer. Beyond the first seven lines the
material is irrelevant; it is probably 'garbage' which the L instruction is
trying to disassemble.

The first line, LDA #01 , instructs the 6502 to load the hexadecimal
number $01 into its accumulator. The program starts at memory location
$9300 , the number shown in the lefthand column of the first line of the
program in Figure 6.4. In memory location $9300 the eight-bit number $A9
is stored.

When this program is started at memory location $9300, the 6502 retrieves
the number $A9 from memory and decodes it as the instruction 'load the
accumulator immediate' (mnemonic LDA). Immediate means that the
accumulator of the 6502 is to be loaded with the number stored in the next
memory location ; in this case , the next address is $9301 and the number is
$01. When the instruction $A9 is decoded by the 6502 , it also knows that the
instruction requires two bytes for its definition and thus the next instruction
code will be found in the memory location $9302.

Address Machine code Assembler code BASIC statement

9300 A9 01 LDA #$01 10 POKE 50178,1
9302 8D 02 C4 STA $C402

9305 A9 01 LDA #$01 20 POKE 50176,1
9307 8D 00 C4 STA $C400

930A A9 00 LDA #$00 30 POKE 50176,0
930C 8D 00 C4 STA $C400

930F 4C 05 93 JMP $9305 40 GOTO 20

68

Fig. 6.6. Memory dump.

Apple architecture and assembly language

The next instruction ST A $C402 means 'store the number which is in the
accumulator , ($01) into memory location $C402'. The data is also retained
in the A register. Memory location $C402 is the DDRB. This will set up
ORB (memory location 50176 = $C400) with PBO as an output port. When
the 6502 retrieves the number $80 from memory it decodes it as the
instruction to store the eight-bits of data in the accumulator in the memory

location designated by the data stored in the next two memory locations, ie ,

$9303 and $9304. The least significant eight bits (low byte) of the address (eg,
$02) are stored in the location just after the op-code and the most significant
eight bits (high byte) of the address ($C4) in the memory location after this,
$9304. This sequence is the protocol of the 6502 for storage of addresses; the
low byte of the 16-bit address goes into the lower memory address and the
high byte into the next higher address.

The above mode of memory addressing (eg, ST A $C402) is called
Absolute Addressing because the memory location upon which the instruc­
tion acts is explicitly designated. The instruction 'store accumulator with

absolute addressing' is a three byte instruction; it requires three memory
locations to completely specify the instruction. The memory address upon
which an instruction acts is called its operand. The 6502 has about a dozen
different ways of defining operands.

The next two instructions listed in the program put $01 into the
accumulator from whence it is transferred into Port B. The next two
instructions put $00 into Port B. The final instruction JMP $9305 makes the
6502 jump to memory location $9305 to find its next instruction, thereby
looping the program interminably upon itself.

To examine but not disassemble the data stored in the memory defining
the program above, type $9300.9311 CR. The result displayed on the CRT
is shown in Figure 6.6. The above is called a memory dump; it is a simple

tabulation of the data stored in the memory locations between $9300 and

$931F. With this memory dump before you, take the time to make a step by
step review of what occurs when the program is run from memory location
$9300.

Saving machine language programs on the disk and retrieving them again
can be done from the MTNIASSEMBLER or BASIC. Machine language
programs are saved as binary files. A binary file is simply a series of data
bytes stored on the disk; this sequence may represent a variety of things: data

!$9300.9311

9300- A9 01 8D 02 C4 A9 01 8D
9308- 00 C4 A9 00 8D 00 C4 4C
9310- 05 93

Type $9300.9311 CR

9300.9311 is a monitor instruction

to dump memory contents from

9300 to 9311 inclusive

6.4 Operation of a DAC 69

bits, a machine language program, a CRT graphics image. They are different
from TEXT files which are a sequence of encoded character strings or from
APPLESOFT files which are encoded BASIC instructions.

To save a machine language program use :

BSA VE filename, A address , L length

where 'address' is the address of the start of the program and 'length' is the
number of bytes you wish to save . These are specified by a decimal number
or alternatively using a hexadecimal number preceded by a$. For example

BSA VE EX6.0 .0, A$9300, L$11

will save 17 bytes starting at memory $9300 with the filename 'EX6.0.0'. To
retrieve a binary file use

BLOAD filename , A address

If you leave off the A parameter, the binary file will be loaded into the
location from which it was saved. Otherwise it will be put in the memory
starting at the specified address . To use BLOAD as a DOS command within
a BASIC program use the instruction PRINT CHR$(4) 'BLOAD filename'.

Exercise 6.3.1 Machine language square waves
and BSAVE

(a) Write, run, and print out a machine language program which
produces square waves at PB4. Examine and record the signals on
your oscilloscope. BSA VE and BLOAD the program.

(b) Run the program DEM02 on the AMPERGRAPH disk or one of
your own programs which will quickly produce a graph. Data for
page 2 of high resolution graphics are stored in the memory
locations from $4000 to $5FFF. BSA VE this page of graphics on a
disk. Write a BASIC program to BLOAD and display the file . Be
sure to set the display to HGR2.

6.4 Operation of a DAC
The purpose of this section will be to explore the use of Digital to

Analog Converters (DAC) and to get some practice in assembly language
programming. You also will learn how to instruct the computer to go back
and forth between BASIC and machine language programs.

You have used an ADC in the previous sections to convert an analog
voltage signal external to the computer into a digital signal which the
computer can manipulate and store . The inverse operation is done with a
DAC. The DAC is an output device which converts the binary number to an
analog voltage . They can be used for a variety of purposes. For example,
they are used as the output devices for digital music playback and for digital
video players . You will use them to drive oscilloscope displays.

70

Fig. 6.7. DAC circuits.

Apple architecture and assembly language

There are two DACs connected to the APPLE parallel interface, Figure
6. 7; one is on Port AA and one is on Port BB of the second 6522 VIA (base
address $C480). They are used by setting up the ports as output and then
writing digital numbers into the ports .

For electronic reasons which need not concern us , the DAC you are using
uses an inverted representation of numbers, ie , the binary number $00 at its
input produces +5 Vat its output and $FF at its input +0 Vat the output. To
generate the conventional conversion between analog voltage and binary

8
lines

APPLE

Output 1
0-5 v

(pin 12)

MSB
To
PAA
or
PBB

LSB

7
6
5
4
3
2
I
0

8
lines

+ 5V - 5V

13 3

D
A
c 4

Output 2
0-5 v

{pin 12)

+ 5 V (ref)

4.99 k.Q

4.99 k-11

vout

6.5 Indexed addressing 71

numbers the binary numbers at the output to the DAC should be inverted ,
ie , all ones converted to zeroes and zeroes to ones.

Exercise 6.4.1 DAC sawtooth wave (BASIC)
Using BASIC and Port AA, write a program which will set up the
port for output and write the temporal sequence of numbers $00,
$01 , , $FF, $00, ... ad infinitum into the port. Observe the output
of the DAC with the oscilloscope and note the results . The output is
on pin 4 of the DAC chip.

Exercise 6.4.2 DAC sine wave (BASIC)
Write a BASIC program which will output a sine wave from the
DAC. Take note of the fact that the sine function goes from -1 to
+ 1; this must be put in a digital range from 0 to 255 for the DAC.
Display the sine function in two ways : (a) by calculating the sine
each time it is needed, (b) by using a lookup table . In (b) a table
(array) of 100 sine values is calculated once and then, when the
program needs a value , it is obtained from the array . Observe with
the oscilloscope and note the difference in speed of the two methods
of programming.

6.5 Indexed addressing
Before proceeding to the use of DACs with assembly language

programs, two more assembly language concepts need to be understood;
these are indexed addressing and program branching.

A BASIC program sequence to move the data from one area of memory
to another is

10 8A=36864 : 88=37120
20 FOR !=0 to 99
30 A=PEEK (8A+I)
40 POKE 88+1, A
50 NEXT I
60 END

These instructions transfer an array of values from memory locations
BA ,BA + 1, BA + 2, . .. , BA + 99 to BB,BB + 1, ... , BB + 99. An
assembly language program can do the same thing much more quickly using
indexed addressing. A program to do this is:

9300 LOX #$00 Get 0 into the X register.

9302 LOA $9000 ,X Get the data from address $9000+X

into A.

9305 STA $9100 ,X Store the data in A at address

$9100+X.

72 Apple architecture and assembly language

9308
9309

9308

9300

INX
CPX

BNE

BRK

#$64

$9302

Add 1 to the X registe r.

Compare (calculate X - $64) the

number in the X register with $64

($64 = 100)

If X- $64 is not equal to zero, go back to

$9302.

Stop execution.

There are several new instructions here. Read the comments on the right
thoroughly to understand how they work. LDX #xx (immediate) is similar
to LDA #xx ; it will load the X register with the value of the byte which
follows. LDA $xxxx,X indicates indexed addressing . This instruction will
'load A with the data which appears at the address computed by adding the
value in the X register to the address $xxxx .' In the above program if X
contains the value $1C, the 6502 will load the data from address $901C
($9000 + $1C) into A. Notice one limitation- since the X register can only
range from $00 to $FF (eight bits) the range of addresses which can be
'indexed' is limited to those within 255 from the base address . STA $9100,X
operates in an analogous manner. INX stands for 'increment X' ; it adds 1 to
the X register.

The next instruction, CPX #$64, is 'compare X with the next byte' (notice
the immediate mode addressing indicated by #) . In this case $64 is sub­
tracted from X and the flags (the data bits in the processor status register) are
set according to the result. TheN bit is set to 1 for a negative result, Z is set
to 1 for a zero result; otherwise, these flag bits go to zero . The last
instruction, BNE $9302, tests the Z flag. BNE stands for 'branch if the
previous result was not zero' . (More on branching in section 6.9.) Thus the
computer will jump to $9302 if Z is zero. Since the state of the Z flag is set by
the CPX instruction, the result of these last two instructions is that the
program will loop (branch) back to $9302 if X is not equal to $64. Thus, as
the program does each loop, the X register increments until it gets to $64 ,
then the branch is not taken and the computer goes on to the break
instruction at $930D and stops. The net result is the same as the BASIC
program shown before.

Exercise 6.5.1 DAC output in machine language
By using indexed addressing, the BASIC program which you wrote
for Exercise 6.4 .1 can be translated into assembly language. The
procedure is as follows: first, write a BASIC program which POKEs
the numbers 0-99 into memory $9000-$9063. These will be the
'data' to be output to the DAC. Next, go to the MINIASSEMBLER
and enter a program starting at $9300 which will read the data bytes
from address $9000 to $9063 and output them to the DAC. This
program will be very similar to the one described above. Add a JMP

6.7 An X-Y plotter 73

instruction at the end which will loop back to the beginning of the
program. Then run the machine language program with $9300G,
and observe the results with the oscilloscope .

6.6 The CALL and RTS connection
A few embellishments will make the operation of the BASIC­

machine language system smoother. Once the machine language program is
in the memory , it can be used by a BASIC program through the use of the
CALL statement. When BASIC executes a 'CALL address' statement it
jumps to the address given and begins to execute the instruction it finds there
as a subroutine. To then return to BASIC from the machine language
subroutine , the machine language instruction 'return from subroutine' RTS
is used . The last instruction of every subroutine is RTS. (More on this later.)

Exercise 6.6.1 BASIC- machine language connection
Try using the assembly language program you wrote in Exercise
6.5.1 in a BASIC program. First go to the MINIASSEMBLER and
replace the JMP instruction at the end with RTS . Then go to BASIC
and enter and run the following .

200 CALL 37632
210 GO TO 200
Watch what happens with the oscilloscope and explain the qualita­
tive shape of the waveform.

Exercise 6.6.2 DAC sine wave (BASIC and machine
language)
Write a BASIC program which calculates a sine wave table (array)
whose amplitude varies between 0 and 255 and which is stored in
$9000-$9063 (100 values) and then uses a CALL to a machine
language program to show the results on the oscilloscope . Try
varying the frequency of the calculated sine wave and observe the
effects.

6.7 An X-V plotter
By using two DACs and the oscilloscope you can make an X-Y

plotter, that is a display whose X value is determined by one function and
whose Y value by another function of the same parameter. The oscilloscope
will display the two input channels in this way if you set the MODE to 'X-Y' .
As an example of X-Y plotting, suppose the x axis voltage varied as
cos(0) and they axis voltage varies as sin(0), what would be the figure traced
out as successive points were plotted (e = 01 , 02 , .. .)?

74 Apple architecture and assembly language

Exercise 6.7.1 Lissajous figures on a DAC X-V plotter

Use the two ports and DACs to plot Lissajous figures. Program the
calculations in BASIC and the display output in assembly language .

(a) Begin with the simplest figures , a circle :

x = cos(e) , y = sin(e)

and a line :

x = cos(e) , y = cos(e)

(b) Next try:

x = cos(8 1) , y = sin(82)

where

or

(c) What happens when you vary the relative phase or amplitude of x
and y? For example , try a circle again but with

x = cos(e) , y = ! sin(O)

then

x = cos(e + br) , y = ! sin(e)

6.8 Boolean algebra
Normal algebraic variables can take on an infinity of values and are

added, subtracted, multiplied, etc . to give new values. Boolean variables are
quantities which can take on only two values and are operated upon by
AND , OR, NOT, etc to give new values. The two values can be described by
0 and 1, HI and LO , or true and false. (No!, MIDDLE, or maybe .) The
AND operation combines two Boolean variables A and B to produce a third
Boolean variable C such that Cis 1 if, and only if, both A and B are 1. The
AND operation between two Boolean variables is represented by A or by a
dot ,

C = A·B or C=A A B
Boolean algebra statements are frequently defined by truth tables . Table 6.1
shows the AND operation

Table 6.1 Truth table for the AND operation

A B C =A · B

0 0 0
0 1 0
1 0 0
1 1 1

6.8 Boolean algebra 75

The 6502 has an instruction AND which does exactly this . Each of the
eight data bits is considered as a Boolean variable . The AND instruction
performs the AND operation between each of the corresponding bits in the
accumulator A and some memory location and deposits the result in the
accumulator. In the table of instruction codes of Appendix I, and AND
operation is written A A M~ A.

An important application of the AND instruction is to help determine
whether some bit in a byte is a 0 or a 1. The first step is to isolate the bit and
to produce a result dependent upon the value of the bit in the place being
tested. This operation is called masking. It is as though we hide the bits of no
concern behind a mask and look through a hole in it at the one of interest.
The result is independent of the value of the other data bits. The program
steps

LDA #10
AND $9405

will isolate DB4 (Data Bit 4) of the contents of memory location $9405. The
AND operation between the 1 loaded into DB4 of the accumulator by the
LDA#lO operation and the data in memory location $9405 will produce a 1
in DB4 of the accumulator if DB4 of $9405 is a 1 and 0 if it is a 0. All other
data bits of the result in the accumulator will be zero because 0 AND 0 = 0
and 0 AND 1 = 0.

Exercise 6.8.1 AND
To see how this works, use the MINIASSEMBLER to write the
machine language program code for the following program starting
at memory location $9300.

$9300 LDA 9400
AND 9401
STA 9402
RTS

Store some random numbers into $9400 and $9401 by typing the
appropriate monitor commands from the MINIASSEMBLER. To
do this , with the ! prompt before you, type

$9400: D3 SF CR

to store $D3 in $9400 and $5F in $9401. To verify that these are the
numbers stored, type (with the prompt! on the monitor):

$9400.9401 CR

This will display the contents of memory locations from $9400
through $9401 (which is of course just $9400 an $9401). In general,
these two numbers could be the beginning and end of any interval.

Store some selected hexadecimal numbers in $9400 and $9401 ,

76 Apple architecture and assembly language

run the program and then display the results in locations $9400-­
$9402. Write out the hexadecimal numbers in binary to demonstrate
how AND worked between the two starting numbers. Choose two
starting numbers so the entire AND truth table between them can
be verified .

The Boolean algebra operation conjugate to AND is OR, which given two
Boolean variables A and B, will produce a Boolean variable that C which is
1 if A orB is 1. The OR operation is written

C = A + B or C = A V B

It is defined by the truth table, Table 6.2.

Table 6.2 Truth table for the OR operation

A B C=A+B

0 0 0
0 1 1
1 0 1
1 l 1

Exercise 6.8.2 ORA
Rewrite the program in Exercise 5.8.1 using the ORA instruction
(A + M ~A) in place of the AND instruction. As above, run the
progam and write out in binary form the resulting byte in $9402 and
note the relationship between them and the bits you started with in
$9400 and $9401. Put the data into $9400 and $9401 which verify the

entire truth table .

The third and final Boolean algebra instruction in the 6502 is exclusive OR
(EOR). It works on each bit like the AND and OR operations. EOR is
written

C=AEBB or C =A VB
The rule for exclusive OR between A and B is that Cwill be HI only if either
A is HI or B is HI.

Table 6.3 is the truth table for EOR.

Table 6.3 Truth table for the EOR operation

A B C=A EB B

0 0 0
0 1 1

0 l
1 0

Fig. 6.8. Push button circuit.

+5 v

10 kn

t- Push button I switch

6.9 Branching instructions 77

An important application of EOR is to invert one or more bits in a
memory location and leave all the others alone. For example you could
produce square waves on PB7 at the same time that the other lines on this

port are used for other applications. This inverting property of EOR, that
1 EEl DB = DB and 0 EEl DB = DB ; is easily derived by inspection of the
truth table above. (DB means DB inverted or 'NOT DB' thus , if DB = I
then DB = 0 and if DB = 0 then DB = 1.)

Exercise 6.8.3 EOR
Write a program which inverts DB6 of the data stored in the
memory $9401 and leaves the rest of the bits alone. Run it and
demonstrate this property by displaying and printing out the con­
tents of $9401 before and after running with several initial values.

6.9 Branching instructions
The 6502 has a group of instructions called branching instructions.

They test the byte obtained in a previous operation for various conditions:

if the result of that test is true ; the program will continue execution at some
other location. The BNE instruction in the program in Section 6.5 tested
whether or not the result of the CPX instruction was equal to zero; if not , the
branch to $9302 was taken and program execution continued from there. If
the test result is false, the program counter advances sequentially, as it
would in the absence of the instruction . Thus , branching instructions are
similar to the IF ... GOTO statement in BASIC.

To demonstrate how this works wire up the circuit shown in Figure 6.8.
Before doing so it is important that you make sure that Port A is set up for
INPUT which means that all the data bits in data direction register A be set
equal to zero. A quick way of doing this is to simply press CONTROL
RESET. To protect electronic components, the 6522 sets all its control
registers, eg, DORA and DDRB to zero whenever the power is turned on or
the machine is RESET. If it were otherwise , the possibility , indeed probabil­
ity, would be present of both the 6522 and the switch which you are installing
trying to control data lines leaving the machine. This can lead to a 'short
circuit' since the 6522 may try to connect a data line to + 5 V, at the same time
that the switch which you installed connects to ground. This condition can
lead to burned out components so be careful to avoid it.

Exercise 6.9.1 Masking and branching
Enter and run the program indicated in Figure 6.9. In formulating
programs it is usually easier to write a mnemonic memory location
like ORA for $C401 (which is what you type into the MINI-

78

Fig. 6.9. Masking program.

Apple architecture and assembly language

AGAIN LOA #04
AND ORA
BNE AGAIN
BRK

AGAIN= memorylocationof

beginning of program

ORA= $C401

ASSEMBLER) and a mnemonic like AGAIN to indicate the s~p
where the program is to loop upon itself. Then do the proper
translation of mnemonics as you use the MINIASSEMBLER. This
program will continuously loop back upon itself waiting until you
press the switch which you have connected to the PA2. When you
do, it will go on to the BRK instruction and stop execution. The
APPLE monitor will display the contents of the machine registers,
ie, A,X,Y, P and S, together with the value in the program counter
when the BRK was encountered .

The 6502 has eight instructions like BNE which branch as the result of a
test. These instructions actually test one of four of the bits in the process
status register. They are the carry bit (C), the zero bit (Z), the overflow bit
(V), and the negative bit (N) . These bits are set as a result of what happened
in the processor during a previous operation. For example, if the AND
operation produced zeros in all eight data bits , the zero bit in the P register
would be set to 1. If it did not produce all zeros, the Z bit in the P register
would go to 0. If DB7 is 1 as the result of an operation , theN bit in the P
register gets set to 1; if the operation produced a 0 in DB7 theN bit goes to
0. Each of the branch instructions tests one of these flag bits (Z,N ,C, V) for
a 0 or a 1. The effect which each machine instruction has on the P register
flags is shown by checks (j) in the right hand column of the 6502 instruction
list in Appendix I. Some instructions do not affect the P flags ; this is indicated
by a dash(-) .

An important point to note is that a scheme of relative addressing is used
by the 6502 CPU in executing branch instructions (and only branch instruc­
tions!). In typing the branch instruction for the switch circuit above into the
APPLE you typed BNE followed by the memory location ($9300) where the
instruction was to be found ifthe branch is taken . Look at the code generated
and note that in memory location $9305, the number $DO is stored which is
the op-code for BNE. In the following memory location the number $F9 is
stored in response to your instruction that the branch go to $9300 if the BNE
test is true . If the test is true the 6502 will take the value of the number stored
in the location following the branch op-code and add it to the current value
of the program counter if the branch is to be taken. Then execution resumes

6.10 Subroutines and use ofthe stack 79

at that calculated address . To demonstrate this, take the number stored in
$9306 and add it to the low byte of the location where the program counter
will be if the branch is not taken, ie, $07. You can do this with paper and
pencil or using a hexadecimal adding routine which is in the monitor. From
the MINIASSEMBLER type $07 + F9 CR. The result is $00, which,
together with the high byte of the program counter $93 , gives the address
$9300 which the CPU will use to find its new instruction if it has to take the
branch. The high byte of the offset is assumed to be $FF if the offset is
negative.

This scheme of relative addressing has the important consequence that
program codes which have branches are intrinsically relocatable in memory .
It has the drawback that branches can be taken which are no more than 128
memory locations earlier in the program and not more than 127 steps further
on since the largest negative eight-bit number $80 is -128 and the largest
positive eight-bit number $7F is 127. In practice this does not cause serious
restrictions for short programs.

6.10 Subroutines and use of the stack
Another program branching capability which every computer must

have is that of executing subroutines. A subroutine is a sequence of program
steps that can be used anywhere in a program by a jump to subroutine (JSR)
instruction.

To execute a subroutine, the computer stops fetching instruction op-codes
sequentially from memory, jumps (JSR) to the memory location indicated
and from there continues fetching instructions until a return from subroutine
(RTS) instruction is encountered. It then returns to the original program and
resumes fetching instructions in sequential progression where it left off when
the subroutine was called. This process is illustrated in Figure 6.10 .

In order for the computer to return to the correct place in the calling
program , the memory location of the next op-code after the JSR in the
calling program needs to be saved. When the instruction JSR is executed,
the 6502 stores the memory location of the next op-code after the JSR
instruction on the top of the stack. This operation is analogous to writing the
return address on a card and placing it on top of a pile. The last instruction
of every subroutine is RTS which means return from subroutine. This
instruction effectively takes the top card from the pile, reads the return
address, puts that location into the program counter and then throws the
card away .

The idea of using a stack (the pile of reminder cards) to store addresses ,
may seem like a tortuous way of doing things. It is, however, an invention
which was very important for the development of modern computers.

80

Fig. 6.10. Subroutine execution
sequence.

Apple architecture and assembly language

$9100 LDA #$01

1
$9203 JSR $9500

$9206 LDA $C400

1
$9253 BRK

$9500 LDX #$00

1
$9563 RTS

First op-code of main program;

program executes sequentially to

$9203 where JSR is found;

Program execution continues at
$9500.

Main program continues after

subroutine execution until BRK
which halts computer.

First op-code of subroutine;

subroutine executes sequentially

until RTS is found; then the

computer returns to the main

program at the instruction just after

the JSR.

Without something like a stack it is not possible to use ROM to store
subroutines. It is said that one of the most awkward things about using the
first successful minicomputer , (the DEC PDP8), was that it did not have a
stack. The stack is akin to the Reverse Polish Notation used by Hewlett
Packard calculators. The last item stored in the stack is the first to be
retrieved. In addition to storing the return address for the subroutine, the
stack is sometimes used (with care and understanding) to pass numbers from
a calling program to a subroutine.

As mentioned in Section 6.2 the memory locations of the stack on the 6502
are those memory locations on page 1 of memory , ie , those memory
locations with addresses between $0100 and $01FF. The stack pointer is a
16-bit register in the 6502 which contains the address of the top of the stack.
There, after completion of the subroutine, the CPU will find the memory
address to which it must return program control. The bookkeeping of the
stack is quite automatic in the CPU. From the programming point of view
the only thing which you must be sure to do , is to have an RTS instruction for
every JSR instruction .

Fig. 6.11. Machine instruction

execution times (from MOS

Technology Microcomputer

Programming Manual) . The

numbers are the machine cycles

needed to execute the

instruction .

6.11 Assembly language timing loops 81

Exercise 6. 10.1 JSR
Write a machine language program which starts at $9100 and waits
for you to push a switch which is wired to PB3, as shown in Figure
6.8. When the switch closes the machine language routine should
call (JSR) the monitor subroutine at address $FBE4 which produces
a 0 .1 s BEEP. CALL the program from a BASIC program which
then prints 'THE BELL RANG' on the CRT monitor after the
subroutine has been completed.

6.11 Assembly language timing loops
Frequently it is necessary to estimate the time required for a

program to run and to write simple time delay programs in machine language
to wait for some event. Time delay loops written in BASIC are not precise
because of the way in which the BASIC interpreter functions. Most pro­
grams written in machine language run with well-defined and with easily
calculable execution time . A copy of the 6502 instruction set with the
execution time in number of machine cycles of each instruction is shown in
Figure 6.11.

u v
~ !

X > '0
§

X > '0 § X > x > E X > x ~ E .. = = =· ~· .. ! ~ =· =' .. "' "' "' !' :!: .,
"' "' !!: !' :; ~ ..

~ ~
~ :; .. ~ ~

~ u u !
'i ~ ~ ~

,
·~ ~ E 'i ... c.. .. ~ ~ ~

,
~ E

0 0 0 .~ 0 ~ '3 0 ~ ~ ~ 0 ~ E 0 0 0 Q. ~ ii :.0 ~ E 0
~ e .. '0 '0

~ ~ • ~ .0 .0 ~ ~ u .0 .0 ~
a. .. .0 u ! ! E E ! ~ = ! ~ ~ < N N N < < a: < N N N < < a: <

ADC 2 3 4 4 4' 4' . 6 5' JSR 6
AND 2 3 4 4 4' 4' . 6 5' . LOA 2 3 4 4 4' 4' . 6 5' .
ASL 2 5 6 6 7 LOX 2 3 4 4 4' .
BCC 2'' . LOY 2 3 4 4 4'
BCS 2'' LSR 2 5 6 6 7
BEQ 2" . NOP 2
BIT ORA 2 3 4 4 4' 4' . 6 5' .
BMI 2" . PHA 3
BNE 2" . PHP 3
BPL 2" . PLA 4
BRK PLP 4
BVC 2''. ROL 2 5 6 6
BVS 2 ... ROR 2 5 6 6
CLC 2 RTI 6
CLD 2 RTS 6
CLI 2 SBC 2 3 4 4 4' 4' . 6 5' .
CLV 2 SEC 2
CMP 2 3 4 4 4' 4' . 6 s· . SED 2
CPX 2 3 4 SEI 2
CPY 2 3 4 STA 3 4 4 5 5 6 6
DEC 5 6 6 7 sTx• 3 4 4
DEX 2 STY•• 3 4 4
DEY 2 TAX 2
EOR 2 3 4 4 4' 4' . 6 5 TAY 2
INC 5 6 6 7 TSX 2
INX 2 TXA 2
INY 2 TXS 2
JMP 3 5 TVA 2

• Add one cycle if indexing across page boundary
• • Add one cycle if branch is taken, Add one additional if branching operation crosses page boundary

82

Fig. 6.12. Time delay program.

Fig. 6.13. Longer time delay
program.

Apple architecture and assembly language

Number of clock cycles

LDX #12
MORE DEX

2
2
3 BNE MORE

The execution time is five cycles for each circuit of the loop.
$12 = 18. times around loop so 18 . x 5 . = 90 J.LS delay .

Total time for program 90 + 2 J.LS = 92 J.LS.

To compute the time required for a program to run we simply note the
number of machine clock cycles required of each instruction and add them
up . A time delay program is given in Figure 6.12 together with a computation
of the number of clock cycles required for it to run . To get longer delays it is

easy to write programs with multiple nested loops or using multiple precision
addition. An example showing the use of double precision addition is given
in Figure 6.13.

Number of cycles Instruction

2 LDA #00 Initialize sum low and sum high
4 STA SL
4 STA SH

10

2 AGAIN C LC
2 LDA #01 Add 1. to SL and update SL
4 ADC SL
4 STA SL

2 LDA #00 Double precision add: # 00 and
4 ADC SH carry added to SH
4 STA SH

4 CMP TH Compare SH to TH , if not equal
3 2 BNE AGAIN add one more

29 or 28

4 LDA SL Compare low bytes, SL and TL
4 CMP TL
3 BNE AGAIN

11
10 J.LS for init

TH x 256 x 29 J.LS for main loop
TL x (28 + 11) J.LS for final loops

6.12 Indirect addressing 83

Exercise 6.11.1 Machine language timing loops
Write a program using triple precision addition to generate a time
delay of 5 s. After each 5 s interval , add one count to the LED
display connected to PBB. With a watch measure the time for the
contents of PBB to increment to check that your program is correct.

6.12 Indirect addressing
Although you will not have occasion to use indirect addressing in

this course it will be discussed briefly because it is often used in assembly
language programs.

Indirect addressing is an addressing mode which can be contrasted with
absolute addressing that you have already used. The instruction written JMP
$9500 (jump absolute) means jump to memory location $9500 and continue
program execution with the op-code found there. The indirect instruction
written as JMP ($9500) (jump $9500 indirect) instructs the CPU to look in
memory locations $9500 and $9501 to find the low and high parts of the
address where the next op-code is to be found and from which subsequent
program execution is to be continued. The jump indirect instruction is useful
for jumping to different parts of a program depending on previous program
steps. The previous steps may for instance, write a new address into $9500
and $9501. In general , writing parentheses around a memory address in an
assembly language program means ' the contents of' . With the exception of
the JMP indirect instruction, the indirect addressing modes of the 6502 are
limited to indirect addressing from memory locations lying between $0000
and $00FF.

7 Viscosity measurement

Fig. 7.1. Drag force of a fluid on
thin plates, F, = - A!L(dv,ldx).
For a 'Newtonian ' fluid, the
shear force· per unit area is
proportional to the shear in the
velocity, dvj dx. The viscosity !L
is the proportionality constant.

A solid body moving through a fluid has a force pushing on it which depends
on the type of fluid. You might imagine that it would be much harder swim
in honey than it is in water. The parameter which describes this difference is
the viscosity (F-L). The drag force also depends upon other parameters much
as the surface area of the body and the fluid density, as you will discover in
this chapter. The computer will be programmed to measure the speed of a
sphere falling through glycerine and to calculate the viscosity. The measure­
ments are made with photosensors and using machine language program­
ming. A short section at the end of the chapter describes the use of an
EPROM to record semipermanently a machine language program.

7.1 Force required to move a solid body through a fluid
In this section the physics of a sphere moving in a fluid will be

discussed . There are two distinct regimes ; if the sphere is moving slowly, the
dominant force resisting its motion is due to viscosity. For rapid movement,
the inertial resistance of the fluid due to its densi ty is the dominant factor.
The magnitude of the resistance and the functional dependence on sphere
size, velocity, fluid density and viscosity can be estimated in a rough way for
both cases. This gives insight into how the drag force behaves without getting
lost in the mathematics . Indeed , with turbulent phenomena exact computa­
tions have not been possible.

Viscous resistance of a fluid arises from shear in the velocity profile of
flow . If two flat plates have fluid between them , as shown in Figure 7.1, a
force is required to move the top one at a constant speed in re lation to the
bottom one . The force is proportional to the area of the plate and, (if the
fluid is characterized by a Newtonian viscosity coefficient) , to the relative
velocity and inverse distance between plates , ie , to the ve locity gradient
dvz/d.x.

/Plate of

I "'"A

Fig. 7.2. A sphere falling slowly
in a fluid, the fluid flow to move
fluid from front of sphere to rear
extends to about r away from
sphere. So, dv/dx = vi rand F=
47Tiuvwith 47T,-2 as the area of
sphere .

v

Fig. 7.3. A sphere falling with
velocity v and a turbulent Wake.
The fluid is accelerated to about
velocity v. The volume of fluid
displaced each second is 1rrlv,
the cross-sectional area A is 1rrl.

~--- --~
n1

~i
0\:
i J~:
/I I

1~,
,01 t:
leo···-.. I I .:·.· r . I

'

'-- ·: . . v.·~
~

Fluid motion to
make space for
the advancing
sphere. Fluid
accelerated to
about velocity v.

7.1 Force to move a solid through a liquid 85

Without doing elaborate computations this simple concept can be used to
estimate the viscous resistance of a falling sphere. The effective area of
velocity shear is more or less the area of the sphere, 47Tr2 (Figure 7.2). The
velocity perturbation resulting from moving the ball through the fluid
extends to a distance about equal to the radius of the sphere; thus, the
velocity gradient, dv) dx , which enters into the viscous drag relation is
approximately vir. Putting these two rough estimates together, an estimate
of the viscous drag Fv on the sphere is

Fv = 47Tr2J.LVIr = 47Tj.LTV (7.1.1)

where J.L is the viscosity of the fluid .
This problem is amenable to exact mathematical analysis; it was first done

by Stokes and the relation is known as Stokes' law for the viscous resistance
of a sphere moving in a fluid. His result t is

Fstokes = 67Tj.LTV (7.1.2)

Stokes' law is verified experimentally for cases when the sphere's motion is
sufficiently slow. The approximate approach used above gives important
insight into the physical origin of the Stokes' formula.

More rapid motion leads to a turbulent wake behind the sphere. Though
mathematical computation of the drag force in this regime has not been
done, relatively simple ideas give a good estimate of the force observed . To
move an object rapidly , the speed of the fluid in the path of motion is
accelerated from zero to the speed of the sphere and the fluid is pushed aside
and then forms a turbulent wake behind the sphere. The turbulence
eventually dissipates the kinetic energy of the moving fluid as heat and sound
energy without giving any kinetic energy back to the sphere . The drag force
on the sphere will be equal to the force required to push the fluid out of the
way.

An estimate of the mass of fluid moved per unit time is the mass of the
column of pushed aside fluid each second as the sphere falls . This is the
product of the cross-sectional area A of the object perpendicular to the
direction of motion, the velocity of motion v, and the density p of the fluid
(Figure 7.3). A maximum guess is that each element of this column is
accelerated to the velocity of the moving object by the presssure exerted on
the front face of the object.

Therefore the work done by the drag force on the sphere (force x
distance) is equal to the kinetic energy of the fluid (! x mass of fluid
moved x v2

).

(Fest) (v Lll) = HPr7Tr 2v Llt)v2

Thus
Fest = !prv2A (7.1.3)

is the estimated drag on the sphere where A is the cross-sectional area .

t See , for instance, Geodynamics: Applications of Continuum Mechanics to Geological
Problems, D. L. Turcotte & G. Schubert , Wiley, New York, 1982.

86 Viscosity measurement

The drag resistance of a blunt object in terms of an experimentally

determined drag coefficient cd is by definition

F drag = CoApv 212 (7 .1.4)

The combination pv 2!2 is called the kinetic pressure of a fluid. The experi­
mentally determined drag coefficient for a sphere moving rapidly through a
fluid is Cct = 0.5. As you can see , Equation (7.1.3) over estimates the drag
on a sphere by a factor of 2 . Drag coefficients for other shapes are given in

Figure 7.4 .
Combining the Stokes relation with the turbulent force gives the total drag

force on the falling object as

Frat = 67r!-LYV + Co m 2! pv 2/2 (7 .1.5)

Fig. 7.4. Experimental drag
coefficients (from p. 11.68 of
Mark's Standard Handbook for
Mechanical Engineers, ed. T.
Beaumeister, 8th edn, McGraw­
Hill, New York, 1978- used by
permission).

As Equation (7 .1.4) shows , the turbulent drag for a sphere is proportional

the square of the velocity; therefore , it is the dominant phenomenon at high
velocity whereas viscous drag is more important for a slowly moving sphere.

Drag Coefficients of Various Bodies

For bodies with sharp edges the drag coefficients are almost
independent oi the Reynolds number, for most of the resis­
tance is due to the ciifference in pressure on the front and rear
surfaces. Table~ gi,·es Co = D!qS, where Sis the maximum
cross section perpendicular to the wind.

For rounded bodies such as spheres, CJiinders , anJ ellipsoids th!"
drag coefficient depends markedly upon the Reynolds num­
ber, the surface roughness, and the degree of ruruuknce- in the
air stream .. \ sphere and a cylinder, for instance, experience a
sudden reduction in Co as the Reynolds numuer e:;ceeds a
certain critical ,·ahte. The reason is thH at low speeds (small

Re) the Anw in the boundary layer adjacent to the body is
laminlf 31ld the Aow separates at about 83° from the fror.t (Fig .
20) . . \ wide wake thus gi' es a large drag . . -\t higher speeds
(large Re) the boundary layer becomes turbulent, gets addi­
tional energy from the outside Anw, and does not separate on

Laminar boundary loy~r Turbulent boundary layer
(early separation- (later sepa rat ion-

wide woke) norro• woke)
Fig. 20 Boundary 1>,\cr of a sphere .

the front side of the sphere. The drag coefficient is reduced
from about 0.47 to about 0.08 at a critical Revnolds number of
about ~00,000 in free air. Turbulence in the ~ir stream reduces
the nlue of the critical Reynolds numher (Fig. 21). The
Reynolds number at which the sphere drag CD= 0. 3 is taken
as a criterion of the amount of turbulence in the air stream of
wind tunnels .

Table 4. Drag Coefficients

Object I Propor·
tiona

I
4

Reclar.gular)Jiate, a 8
; = 12.5

oideo a and b 25
50
=

I
Two dieke , spaced a l I . 5

dist&nce l apart d- 2
3

I
ylinder l 2

4
c

d 7

c ircular disk

H cm.ispherical cup.
open back

H emispherical cup,
opec front,
pa.rachute

c one, cloeed ba.se

Attitude Co

·--
L 16
L 17

l_
1.23
1.34 v lbLJ 1.57 - 1.76

Tl-a--1 2.00

0.93

y I I G)
0. 78
1.04
1.52

-HI-

_y_D G)
0.91
0.8S
0.87

--j\ t- 0.99

v I CD - 1.11

v (] CD 0.41 -
v D G) - L3S

-'L-<J CD
"' = 60". o.s

' "' = 30". 0 . 3
'

Fig. 7.5. Drag force vs. Reynolds
number (from Turcotte &
Schubert, Geodynamics:
Application of Continuum
Physics to Geological Problems,
Wiley & Sons, New York, 1982).

7.1 Force to move a solid through a liquid 87

The ratio of the turbulent drag force for a sphere to the viscous drag is

F turb = ConT2 pv2 _1_ = Co p(2r)v = Co Re (7 .1.6)
Fvis 2 61TJUV 24 fL 24

Re = 1r2rv
fL

The parameter Re (dimensionless) is called the Reynolds number ; it is used
as a measure of the turbulence of the fluid flow . The length (2r) used in
defining Re for a given body is usually taken as the length of the chord it'i the
direction of motion . Thus, for a sphere it is the diameter.

Setting Equation (7 .1.6) equal to 1, shows that the change from smooth to
turbulent flow occurs at a Reynolds number of about 48 (with C0 = 0.5) .
Figure 7.5 is a graph of the drag force vs Reynolds number for the range of
Reynolds numbers from 10- 1 to 106 and shows that the transition occurs over
a wide range of Reynolds numbers . The smooth flow regime is generally
below a Reynolds number of 1 and the turbulent regime above 103.

Exercise 7 .1.1 Stokes' law
(a) For a 2 mm diameter bubble of air rising through glycerine, what is

the predicted terminal velocity assuming Stokes ' flow? Is this what
you observe in the laboratory? What is the Reynolds number? Does
it agree with the assumption of Stokes' flow?

(b) By using a propeller-like flagella an E. coli bacterium 1 fLm in
diameter can swim about 0 .03 mm/s in water. What is the Reynolds
number? What is the drag force on the bacterium? If the bacterium
can obtain 3 x 10- 12 erg per molecule of glucose and can use 10% of

that energy for propulsion , how many molecules per second must it
metabolize to swim continuously?

Material Viscosity (kg/ms) Density (g/cm3
)

glycerine 2.33 (at. 288 K) 1.24
mr 1. 78 x w-s 1.23 x w-3

water 1.0 X 10- 3 1.0

10

Stoke's law
limit

Observed
drag

/ Turbulent
dragC0 =i-

104

Reynold's number (2rv p/JJ.)

88 Viscosity measurement

A sphere starting from rest in a liquid will be acted upon by gravity Fg and
buoyancy Fb forces. Once it begins to move, the drag force Fd will act to slow
its acceleration. By Newton's laws

Fg - Fb - Fd = rna (7.1.7)

Fg and Fb are constant regardless of the speed of the ball but Fd is dependent
on the speed. If Stokes' flow is assumed, Equation (7 .1.7) becomes a
differential equation for the velocity of the sphere

m(dv/dt) + (67TrfL)V- (Fg- Fb) = 0 (7.1.8)

Exercise 7 .1.2 Approach to terminal velocity
(a) Assume the solution to Equation (7.1.8) is of the form

v = a(1 - e11
h). Plug into Equation (7.1.8) and find a and b.

(b) Plot the velocity vs. time for a glass sphere of 0.60 em and 0.26 g
starting from rest in glycerine. What is the decay time b of the
acclerated motion?

(c) How far will the sphere fall before attaining 0.95 of the final terminal
velocity?

7.2 The experimental apparatus
To measure the viscosity of a fluid the apparatus like that shown in

Figure 7.6 will be used. It consists of a column of glycerine into which spheres
of various sizes and compositions can be dropped and observed to fall under
the influence of gravity. The velocity of the falling sphere can be measured
by noting the time at which it moves through each of the four light beams.
The essence of the following experimental work is to write programs to
measure the required times and to graph the resulting data.

Each of the four light beams which traverse the glycerine column have
several elements . LED light source activates a cadmium sulphide photo­
resistor whose resistance changes when light shines upon it. To sense this
resistance change and to convert it into a digital signal suitable for computer
processing , a voltage comparator circuit is used.

An LED is a small solid state light bulb which requires about 10 rnA of
current and 1.5 V to operate. A higher voltage source is generally used
together with a current limiting resistor in series as shown in Figure 7. 7. An
LED passes current in only one direction so it is important that it be
connected with the correct polarity.

A cadmium sulfide photo-resistor, is used in many cameras to compute the
exposure time. Like a thermistor , it is a passive device whose resistance
changes . The cadmium sulfide sensor being shown has a resistance of over 20
MD in the dark and a resistance in the hundreds of ohms in bright sunlight;
so its resistance changes by over 100,000 to 1. Although it is quite sensitive

Fig. 7.6. Viscometer apparatus.

Fig. 7.7. Optical position sensor
circuit.

7.2 The experimental apparatus

+5 v

LED
source

LED light
source with

----1-- Cadmium sulfide photo-resistor
in a tube with 3 mm high and
I 0 mm wide slit

Reset push button

0.001 ~ F

Schmidt voltage
co mparator circuit

LED
driver
trans istor

LED
ind ica tor

.__ __ .,. To 65~~
input port

89

90 Viscosity measurement

to light , a cadmium sulfide cell is a rather slow device; it takes about 30 ms to
fully respond to a sudden change in light level.

To translate the resistance change which the light beam induces in the
photo-resistor to a digital signal, a voltage comparator is used (Figure 7.7) .
The comparator will produce an output of either 5 V or 0 V depending upon
whether the input voltage to the + input of the device is greater than or less
than the voltage to the - input. Each LM339 has four such comparators in
a single 8 x 15 mm integrated circuit chip. The comparator circuit in Figure
7. 7 has a little bit of positive feedback incorporated to give latching action;
it takes more voltage to turn it on and less voltage to turn it off than just the
minute voltage change required to make the comparator switch. This
hysteresis is similar to that used in the temperature controller of Chapter 2.
The circuit is called a Schmidt trigger and is used frequently with mechanical
switches to eliminate chattering.

Exercise 7.2.1 Cadmium sulfide eel resistance and
voltage changes

To get a feeling of the voltage changes being registered by the
cadmium sulfide light detectors, attach the wires and turn on the 5
volt power to the fluid column apparatus. Fill the column with
glycerine and wait until most of the bubbles are gone. The glycerine
column needs to be in place for the sensors to focus correctly . Level
the apparatus with the screws on the base . Attach an oscilloscope
probe to the test point provided on the circuit board and put the
oscilloscope in the free running mode with a sensitivity of 1 V/div.
This point is the hot (not ground) side of the cadmium sulfide cell
(point A, Figure 7.7). The 50 kf! potentiometer which is in series
with the photoresistor should be set so that the voltage at A is about
one half the supply voltage , ie , 2.5 V . Break the light beam with a
small piece of paper and note the voltage change which occurs .
Move the paper across the light beam as fast as you can to get an idea
of the minimum response time of the cadmium sulfide cell. Moving
the paper vertically will probably give a faster response since the
entry slit on the front of the tube is about 3 mm high and about
10 mm wide.

To set the potentiometer level for the experiment, turn it so that
LED goes off, then the other way until it just goes on. Test the
setting by dropping a medium sized ball.

7.3 The need for using machine language

Even though the data taking rate in the experiment under consider­
ation is modest by most standards, BASIC is too slow to do the job properly .

7.3 The need for using machine language 91

In addition, testing the value of binary bits associated with the comparator
outputs can be done more simply and cleanly in machine language where
binary is the natural number system.

To show the speed limitation imposed by BASIC on this experiment , we
need only estimate the time scale associated with the apparatus . To make a
rough estimate, assume that the maximum velocity of fall to be reckoned
with is about 0.3 m/s; this corresponds to the ball falling from the top of the
column to the bottom (about 0.6 m) in about 2 s. The light beams have a
width of about 3 mm ; thus the computer should be able to record an instant
of timet with a resolution oft = distance/velocity = 0.003/0.3 = 0.01 s. In
this time the computer needs to be able at least to decide that the light beam
has been intersected and to record the time of intersection .

Exercise 7.3.1 Speed of a sphere in air
Estimate the time resolution needed to measure with the present
apparatus described above , the speed of a sphere falling through air.

For the computer to decide that the light beam has been intersected , the
data in an input port must be read and tested. This can be done in BASIC
with a WAIT instruction . To estimate the execution time of the WAIT
instruction Program 7.3.1 in Figure 7.8 can be used . Square waves are
generated on DB7 and fed into DB2 as a simulated signal. These are tested
with the WAIT instruction . After the WAIT instruction finds DB2 HI it puts
out a pulse on DBO which is then viewed simultaneously on an oscilloscope
with the square wave going into DB2. Thus the execution time can be
measured directly. The time at which theW AIT instruction found a 1 in DB2
is recorded by line 65. To go through the WAIT and time recording
instructions took 9 ms. Since we require a resolution of 10 ms , the WAIT
instruction would be only marginally fast enough for our purposes .

Though testing a bit in APPLES OFT can be done using the WAIT
instruction, it has the annoying features that only one state of the bit can be
tested. If you want to determine if a bit is HI or LO , Program 7.3.2 in Figure
7. 9 can be used . If a number xis written in binary form then dividing it by 2N
has the effect of simply moving the digits N places to the right; if

x = %00ab edOO

then !xis

h = %000a bedO

The INT(X) instruction sets all of the digits to the right of 2° place equal to
zero . Thus line 70 of Program 7.3.2 with N + 1 = 3 does the following
operation on the number X = %abed efgh:

%abed efgh- %abed eOOO = %0000 Ofgh

92

Fig. 7.8. The BASIC WAIT
instruction program example.

Fig. 7.9. A BASIC program to
determine the status ofthe Mh
bit.

Viscosity measurement

]r o~~~~:;~pe
6522
port
B 2

___ Oscilloscope
Ch 2

-9 ms

Connect ions Oscilloscope face

5 REM PROGRAM 7.3.1
10 BA = 50176

1
12 C1 = 256
14 C2 BA + 9

Constants =
16 C3 = BA + 8
20 POKE BA + 2,129 Set up DDRB out DB7 ,DBO set up

30 POKE BA + 11,224 ACR $CO free run load T1
40 POKE BA + 4,246
50 POKE BA + 5,64
60 WAIT 8,4 W ait for DB2 GO HI and record ti me

65 T = C1 * PEEK (C2) + PEEK
(C3)

70 POKE BA,1
80 POKE BA,O Put out pulse on DBO

90 GOTO 60

Time fo r wait loop and T measure ment ""' 9 ms

5 REM PROGRAM 7.3.2
10 INPUT "X=";X
40 INPUT "N=";N
50 F = rN - 1
60 g = 2~ (N + 1)

70 IF X - G * !NT (X I G) > F THEN
GOTO 180

75 PRINT "N TH PLACE IS 0"
76 END
180 PRINT "N TH PLACE IS 1"
190 END

Fig. 7.10. Flow chart for Exercise
7.4.1 .

Assembly language
program to start

clock

7.4 Machine language program 93

This technique for testing bits is useful in some situations but is even slower
than a WAIT instruction. We will use machine language to test the sensor

bits .

7.4 Machine language program to record fall of a sphere
through glycerine
A common technique for controlling experimental apparatus is to

use a main program written in BASIC or other high level language for doing
the mathematical analysis of data, displaying the experimental results , and
plotting data, in conjunction with subroutines written in assembly language
which do the bit manipulation and other tasks associated with gathering the
data .

Exercise 7.4.1 Light beam sensing and timing
(a) Connect the fluid column outputs to the PBO, PBl, PB2 and PB3

inputs to the 6522 and write an assembly language program to start
the clock decrementing the T2 counting registers at 1 ms intervals.
Call the program from BASIC and write a few instructions which
read the clock registers to check that the clock is functioning
properly .

(b) Expand your assembly language program so that in addition to
starting the clock , it will wait for the first light beam to be cut and
store the time that this occurs . Test with a piece of paper interrupt­
ing the beam.

(c) Write a BASIC program which calls the machine language pro­
gram and prints out the recorded time. (See Figure 7.10 for a flow
chart.)

For debugging assembly language programs you can use the trace com­
mand which single steps through the program. Another useful technique is
to substitute a BRK instruction for an instruction op-code and then run the
program to see whether execution gets to the place in question. The op-code
for BRK is 00. When execution is halted by a BRK instruction, the memory
location just after the BRK is displayed together with the values in the 6502
registers. By temporarily inserting BRK instructions in different locations,
the difficulty can usually be found fairly quickly. It is rare to write an
assembly language subroutine (or any program for that matter) which does
not require debugging . With this in mind you may wish to leave spaces in the
program (by inserting the 'No Operation' instruction, NOP) at places where
you may want to put in BRK to debug .

94

Fig. 7.11. BASIC program
example for automatic
adjustment of graphing scales.

Viscosity measurement

7.5 Graphing scales
Another problem which this experiment presents is that of choosing

scales to plot the experimental data gathered. Before making a set of
measurements, the best choice of graph scale is not apparent. It is desirable
to have the computer choose an appropriate scale for the axis on the graph
after the data has been obtained. The length of the scale axes should be such
that the data points use as much of the screen as possible . This will make
good use of the limited resolution which the APPLE graphics screen offers.
It can be done by finding the maximum value to be plotted and multiplying
by 1.1 so that there is 10% free space to the right of the maximum data point.
Thus , the second parameter in the &SCALE instruction will be set to

1.1 *MAX VALUE OF DATA.
To work out where to put the tick marks is slightly more subtle. The graph

should have tick marks at even values. For example the oscilloscope uses a
1, 2, 5 spacing for its scales. Program 7.5.1 of Figure 7.11 chooses an
appropriate tick mark interval from ... , 0.001, 0.002, 0.005, 0.01, ... , 1, 2,
5, ... etc. Having a total of 5-10 tick marks on the graph seems appropriate.

The program starts with the assumption that the points range from t = 0 to
t = TM. It assumes that the values of the ordinate of the graph are known at
the outset, ie, it is to go from -10 to 40, and that tick marks on the ordinate
are to be placed every 10 units.

3000
3005
3010
3020
3030

3040
3050
3060

REM SUBROUTINE TO SET SCALE
REM PROGRAM 7.5.1
REM INPUT TM THE MAX VALUE OF T
XM = 1.1 * TM
LM = 0.43429 * LOG (XM)

IM = INT (LM)
MM = LM - IM
IF MM < 0.301 THEN XT = 0.2 *
10 ~ IM: GO TO 3090

3070 IF MM < 0.602 THEN XT = 0.5 *
10 ~ IM: GO TO 3090

3080
3090
3100
3110
3120
3130
3140

XT = 1 * 10 ~ IM
&SCALE, - XT,XM, - 10,40
LX$ = "TIME"
LY$ = "Z"
& LABELAXES,XT,10
& GR ID,- XT,- 10,XT,10
RETURN

Max va lue for XM

Take logarithm base

10 of XM

Get mantissa of the

logarithm

If the mantissa

0-0.301 tick marks

Put left edge of scale

at- XT; tick marks

will go at intervals of

XT from left edge of

graph

Fig. 7.12. Assembly language
arithmetic: (a) double precision
addition (b) double precision
subtraction.

7.6 Double precision addition and subtraction 95

7.6 Double precision addition and subtraction

Exercise 7.6.1 Double precision addition
The Program 7 .6.1 in Figure 7.12 does a double precision addition
between two numbers and stores the result. If xL and xH are the low
and high parts of x and the same is true of y and z, where do you put
x andy before starting and where do you look for z = x + y? Show
with examples and explanation that the program steps do a correct
double precision addition .

Program 7 .6.2 of Figure 7.12 shows how a double precision subtraction is
done in assembly language . The SBC instruction actually uses the adder
inside the microprocessor to do a subtraction. This is done using the
following observations: first, subtracting a binary number x from the binary
number % 1111 1111 gives the result x (x complement) which is just x with
all its zeros changed to ones and ones changed to zeros. For example:

1111 1111 $FF
-1011 0011 -$B3

0100 1100 $4C

(a) Program 7.6.1

9300 18 CLC
9301 AD 00 94 LDA $9400
9304 6D 02 94 ADC $9402
9307 8D 04 94 STA $9404
930A AD 01 94 LDA $9401
930D 6D 03 94 ADC $9403
9310 8D 05 94 STA $9405

(b) Program 7.6.2

9320 38 SEC
9321- AD 00 94 LDA $9400
9324- ED 02 94 sse $9402
9327- 8D 04 94 STA $9404
932A- AD 01 94 LDA $9401
932D- ED 03 94 sse $9403
9330- 8D 05 94 STA $9405

96 Viscosity measurement

Secondly, adding $01 to $FF gives $00 (try it). Therefore:

y - X = y + $01 + $ FF - X = y + $01 + X
y-x=y+x+c

where cis the carry.

} (7.6.1)

So. when the 6502 executes an SBC instruction, it complements the
subtrahend, then adds that result to the minuend and the carry ($01). That
is why the carry is set before doing an SBC.

Exercise 7 .6.2 Quadruple precision subtraction
(a) Show that the Program 7.6.2 in Figure 7.12 does double precision

subtraction as is claimed.
(b) Write and test a program which does quadruple precision subtrac­

tion of the number x stored in $9400, $940 I, $9402, $9403 ($9403
contains the most significant part of x, $9400 the least) from the
number y stored in $9404 ... $9407 and place the result z in $9408
... $940B. You may wish to use indexed addressing but be careful!

CMP, CPX and CPY change the carry bit.

7.7 The viscometer

Exercise 7. 7.1 The viscometer and the viscosity
of glycerine

(a) Write and test a program outlined by the flow chart in Figure 7.13

which waits for the subsequent light beams to be cut, measures the

time interval from the cutting of the first beam and then plots the
data on a graph. So that your assembly language program is suitable
for putting onto the EPROM in the next section be sure it requires
less than 256 bytes and contains no JMP or JSR instructions . The
ASL instruction is quite useful for shifting the mask in this program.
Store your program as a binary file on a disk. The BASIC program
should call the assembly program, then plot the position vs. time for
the data obtained.

Use your position vs. time plots to determine the terminal
velocity and calculate the viscosity and Reynolds number for several
balls of different diameters and densities. It is not necessary to do a
least squares fit for each plot. Have the computer use two of the
measured times to calculate the velocity and draw a line. You can
check visually to make sure the other points fall along the line. If you
input the diameter and mass of the ball, the computer can then
calculate the viscosity (using Equation (7 .1.5)) and Reynolds
number (Equation (7 .1 .6)) and print them on the graph, too. Make

7.7 The viscometer 97

Fig. 7.13. Flow chart for Exercise 7.7.1, the viscometer.

Set up ports , set up timer T 1, set up T2 counters and start counting

Wait for light beam 0 to be cut

Read T2L, T2H and store data T0

Wait for light beam X to be cu t

Read T2L, T2H and store data in TL,X and TH,X

Subtract TL,X and TH,X from T0
to get elapsed time and store in TL,X and TH,X

No

98 Viscosity measurement

Table 7.1 Typical diameter and mass of spheres

Diameter Mass Material
(em) (g)

0.60 0.26 glass
l.31 2.7 ± 0.1 glass
1.575 5.2 ± 0. 1 glass
0.09 4. 1 lead
1.17 9.22 lead
1.45 17.8 lead
0.80 2.02 steel

several graphs with balls which are available to you . Some useful
sizes are shown in Table 7 .1.

(b) Compare your dete rminations of the viscosity with the value given
in a reference book. Note that temperature and water content have
a large effect on the viscosity of glycerine. (Exercises 7 .7.3 and

7.7.4)

(c) Using the data for several balls , make a plot of the drag force on the
ball (which equals the gravity minus buoyancy forces) vs. its
terminal velocity times its radius (vr). Why is this plot significant?
Can the transition to turbulence be seen?

(d) Will the timing part of your program work for a ball dropping in air
(no glycerine) ?

(e) Try replacing the glycerine in the column with water and repeating
some of the measurements. Lead balls work the best in this case.
Since the flow will be well into the turbulent regime (Re ~ 400), the
viscosity cannot be accurately determined (why?). However, the

drag coefficient Cc~ can be plotted vs . Re by assuming a value for the
viscosity of water (!1- = 0.010 poise at 20 °C) .

One experimental problem with this apparatus is that with larger diameter
balls , the walls of the column interface with the flow and affect the motion of
the ball. The viscosity value can be corrected with the following empirical
formula (Dinsdale & Moore , 'Viscosity and its Measurement', Reinhold
Publishing , New York , 1962):

!1- truc = /1-mcasurcd [1 - 2.104(r/R) + 2.09(r/R)·'- 0.9S(r/R) 3
]

where R is the radius of the column and r the radius of the ball.

Exercise 7.7.2 The wall effect
Correct the viscosity values obtained in Exercise 7. 7.1 to account
for the wall effect.

7.7 The viscometer 99

The temperature and water content of glycerine affects its viscosity
grea tly. The water content is particularly hard to control since glycerine
abso rbs water vapor from the air when it stands uncovered.

Exercise 7.7.3 Temperature variation ofthe viscosity
of glycerine
The data shown in Table 7.2 taken from the Handbook of Chemistry
and Physics and the American JnstitUie of Physics Handbook shows
the temperature dependence of the viscosity of glycerine. Make a
plot of viscosity vs. temperature . Suspecting an exponential depen­
dence , now plot the natural logarithm of the viscosity vs. tempera­
ture and find the parameters and the model eq uation which give the
best fit.

Table 7.2

Temperature oc Viscosity Pas (MKS unit)

0
6

10
15
20
25
30

12.1
6.26
3.95
2.33
1.49
0.954
0.625

Exercise 7.7.4 The viscosity of aqueous solutions of
glycerine
The data shown in Table 7.3 fro m the Handbook of Chemistry and
Physics (Chemical Rubber Co., 52nd Edition , page 0191) gives the
relative viscosity of aqueous solutions of glycerol by percentage
weight of glycerol.

(a) Plot these data to see the general behavior. Try both linear and log
plots.

(b) Try fitting these data with the mixture fo rmul a:

~=~+1-P
f1- fl- I J.i.-2

where P is the concentration of component one and 11- 1 and 11-2 are
the viscosities (11- 1 = glycerine, 11-2 = water).

(c) Try fitting these data with the Arrhemis formula (Dunstan & Thole ,
The Viscosity of Liquids, Longmans Green and Co., London, 1914).

f1- = 11-': fl- i- P

100 Viscosity measurement

Table 7.3

% glycerol by weight

1
10
20
30
40
50
60
70
80
88
92
96
98

Relative viscosity

(Viscosity/viscosity of wate r)

1.02
1.29
1.73
2.45
3.65
5.92

10.66
23.00
59 .78

147.20
383.70
778.90

1177.00

(d) Try fitting a simple exponential to the data above 80% con­
centration.

7.8 Using an EPROM
Erasable Programmable Read Only Memory (EPROM) is a cross

between ROM (which can ' t be reprogrammed) and RAM (which forgets
everything when the power is turned off) . Like a ROM , an EPROM requires
special equipment to write the data into its memory. It will not forget the
data when the power is turned off; but unlike ROM, it can be erased by
shining ultraviolet light through a quartz window in the top of the chip . Thus,
programs can be developed by erasing and reprogramming improved ver­
sions on a single EPROM. In building experimental apparatus it is often
convenient and economical to have a simple one board computer dedicated
to doing a single task with a ROM or EPROM to store its program .

Exercise 7.8.1 Blasting and using an EPROM
Using a computer which has an EPROM programmer , blast an
EPROM with the program you wrote above . If you are using the
J. Bell programmer the APPLESOFT program EPROM.
BLASTER can be used . Read through these instructions before
you begin. Take your disk with the BASIC and assembly language
programs from Exercise 7.7 .1 to an APPLE computer set up with
the EPROM programmer and RUN EPROM. BLASTER (a copy
of the program listing for this program is in Appendix J) . Then
follow the instructions to enter your Exercise 6. 7.1 machine
language program into the EPROM from your disk . When the

7.8 Using an EPROM 101

program is done, release the lever and remove the chip from the
holder. Return with the programmed EPROM and an EPROM
card to your APPLE.

WARNING!!!
Before placing the EPROM into your computer, turn the computer
off!

After being sure the computer power is off, pop the cover off the
APPLE computer, place the EPROM in the holder in slot 7, being
careful that the pin orientation is correct; gently lock it with the
lever. From BASIC, the program in the EPROM will now be called
at address $C700 . Modify your Exercise 7.7.1 BASIC program to
call the machine language program in the EPROM. Repeat the tests
with the same type of balls to demonstrate that you can reproduce
your Exercise 7. 7.1 graphs using the EPROM chip and that the data
is consistent. When you have finished with this exercise please turn
off the computer, remove the EPROM you used and place it in the
place designated for blasted EPROMs.

8 Interrupts

Fig. 8.1. The process status
register. If a BRK instruction is
executed, a forced interrupt is
done and the B bit is set to 1 (this
forced interrupt is not masked,
ie it is not inhibited when the
interrupt disable bit is set to 1).
Sett ing the D bit to 1 (SED
instruction) makes the 6502 do
binary coded decimal addition
(ADC) and subtraction (SBC).
IRQ is recognized only if I bit is 0.
After IRQ is accepted I bit is
automatically set to 1.

Interrupts are an important capability of modern computers . They allow the

processing of several independent tasks by the CPU. On large computers

they allow multiuser and time shari ng activities. On microprocessors they
allow the running of a main program while periodically taking data or
sending data to a slow device like a printer. Also computer start up, DOS,
reset and BREAK instructions make use of the interrupt function.

In the discussion which follows, we will first trace the steps taken by the

CPU when it receives an Interrupt Request (IRQ) from other parts of the

APPLE and then look into the ways we can cause interrupts to be generated
and serviced.

8.1 Interrupts and the CPU

The interrupt sequence is similar to a jump to a subroutine except

that it occurs when signalled by wire leading to the CPU (IRQ) line whereas
the subroutine jump is a normal executable statement (JSR) . When an
interrupt signal is present on the IRQ and the interrupt disable bit (I) of the
process status register (see Figure 8.1) is 0, the CPU begins processing the
interrupt. The interrupt disable bit is used to prevent the CPU from

beginning to process the same interrupt again before it is completed the first

time. Without it the computer would go into a continuous regression . The I
bit is set equal to 1 duri ng an interrupt sequence and further interrupts are
ignored until this I bit is returned to zero. This can be done with the CLI

lNl V l I B I D I I I z I c I

~
Processor status register

Carry

Zero result

Interrupt disable

Decimal mode

Break command

Expansion

Overflow

Negative result

Fig. 8.2. Flow chart for normal
generated interrupts.

8.1 Interrupts and the CPU 103

instruction but is done automatically at the return from the interrupt service
routine.

If the I bit of the process status register is 0 the CPU recognizes an IRQ
signal and, after completing the machine language instruction currently in
process, stores the program counter (P) and process status register (S) (with
the I bit set to 0) on the stack. It is remarkable but necessarily true that if
these registers and the A, X, Y registers are restored to their values just
before the interrupt , the executing program will continue exactly where it
left off as if the interrupt had not occurred. After saving the P and S registers,
the CPU then sets the I bit of the process status register to 1 to prevent
further interrupts and goes to the top of memory $FFFE.FFFF to find the
location of its next instruction (see Figures 8.2 and 8.3).

At Rom addresses $FFFE.FFFF the CPU finds the address $FA40 and
begins executing the program at that address. The first instruction (ST A $45)
saves the accumulator in memory location $45 for later restoration. The next
instructions at $F A42. F A47 pull the old value of the process status register

If interrupt inhibit bit in process status
register is not set, IRQ is accepted.

Processor jumps indirect to $FFFE, ie, it looks
at $FFFE and $FFFF for address of next op-<:ode,

address $F A40 is stored in APPLE ROM

NB all locations
except $03FE and
$03FF are in ROM,
APPLE uses a JMP
instruction through

this location so
that a user can

intercept the ISR

Program routine in
addresses $F A40 - $F A47

decides if IRQ came from a BRK
instruction by examining the

B bit in P register

Jump indirect to $03FE;
when machine is booted

$FF65 is stored in $03FE
and $03FF. If DOS has
initiated an IRQ it ex­

pects the CPU to look in
$FF65 for an op-code to

process its IRQ

Routine to pro­
cess reaction

to a BRK starts
at $FA4C

104

Fig. 8.3. Unmodified Machine
Generated Interrupt Service
Routine.

Interrupts

from the stack and check to see if the interrupt came from a BRK instruction .
If it did , the CPU is directed to $FA4C to service the BRK interrupt where
the CPU registers are displayed on the screen and the computer halts the
program. If the BRK bit was not set, the CPU would execute JMP ($03FE)
which is an indirect jump to the memory address stored in $03FE.03FF.
Under normal operation the machine would find the address $FF65 there
and proceed to further interrupt processing by the APPLE monitor pro­
gram. This is the APPLE Interrupt Service Routine (ISR) .

At the end of servicing an interrupt, the value stored at $45 is returned to
the accumulator followed by a return from interrupt instruction (RTI).
This instruction pulls the old value of the process status register (with the I
bit set to 0) and program counter from the stack and restores them in their
appropriate registers. The interrupted program then continues from where
it left off.

Note that the X andY registers are not automatically saved by the normal
interrupt sequence . If they are used during the servicing of the interrupt the
original values must be saved at the start and restored before returning . Also
notice that the indirect addressing JMP at $F A49 using addresses at

FFFE- 40 FA After placing the process

status register and program

counter on the stack and

setting the B bit to 1, CPU

goes here to start normal

machine ISR.
FA40- 85 45 STA $45 Accumulator saved at $45.
FA42- 68 PLA
FA43- 48 PHA
FA44- OA ASL
FA45- OA ASL Break bit of old PSR checked.

FA46- OA ASL
FA47- 30 03 BMI $FA4C Branch to break I SR.
FA49- 6C FE 03 JMP ($03FE) Jump indirect to ($03FE)
FA4C Routine continues.

FF65 08 CLD Entry point for continued

FF66- 20 3A FF JSR $FF3A service of normal machine
FF69- A9 AA LDA #$AA interrupts.
FF6B- 85 33 STA $33
FF6D Routine continues.

03FE- 65 FF Address loaded for normal

machine interrupts .

8.2 User controlled interupt 105

$03FE.03FF is the only part of the interrupt sequence that causes the CPU
to look in the RAM. The other instructions are all in the ROM and cannot
be modified by the user. This short trip outside the ROM is what allows the
user to enter the interrupt process .

8.2 User controlled interrupt
Your APPLE is equipped with a 6522 VIA which has the capability

of generating IRQs by means of its Interrupt Enable Register (IER) (see
Appendix E, Figure 4). User controlled interrupts involve programming the
IER and intercepting the ISR at $03FE.

The programming of the IER is indicated in Appendix E , Figures 29 and
30. Six events can generate IRQs. We will be concerned with interrupts
produced by either the T1 counter or T2 counter reaching zero. The
programming of the IER is a two step process . First the bit(s) for the function
not being used must be disabled . This is accomplished by placing a zero in bit
7 to indicate a disable action followed by ones in bits to be disabled and a zero
in bits not to be disabled . Then enabling is accomplished by placing a one in
bit 7 followed by ones in bits to be enabled and zeros in bits not to be enabled .
For example to set up T1 for interrupts first %00111111 is sent to the IER
followed by %1100 0000 sent to the same location. After programming the
IER the I bit of the process status register is set equal to zero with a CLI
instruction . This signals the computer to accept interrupts.

Now if the address of your own interrupt program (ISR) is put into
$03FE.03FF, all non-BRK generated interrupts will be directed to it. Some
of these inte rrupts (those not generated by the VIA) still need to be sent to
$FF65. So in your ISR there must be a check to see if the non-BRK
generated interrupt was caused by the 6522 VIA or some normal machine
interrupt. This check is performed by reading the Interrupt Flag Register
(IFR) of the 6522 (see Appendix E, Figure 29).

Bit 7 of the IFR is set any time the VIA produces an IRQ. The other bits
are set by the conditions indicated . For example, if T1 generated the
interrupt, bit 6 and bit 7 are set. Both bits are cleared by reading the low byte
of the T1 counter (TlC.L) or by writing the high byte (TIC. H) .

The user controlled interrupt process is now complete . Two programs are
necessary . The Interrupt Initialization Routine (IIR) redirects the interrupt
process by inserting the memory location of the ISR at $03FE. The IER is
programmed . The I bit of the process status register is set to zero and the IFR
cleared . The interrupt initialization routine ends with an RTS instruction
and is called or run only once to establish the user controlled interrupt
conditions.

The second program is a user ISR which will be run on every non-BRK
generated interrupt. This ISR begins at the memory location put into $03FE.
The first thing that must happen in the ISR is a check to see if the interrupt
was generated by the 6522 VIA . This is done by reading the IFR. If the

106 Interrupts

interrupt was not generated by the 6522 then the CPU is sent back to $FF65
in the ROM. If it was generated by the 6522 then the IFR is cleared and the
rest of your ISR executed. At the end of this ISR the old value of the
accumulator is retrieved from $45 and the X and Y registers restored if they
were used. The ISR is completed with a RTI instruction.

8.3 An ISR
To illustrate the use of an IRQ, a program which continuously

displays the elapsed time on the CRT monitor screen in the upper left hand
corner, without disturbing the normal APPLE operation, will be used as an
example. The procedure uses the Tl timer in the 6522 VIA to generate a
continuous stream of interrupts, one every 11100 s. Each time the CPU is
interrupted the ISR increments a three-byte counter TL, TM, TH by one
count. After 100 counts (1 s) a display routine is called and data are displayed
on the CRT. After this is done program control is returned to the APPLE
program in process.

Exercise 8.3.1 Running an interrupt program
Using the MINIASSEMBLER, type in the IIR of Figure 8.4(a) and
(b) and the ISR from Figure 8.5(a) and (b). Run the IIR from
BASIC (call 37120). You should see a display of seconds in the
upper line of the CRT which increments every second. Once this is
going try running other programs and doing other operations of the
APPLE.

In addition to the interrupt processing, several aspects of the ISR of
Exercise 8.3.1 are new. The section of the program from $900D to $9027 uses
Binary Coded Decimal (BCD) arithmetic. In BCD each byte represents a
number from 0 to 99 rather than from 0 to $FF, that is, each nibble (four bits)
is allowed to count only to 9 before a carry is taken to the next nibble (see
Figure 8.6). The four-bit nibbles thus become direct representations of
decimal digits. The SED instruction (set decimal) at $9000 puts the CPU
into the BCD mode and the CLD at $9027 takes it out. To help in the
understanding of the BCD mode replace SED with a NOP in $9000 for
Exercise 8.3.1 and observe the operation of the ISR.

Another new operation is the direct write to the screen in the program
section from $9032 to $906F. When the APPLE is in text mode (TEXT) just
as in graphics mode (HGR2), certain memory locations are being read to
display the information on the screen. For HGR2 these are $4000.5FFF and
for TEXT they are $0400.07FF beginning at the top left of the screen. Each
byte is interpreted as one character to be displayed. So a character can be
placed anywhere on the screen by writing to one of these memory locations .

Fig. 8.4. IIR for generating T1
timer interrupts at 0.01 s
intervals: (a) flow chart; (b)
program.

8.3 An ISR

Store start of ISR in $03FE and $03FF

Set up PB7 so timing can be viewed on scope

Set ACR for continuous interrupts

Set timer T I so that interrupts
are generated every 1/100 second

Set I ER so that the Tl interrupt
flag on IF R is active

9100- 78 SEI
9101- A9 00 LDA
9103- 8D FE 03 STA
9106- A9 90 LDA
9108- 8D FF 03 STA
9108- A9 80 LDA
9100- 8D 02 C4 STA
9110- A9 co LDA

#$00
$03FE
#$90
$03FF
#$80
$C402
#$CO

9112- 8D 08 C4 STA $C408
9115- A9 EC LDA #$EC
9117- 8D 04 C4 STA $C404
911A- A9 27 LDA #$27
911C- 8D OS C4 STA $C405
911F- A9 3F LDA #$3F
9121- 8D OE C4 STA $C40E
9124- A9 co LDA #$CO
9126- 8D OE C4 STA $C40E
9129- AD 04 C4 LDA $C404
912C- A9 00 LDA #$00
912E- 8D 00 94 STA $9400
9131- 8D 01 94 STA $9401
9134- 8D 02 94 STA $9402
9137- 58 CLI
9138- 60 RTS

107

Load $9000 into $03FE 03FF

Set up PB7 output to observe

square waves on scope

] Set T1 for free run

]
Set T1 Land T1 H for 1/100 s

Set IER forT1 interrupts

Clear bits 6 and 7 of IFR

Initialize TL TM and TH

Clear I bit of process status

register

108

Fig. 8.5. ISR for counting
interrupts and displaying the
elapsed time: (a) flow chart; (b)
program.

Interrupts

Add one to time counter
use 6502 BCD (binary coded
decimal mode- don't worry

about details of this)
triple precision

9000- AD OD C4
9003- 29 co
9005- DO 03
9007- 4C 65 FF
900A- AD 04 C4
900D- F8
900E- 18
900F- A9 01
9011- 6D DO 94
9014- 8D DO 94
9017- A9 00
9019- 6D 01 94
901C- 8D 01 94
901F- A9 DO
9021- 6D 02 94
9024- 8D 02 94
9027- D8

Interrupt came from
DOS; send program to

$FF65 to find DOS
ISR op-code

No

LDA $C40D
AND #$CO
BNE $900A
JMP $FF65
LDA $C404
SED
CLC
LDA #$01
ADC $9400
STA $9400
LDA #$00
ADC $9401
STA $9401
LDA #$00
ADC $9402
STA $9402
CLD

Read IFR and send CPU to

$FF65 if interrupt did not

come from 6522 T1 .

Otherwise go to $900A

Clear IFR bits 6 and 7

Set decimal mode

Increment TL, TM and TH

by 1

Clear decimal mode

8.3 An ISR 109

9028- AD 00 94 LDA $9400
9028- FO 03 8EQ $9030 If $9400 is not zero reload
9020- AS 45 LDA $45 accumulator and RTI. If
902F- 40 RTI $9400 is zero go to $9030
9030- 8A TXA] Transfer X register to stack 9031- 48 PHA
9032- AD 02 94 LDA $9402
9035- 6A ROR
9036- 6A ROR
9037- 6A ROR
9038- 6A ROR
9039- 29 OF AND #$OF
9038- 18 CLC
903C- 69 30 ADC #$30
903E- 8D 00 04 STA $0400
9041- A9 OF LDA #$OF
9043- 2D 02 94 AND $9402
9046- 18 CLC
9047- 69 30 ADC #$30
9049- 8D 01 04 STA $0401
904C- AD 01 94 LDA $9401 Increment display on
904F- 6A ROR screen
9050- 6A ROR
9051- 6A ROR
9052- 6A ROR
9053- 29 OF AND #$OF
9055- 18 CLC
9056- 69 30 ADC #$30
9058- 8D 02 04 STA $0402
9068- A9 OF LDA #$OF
905D- 2D 01 94 AND $9401
9060- 69 30 ADC #$30
9062- 8D 03 04 STA $0403
9065- A9 20 LDA #$20
9067- A2 00 LDX #$00
9069- 9D 04 04 STA $0404,X
906C- E8 INX
906D- EO 23 CPX #$23
906F- DO F8 8NE $9069
9071- 68 PLA Restore X register and
9072- AA TAX accumulator
9073- AS 45 LDA $45
9075- 40 RTI

110

Fig. 8.6. Number systems :
binary, hexadecimal , decimal,
BCD. In BCD each group of four
bits represents one decimal digit
and thus the binary
representations of hex numbers
A, B, C, D, E, Fare not valid .

Fig . 8.7. ASCII Code.
(Reproduced with permission
from American National
Standard X3.4-1977 , copyright
1977 by the American National
Standards Institute. Copies may
be purchased from the
American National Standards
Institute, 1430, Broadway, New
York, New York 10018.)

8.3 An ISR

Binary % 0010 0101 0110 0100 Binary r epresentation of decimal
9572

Hex $ 2 5 6 4 Hexadecimal representation of
decimal 9572

Decimal 9 5 7 2 Decimal number

B CD 1001 0101 0111 0010 BCD representation of decimal 9572

2 5 6 4

4096 19572 25611380 161 100 1[4
8192 1280 96 4

-
1380 100 4 0

9572. = $2564

~
0 00 0 1 0 1 1 1 1

0 1 0 0 1 1
0 1 0 1 0 1 0 1

s
'

b, b, b, b1~ 0 1 2 3 4 5 6 7 I I I I •o•l

0 0 0 0 0 NUL OLE SP 0 "' p \
-~

0 0 0 1 1 SOH DC1 I 1 A Q 0 q

0 0 1 0 2 STX DC2 " 2 B R b r

0 0 1 1 3 ETX DC3 # 3 c s c s

0 1 0 0 4 EOT DC4 s 4 D T d I

0 1 0 1 5 ENQ NAK " s E u • u

0 1 1 0 6 ACK SYN & 6 F v ' v

0 1 1 1 7 BEL ETB / 7 G w g w

1 0 0 0 8 BS CAN (8 H X h •
1 0 0 1 9 HT EM) 9 I y i y

1 0 1 0 10 LF SUB • : J z j l

1 0 1 1 11 VT ESC • ; K [k {

1 1 0 0 12 FF FS < L \ I I
1 1 0 1 13 CR GS - . M 1 m }

1 1 1 0 u so RS > N A
n ~

1 1 1 1 15 Sl us I ? 0 -- 0 DEL

0/0 NUL Null 1/0 OLE Data Link Escape

0/ 1 SOH Start of Heading 1/1 DC! Device Control 1

0/2 STX Start of Text 1/2 DC2 Device Control 2

0/3 ET X End of Text 1/3 DCJ Device Control 3

0/4 EOT End of Transmission 1/4 DC4 Device Control 4

0/5 ENQ Enquiry 1/5 NAK Negative Acknowledge

0/6 ACK Acknowledge 1/6 SYN Synchronous Id le

017 BEL Bell 1/7 ETB End of Transmission Block

0/8 BS Backspace 1/8 CAN Cancel

0/9 HT Horizontal Tabula tion 1/9 EM End of Medium

0/1 0 LF Line Feed 1/1 0 SUB Substitute

0/ 11 VT Vertical Tabulation 1/ 11 ESC Escape

0/ 12 FF Form Feed 1/ 12 FS File Separator

0/ 13 CR Carriage Re tu rn 1/ 13 GS Group Separator

0/1 4 so Shift Out 1/1 4 AS Record Separator

0/15 51 Shift In 1/15 us Unit Separator

7/15 DEL Delete

8.4 T2 generated interupts 111

To do this the alphabet and punctuation characters must be represented by
numbers . In the APPLE (and many other computers) the seven-bit ASCII
code (American Standard Code for Information Exchange) is used . This
code was first used by teletype machines . Figure 8. 7 shows the mapping of
characters to numbers. To see how the display and character are related ,
type in and RUN the following BASIC program.

5 REM PROGRAM 7.3.3
10 FOR I=O TO 255
20 POKE 1024 + I, I
30 NEXT I

CONTROL - RESET
RUN

The program section to display the time on the screen contains parts which
isolate each nibble of the sum, convert it to ASCII , then write it to the proper
location on the screen .

8.4 T2 generated interrupts
Interrupts generated by T2 can be handled in a similar fashion to

those generated by Tl. As in previous chapters, if we use the Tl-T2 timer
pair to give us longer time intervals, PB7 must be set up as an output and a
wire connected from PB7 to PB6. The initialization routine (Program 8.3.1)
needs to be modified to allow only T2 generated interrupts. T2H and T2L
as well as TlH and TlL are initialized . The clearing of the T2 flag in the
IFR is done by reading T2L or by writing T2H as indicated in Figure 8.4 .
Register T2H must be written to again anyway since it does not reload
automatically.

Exercise 8.4.1 Writing an interrupt program
Write an IIR and on ISR using the T2 interrupts to ring the bell
every second . Use T2 to count down (via Tl signals) from a starting
value . When it reaches zero , it should interrupt ; then the ISR
should reset T2 and ring the bell. To ring the bell , JSR to the bell
subroutine at $FBE2. This subroutine uses theY register so be sure
to save it. Test that your interrupt routine is working properly by
running other APPLE programs you have on your disk with the bell
ringing in the background mode . What happens when you access
the disk with the interrupt going? Do you now have a beeping
APPLE?

9 Other topics

9.1 Hardware for data acquisition and control
There are two styles of hardware for using a microcomputer to

acquire data and control equipment. One is exemplified by the APPLE lie
system you have used in the laboratory. The ADC, the DAC and the digital
I/0 cards are inside the computer and are under direct control of the
microprocessor. They have control and data registers which are directly
addressable via the buss. External devices (sensors, switches, etc) are
connected to the cards. Creative programming can turn the computer into,
for example , an oscilloscope (ADC and display) or a signal generator
(DAC) as the laboratory exercises have shown.

Other buss systems are in use which, like the slots in the APPLE, allow a
microprocessor to be connected to various data acquisition and control
devices by simple board replacements . Some of the more widely used ones
are IBM-PC buss, SlOO, STDBUS, MULTIBUS and QBUS.

The second style is to have a separate box next to the computer which has
the ADCs, DACs, digital I/0 lines and a programmed microprocessor
controller. It communicates with the computer via a serial or parallel
communication system (see Section 9.2). The box takes care of the data
acquisition and control while the computer is used to send control bytes to
tell the box what to do and to receive the data for further processing. The
limitation of this style is in the speed of communication to the computer and
in the number of things the box has been preprogrammed to know how to
do. However, some computers do not have card slots (notably the APPLE
lie and the Apple Macintosh) so that this style of data acquisition and
control is the only possible choice .

9.2 Serial data communication
In the exercises you have done, transmission of data to the computer

has been direct. The sensors have been connected to the ADC or VIA which
are inside the APPLE and connected to the internal buss . This is not always
the case. Many newer instruments have means of gathering and storing
digital data themselves . To analyze the data, they are transmitted along a
cable between the instrument and computer. The methods used for this
communication can be split into two broad groups: serial and parallel.

Serial data is transmitted one bit at a time . Each bit follows the previous

Fig. 9.1. Serial transmission of
an ASCII 'K' character. 'K' =
Binary01001011. The time for
one bit is 1/BAUD rate.

Other topics 113

one after a preset time interval has passed. This interval must be known to
the receiver so that it can synchronize its timing with the transmitter. There
are several hardware standards which are used for serial transmission. By far
the most widespread is the RS-232C standard. It is used for slow to moderate
speed communication (110-19200 bits per second or 'baud') over distances
of up to 300m. Most terminals connected to multiuser computer systems use
this standard as do many printers and plotters . At its minimum only two
wires are needed: a ground and a signal wire . Since the standard requires
that data only go one way on the signal wires , this minimal system would be
good only for devices like printers . Most of the time another wire is added to
provide two way communication . The RS-232C standard is also used to
communicate with a modem which is a device that transmits and receives
serial data over the telephone lines . A data rate of 300 or 1200 baud is
commonly used .

Figure 9.1 shows how an ASCII character 'K' would be sent using the
RS-232C protocol. The start bit signals the beginning of a data word. It is
followed by 4-8 data bits. Then sometimes a parity bit is included which is
used for error checking. At the end are one or two stop bits. The number of
bits and their meaning as well as the rate of transmission must be known at
the receiver. Since the receiver restarts its timing at each start bit , it only
needs to remain synchronous over the length of the data word .

One problem which arises often is that the transmitter sends data faster
than it can be processed at the receiver. The receiver needs to have a way of
saying, 'Hold on a moment while I take care of what I already have.' This is
done either with another wire which signals a hold or in software by having
the receiver transmit characters to signal the transmitter. Most commonly
the ASCII character 19 (ControlS or XOFF; is HOLD and 17 (Control Q or
XON) is GO. The transmission becomes a game of RED LIGHT GREEN
LIGHT.

The transmission and reception of serial data is usually done by a UART
(Universal Asynchronous Receiver Transmitter). Once it knows the
protocol of the data being sent , the UART takes care of the serial interface .
It is used by addressing registers; those for the 6551 chip are shown in Table
9.1. On transmission, it translates the byte in its data register to serial form
and on reception , it translates the serial data into a byte in the data register.

! ·-- --

lsb
t

Start I

Start bit

0 0 0

8 data bits

msb
t
0 Stop

114 9.3 Parallel data communication

Table 9.1 6551 register format

Register Write

0 Transmit Data Register
1 Programmed Reset (Data is "Don't Care")
2 Command Register
3 Control Register

Read

Receiver Data Register
Status Register

The control register is used to set the protocol of the serial data, the
command register is for interrupt control , and the status register is used to
signal data transmission and error conditions. The interrupt capability is
often used in communication programs so that the computer need not
continually monitor the UART status .

The most obvious limitation of serial data transmission is in the speed of
communication. A new standard , RS-422A , has been defined to try to
alleviate this problem. It offers speeds of 100 000 bits per second over
distances of 1500 m. Another limitation is that each device needs a separate
cable and interface . Further information about serial communication can be
found in the references.

Exercise 9.2.1 Serial communication
Write out the serial sequence (Figure 9.1) which would transmit an
ASCII ' j ' character on a serial line . Use 1 start, 7 data, no parity,
1 stop bits and 9600 baud. Indicate the time on your picture. Refer
to the ASCII chart of Figure 8. 7 for the binary code for ASCII 'j '.

9.3 Parallel data communication
In parallel transmission the data in one word are communicated

simultaneously by having many wires connecting the transmitter and
receiver. The data buss connecting various parts of the computer is one
example; each bit of a data byte is stored in a memory location at the same
time . To transmit and receive an eight-bit byte of data externally, eight wires
are needed as well as several other wires , eg, a R/W wire, to control the
direction and timing. A parallel hardware standard has been adopted for
laboratory instrumentation which is called IEEE-488. Although the com­
munication distance is limited to a total of 20m, it can have up to 16 devices
simultaneously connected and can transmit data at speeds up to 1 000 000
bytes per second . Many laboratory instruments now have options which
allow connection to this buss.

In the IEEE-488 cable there are a total of 24 wires. Eight of these are
ground wires which help to increase the noise immunity . There are eight
data wires , three data transfer control wires and five management control

Fig. 9.2. IEEE-488 data transfer
protocol. DAVis 'Data Valid',
NRFD is 'Not Ready for Data' ,
NDAC is 'Not Data Accepted' .

Other topics 115

wires. The devices on the buss can be designated as either talkers, listeners
or controllers. There must be at least one controller which is usually a
general purpose microcomputer. It manages the communication by using the
management control wires to designate which devices should be listeners
and which should be the talker. Only one talker is allowed at one time but
the talker device can be changed at any time . For example, a printer would
be a listener and a voltmeter would be a talker . Devices can also be active or
inactive so , for example , the printer need not be printing all the time.

Communication of a byte of data is synchronized via a handshake
mechanism using the three data transfer control wires. Figure 9.2 shows the
sequence of signals to transmit one byte after the active talkers and listeners
have been designated. Note that a LO level indicates a true condition and a
HI level false . The sequence starts by each active listener letting the NRFD
(Not Ready For Data) line go HI (false) thus indicating that it is ready to
receive data . Due to the open collector design of this signal wire interface,
the signal does not go HI until all of the listeners are ready. When the active
talker sees the NRFD high it places the data on the data wires and signals
that the data is valid by dropping DA V (DAta Valid). The listeners then set
NRFD LO and each store the data from the buss . As each completes that
task , it lets the NDAC (Not Data ACcepted) signal go HI indicating that the
data has been stored . As with the NRFD , the NDAC wire does not go HI
until all the listeners have let it go. Thus the slowest listener active on the
buss limits the speed of communication. The talker then sends DA V HI
indicating that the data is not valid any longer and the listeners drop NDAC.

Signal wires Sequence Controlled by

2 of 8
Data
lines

CD

> il~ati~gl~vel ~
@~---.

Active
talker

'"<---------'

DAY False Active

True talker

NRFD
False

Active
listeners

True

False Active
Listeners

NDAC

True

116 9.4 Sensors and transducers

The buss is then ready for the next byte transfer. This sequence is called a
handshake since the data transfer takes place when both the transmitter and
receiver have agreed (signalled) that they are ready.

The remainder of the wires in the buss are used for signals between the
devices so that the talkers and listeners can be designated and so that the
devices can signal emergency conditions. For example, if ATN (ATtentioN)
is true it indicates to all the other devices that the controller wants to talk and
that everyone else should listen. If SRQ (Service ReQuest) is true a listener
is requesting to talk. The full protocol can be found by reading the interface
documentation (Hewlett Packard calls it the GPIB interface) or by getting a
description from the Institute of Electrical and Electronic Engineers.

Exercise 9.3.1 Parallel communication
Using 6502 assembly language implement IEEE-488 protocol using
the 6522 VIA interface. Assume that the eight data lines of Port B
are connected to the data lines of the interface and that PAO is
connected to DAY, PAl to NRFD, PA2 to NDAC. Also assume
that the active talker is the computer (6502). Write a program which
will transfer 100 bytes from memory locations $9000--$9063 to the
active listeners. Use the following outline:

(1) initialize the ports, set the data lines as inputs (floating temporarily),
set DAY HI

(2) start loop of 100
(3) look for NRFD HI (all listeners ready)
(4) set data lines as output and put data on lines
(5) set DA V low (signal data is val id)

(6) look for NDAC HI (data accepted by all listeners)
(7) set DA V HI and set data lines as inputs (floating again)
(8) loop back for next byte of data

9.4 Sensors and transducers

In the laboratory work in this book you have used only three kinds
of sensors , a potentiometer , a thermistor and a photoresistor, and two
controllers, a stepping motor and a HEXFET switch. There are many other
kinds of sensor, at least one for each physical parameter which is measured.
A good physical understanding of the system to be measured is always the
first step. Then, selection or design of the sensor can be done. Some
generalized performance characteristics have been discussed in the sections
on zero, first, and second-order systems. Understanding the physical and
electrical basis of the sensor is also important. Please refer to the references
for information on the wide variety avai lable . Keep in mind that there is
always room for invention.

Other topics 117

9.5 Software for data acquisition and control
Of the large amount of software available for a particular micro­

computer, there are two basic types: languages and application programs.
The first are the primary tools with which a computer is programmed (eg,
BASIC). The second are particular programs which have the computer
perform specific tasks (eg , AMPERGRAPH) . Both have their places in the
use of the computer in the laboratory.

As in the work done in this laboratory, most laboratory computers are
programmed in the laboratory using a chosen language. Table 9.2 lists the
more popular ones with some comments on their efficacy . A program in an
interpreted language is executed as it is run whereas one in a compiled
language must be translated into machine code before it can be run. Be sure
that the language has the capability of PEEKing and POKEing absolute
memory locations.

Most application programs for data acquisition which are available at this
time are libraries of subroutines (or procedures or modules) which, when
called , do specific tasks. For example , one subroutine would output a
number to the DAC and another would get the time from the timer. The
libraries are specific to the language and the hardware being used.

What really made microcomputers popular for the home and business
were two applications programs: the word processor and the spread sheet.
These are versatile programs dedicated to a specific need (such as writing)
but general enough to encompass a variety of tasks within that need (such as
letters, reports , lists). There are a few programs available which address the
need for a generalized data acquisition , storage , analysis and graphing. As
the business market saturates , it is to be expected that more and varied
programs will be written for the scientist and engineer.

Table 9.2 Microcomputer languages

Language

BASIC

Assembly

FORTRAN

Pascal
Ada
Modula II

FORTH

c

Comments

Interpreted or compiled , common, easy to learn , awkward, slow

Compiled, most direct control of computer system , awkward

Compiled , traditional for number-crunching analysis , has complex
numbers! , awkward , frequently no PEEK and POKE , libraries
available

Compiled, structured for easier programming
Like Pascal but US Department of Defense backing
Like Pascal but corrects some weakneses

Threaded , can be extended by user, originated for data acquisition
and control , somewhat awkward reverse polish constructs

Compiled, both low level and high level programming, structured ,
terse

118 9.6 Where to go from here

9.6 Where to go from here
A great deal of useful work can be done in the laboratory by

applying the principles you have learned. For those interested, there are
several areas of study which extend the topics discussed here. A laboratory
course on digital and analog electronics would be useful in understanding
sensors and their associated signal conditioning circuits as well as the
electrical operation of the computer itself. An introductory course in signal
processing and analysis would be useful for general data analysis. For those
interested in process automation, a course in systems analysis would be
helpful. To keep up on the latest hardware and software in this quickly
changing field, consult trade journals . Also get on the mailing lists of
suppliers. They will frequently send out product bulletins . But the best way
to learn is the way you have learned in this laboratory ; that is by doing it.

Appendix A
Laboratory materials
and resources

The following is a detailed description of the equipment used in the
laboratory at Cornell University together with possible sources for these
parts.

Each student work area (Figure A.l) has an APPLE lie computer with
printer ar.d data acquisition cards, a 5 V power supply, and an oscilloscope.
The APPLE lie has the following configuration:

Slot
1
2
4
v

7

Device
Practical Peripherals Microbuffer II+
John Bell Engineering A-D Converter (Figure A.2 right)
John Bell Engineering 6522 Parallel Interface (Figure A.2 middle)
APPLE disk controller
John Bell Engineering EPROM Card (Figure A.2left)

One of the computers in the laboratory has a John Bell Engineering
EPROM Programmer attached to the 6522 interface so that EPROMs may
be programmed. An ultraviolet EPROM eraser is also available. The
Micro buffer II+ is attached to an Epson MX-80 printer. These may be
changed to suit as long as the printer buffer/printer combination can print the
high resolution graphics of the APPLE.

The text is written for use with the DOS 3.3 operating system for the
APPLE. Prodos would probably work too if the appropriate changes are
made in the text. The text also assumes that the Mad West Software
AMPERGRAPH package is being used . We have not seen comparable
packages which could be substituted. For EPROM blasting , the program
listed in Appendix J is useful.

We use a B+ K Precision Model 1476A dual trace 10 MHz oscilloscope
and a Power One model C5-6 power supply. Almost any oscilloscope will do
and the only specification which needs to be met on the power supply is that
it has a 5 V output at 5 A. Look in the back of BYTE magazine or in surplus
catalogs for good prices . We have tied the computer and power supply
grounds together permanently so as to minimize grounding problems for the
students.

The cables from the data acquisition boards are brought out to a proto­
board (Figure A .3) where connections may be made easily. We find that the
Super Strip (available through Digi-Key or Jameco) to be versatile.

120

Fig. A.1. General setup in the
laboratory. The computer, disk
drive, and monitor are on one
wooden stand; the printer is on
another which sits over the

1 oscilloscope. The power supply
is between the two and the
proto boards are on the top of
the computer.

Fig. A.2. Three John Bell
Engineering circuit cards with
cables removed. From left to
right : the EPROM holder, the
6522 VIA cad, and the ADC card .

Fig. A.3. A view of the
protoboardswherethe interface
cables terminate. The ADCcable
is to the left and the four 6522
VIA cables are in the center and
to the right. In the center the
6522 VIA #2 Port B is wired to
the LEOs and their drivers and
Ports A and Bare wired to the
DACs.

Appendix A

Fig. A .4. The push button and
the potentiometer.

Fig. A.S. View of the thermistor
calibration/temperature
controller apparatus. The
aluminum block at the top holds
the heater resistor, the
thermistor and the
thermometer; all emplaced with
conductive grease and some
glue to hold them in place. The
circuit is constructed on a piece
of protoboard.

Fig. A.G. Stepping motor
apparatus. The protractor is
mounted to the left on the output
shaft of the gearbox (center).
The stepping motor (on the
right) is mounted to the gearbox
and coupled with a piece of
rubber tubing. The circuit is
constructed on a piece of
proto board.

Laboratory material and sources 121

122

Fig. A.7. Heat flow apparatus.
The copper wire is secured to
the aluminum base plate and
has three holes drilled for
mounting the heater resistor
and the two thermistors. These
are emplaced into the copper
with thermal grease and secured
with glue. Their leads are
supported with a piece of
aluminum. The circuit is
constructed on a piece of
proto board attached to the base.

Appendix A

Fig. A.B. Viscometer. A glass
tube, the four positions sensors
and the electronics are mounted
on a wooden base which can be
leveled by adjusting three
screws.

Laboratory material and sources 123

Laboratory Apparatus

Potentiometer (Figure A.4)
Almost any will do in the resistance range of 100 fl to 1 MD.

Thermistor calibration apparatus (Figure A.5)
A thermistor, thermometer, and heater resistor are mounted in an aluminum
block about 2 em X 2 em X 2 em size. The thermistor we use is a Fenwall
GB34P2 . Others may be substituted by adjusting the bias resistor depending
on the room temperature resistance. Heat conductive grease is used in the
holes so that the thermometer, thermistor and heater resistor make good
thermal contact with the block. The circuit used is shown in Figures 3.5 and
3.4. A standard laboratory mercury thermometer is used but others can be
substituted. The HEXFET is an International Rectifier IRF 510. Almost any
of that line can be substituted .

Stepping motor (Figure A.6)
The stepping motor apparatus consists of a stepping motor connected to a
200:1 gear box by a rubber sleeve and controlled by a UCN-4202A controller
(Sprague Electric Co.) which is mounted on a proto board. Figure 4.1 shows
the circuit used. The stepping motor is a surplus item (A. W. Hayden Co.
PIN B86138) which may be hard to find but the controller will work with
Permanent Magnet stepping motors rated to 500 MA and 15 V. You may
have to modify the wiring of the motor to suit the controller. BYTE
magazine is a good place to look for surplus motors. The gearbox is from
AST/SERVO Systems and again is a surplus item. The reduction ratio is not
critical.

LED Output Counter (Figure A.3)
These are simple LEDs with 270 fl resistors and a 74LS04 driver. The circuit
(Figure 4.4) is constructed on the protoboard where the cables from 6522
VIA #2 are attached.

Heat Flow Apparatus (Figure A.7)
The apparatus for the heat flow experiment consists of a copper rod (#10
copper wire , 2.59 mm diameter) mounted vertically on an aluminum base as
shown in Figure 5.3 . An aluminum support runs parallel to the rod to
support the wires to the heater resistor and thermistors. The! watt resistor
is placed in a hole in the top of the rod. The thermistors (Fenwall GB32J2)
are placed in small holes at 2.5 em and 5 em down from the resistor. Thermal
grease is again used to ensure thermal contact. The standard amplifier circuit
employed is shown in Figure 5.5. A protoboard is used to construct the
circuit. The only special consideration is that the operational amplifier be
able to run on 0--5 V supplies.

124 Appendix A

Digital to Analog Converter (Figure A.3)
This circuit (Figure 6. 7) is constructed on the proto board where the LEOs
and the 6522 VIA #2 cables are attached. The OAC used is a National
Semiconductor OAC0808. Others may be substituted with some change in
circuitry. The negative voltage necessary for running this chip can be
obtained from the Apple buss by a slight modification of the 6522 VIA card .

Viscometer (Figure A .8)
As depicted in Figure 7.6, the viscometer apparatus consists of a glass tube
about 5 em in diameter with a rubber stopper at one end mounted in a
wooden frame to which the detectors and electonics are attached. The frame
may be leveled by means of the three screws at its base. The light source for
the position sensors are green LEOs mounted in 1 em aluminum tubes with
a small focusing lens at one end. The light detectors are CdS photo-resistors
(Claret 327-15) mounted in another 1 em aluminum tube . In front of the
sensor is a 3 mm high 10 mm wide slit cut in cardboard. The circuit for one of
the sensors is shown in Figure 7. 7. The balls used can be of a wide variety
however the 'wall effect' becomes very evident for large ones. Table 7.1
shows some we have found useful.

Addresses

John Bell Engineering
400 Oxford Way
Belmont , CA 94002

MAO WEST Software
PO Box9822
Madison , WI 53715

Oigi-Key
PO Box677
Thief River Falls , MN 56701

Jameco Electronics
1355 Shoreway Road
Belmont , CA 94002

Sprague Electric Co.
115 Northeast Cutoff
Worcester , MA 01606

AST/SERVO Systems Inc
930 Broadway
Newark, NJ 07104

Individual pieces or a kit of all the laboratory apparatus can be purchased
from:

Vector Magnetics Inc
PO Box 127
Ithaca, NY 14851

Appendix 8
Merging programs: use of
the RENUMBER program

An efficient method for writing programs is to complete one small piece at a
time. Each piece should be tested and understood; even if you have to write
another short program to do this. Only then, as a separate task, combine the
pieces into larger and larger portions of the main program. It is best first to
write out in words, block diagrams and flow charts what you are trying to do
with the program and/or apparatus. By doing this the tasks involved become
conceptually separated and can then be dealt with as pieces of the whole.

If you follow the procedure outlined above, it will be necessary to store
small program segments on the disk and then to put them together to form
programs without having to retype all the pieces already tested. The
APPLESOFf LOAD command is not satisfactory for this since it will first
clear out the program in the machine.

The program RENUMBER on the SYSTEM START disk enables you to
merge and renumber BASIC programs. It works somewhat like the
AMPERGRAPH program in that it appends some new instructions to
BASIC. To use RENUMBER, place the SYSTEM START disk in the drive
and type RUN RENUMBER CR. (At this time RENUMBER replaces
AMPERGRAPH in memory.) A reminder of how to use it is displayed on
the CRT screen. A print of this is given in Figure B .1.

Figure B.2 shows a listing resulting from the use of RENUMBER. The
command LOAD DEM01 was given to put the program DEM01 from the
AMPERGRAPH disk into the machine; the LIST command displays the
program. Figure B.2 then shows that the instruction

$FIRST 1000,1NC 15,S10,E60

was executed in the immediate mode; it renumbered the program state­
ments. The listing shows that the first statement numbered in the new
numbering scheme is 1000; subsequent statement incrementing at 15 units.
The statements in the original program to be renumbered started with
instruction 10 and ended with statement 60.

To merge a program in the machine with another, the two instructions &H
and &Mare used as illustrated in Figure B.3. With the renumbered program
of Figure B .2 in the machine , typing &H put it into 'HOLD'. Another
program can now be loaded into the APPLE without affecting the program
on HOLD. None of the instruction numbers of the two programs can be the

126

Fig. 8.1. RENUMBER screen.

Appendix B

same. Two programs are merged by typing &M CR. The subsequent LIST
shows that the new program consists of the two programs put together as one.

The RENUMBER program is thus an editing procedure which makes it
possible to combine two programs conveniently into a single larger program.
RENUMBER and AMPERGRAPH cannot be in the machine simultane­
ously. One replaces the other so after RENUMBERing AMPERGRAPH
will need to be reloaded. RUN AMPERGRAPH LOADER or STARTUP
with the SYSTEM START disk in the drive but be sure you have saved your
merged program first!

JPR#1
]RUN RENUMBER
&&&
& &
& APPLESOFT RENUMBER &
& &
& COPYRIGHT APPLE COMPUTER, INC, 1978 &
& &
&&&

RENUMBER (DEFAULT VALUES)

& [FIRST 10] [,INC 10] [,S OJ [,E 63999]

MERGE

&H PUT PROGRAM ON HOLD
&M MERGE TO PROGRAM ON HOLD

PRESS 'RETURN' TO CONTINUE ... RENUMBER IS INSTALLED
AND READY IF YOU USE'FP', 'HIMEM', OR 'MAXFILES'

YOU WILL HAVE TO RE-RUN RENUMBER

Fig. 8.2. Example of a program
renumbered .

Fig. 8.3. Example of programs
merged.

Merging programs

]LOAD DEM01
JUST

5 REM DEM01
6 REM ELEMENTARY EXAMPLE
7 REM
10 HGR2 : HIMEM: 16383
20 & SCALE,0,10, -1.2,1.2
30 & AXES,0,0,2,.2
40 FOR X = 0 TO 10 STEP .2
so & DRAW ,X, COS (X)
60 NEXT X

J&FIRST 1000,INC1S,S10,E60

J LIST

5 REM DEM01
6 REM
7 REM
1000
1015
1030
1045
1060
1075

JUST

5 REM
6 REM
7 REM
1000
1015
1030
1045
1060
1075

J&H

ELEMENTARY EXAMPLE

HGR2 : HIMEM: 16383
& SCALE,0,10, -1.2,1.2
& AXES,0,0,2,.2
FOR X = 0 TO 10 STEP .2
& DRAW ,X, COS (X)
NEXT X

DEM01
ELEMENTARY EXAMPLE

HGR2 : HIMEM: 16383
& SCALE,0,10, -1.2,1.2
& AXES,0,0,2,.2
FOR X = 0 TO 10 STEP .2
& DRAW ,X, COS (X)
NEXT X

Program in machine to be

renumbered.

127

Type this in +CR to renumber

program

Program with new statement

numbers.

Program 1 in machine

Type &H CR put

continued

128 Appendix B

PROGRAM ON HOLD, USE "&M" TO RECOVER Program 1 on hold

]10 REM THE PROGRAM LISTED ABOVE

]20 REM WAS JUST CREATED UNSING

]30 REM THE RENUMBER PROGRAM

J40 REM AND PUT ON "HOLD" USING

]50 REM THE IMMEDIATE INSTRUCTION

]60 REM &H. I WILL NOW INSERT THE

]70 REM PROGRAM I AM WRITING I.E.

]80 REM INSTRUCTIONS 10 TO 80 INTO

]90 REM THIS PROGRAM.

J&M

JUST
5 REM DEM01
6 REM ELEMENTARY EXAMP LE
7 REM
10 REM THE PROGRAM LISTED ABOVE

20 REM WAS JUST CREATED UNSING

30 REM THE RENUMBER PROGRAM
40 REM AND PUT ON "HOLD" USING
50 REM THE IMMEDIATE INSTRUCTION
60 REM &H. I WILL NOW INSERT THE
70 REM PROGRAM I AM WRITING I.E.
80 REM INSTRUCTIONS 10 TO 80 INTO
90 REM THIS PROGRAM.
1000 HGR2 : HIMEM : 16383
1015 & SCALE,0,10, -1.2,1.2
1030 & AXES,0,0,2,.2
1045 FOR X = 0 TO 10 STEP .2
1060 & DRAW ,X, COS (X)
1075 NEXT X

Put Program 2 into

machine- type or

LOAD from disk

Type &M CR to merge

Programs 1 and 2

Prog rams 1 and 2

merged together

Fig. C.1. APPLE lie memory map.

Appendix C
APPLE lie memory map

Figure C.l shows how the address space of the APPLE lie is organized. Both
the decimal and the hexadecimal representations of the addresses are given
(hexadecimal representation is described in Section 4.3) . The main RAM

ROM 1/0 RAM

$FFFF 65535. Monitor
INTEGER

Bank BASIC
APPLESOFT switched

BASIC
~

MINI-
Interpreter ASSEMBLER

$0000 53248.

$CFFF 53247.

$COOO 49152.

$BFFF 49151.

130

Fig. C.2. BASIC memory usage.

Appendix C

memory is in locations $0000-$BFFF . The addresses from $COOO to $CFFF
are reserved for the 1/0 registers of peripheral devices like the disk drive and
the printer. The APPLE lie also has a block of RAM at addresses $DOOO­
$FFFF which are the same as the ROM addresses and so would normally
cause a conflict. But there is a register in the I/0 space that determines which
memory is being used; it acts like a switch whose position is determined by
the bits in the register (a soft-switch). The command INT switches to the
RAM memory (called bank-switched RAM) and FP switched back to ROM.
When the power is turned on to the computer , the ROM memory is switched
on.

Figure C.l also shows some of the normal memory usage in the APPLE.
The monitor and APPLESOFT BASIC interpreter are in the ROM. The
INTEGER BASIC interpreter and the MINIASSEMBLER are in the
bank-switched RAM and are loaded into the memory by the program on the
SYSTEM START disk . The start-up program also loads the DOS into the
high addreses of the main memory. Memory locations from $4000 to $5FFF
are reserved for HGR2. The text display memory is at locations $0400-
$07FF. A BASIC program entered from the keyboard or from a file is stored
in memory beginning at $0800. The command HIMEM:16383 instructs the
computer not to store any program or variables above this address (16383
decimal is $3FFF hexadecimal). This protects HGR2 from being overwritten
by the program . The address space for HGRl is from $2000 to $3FFF. The
reason HGR2 is used instead of HGRl for graphics display is so that the
BASIC program can have as large a memory space as possible by using the
HGRl space for program use.

Figure C .2 shows how BASIC uses the program space which is made
available to it by the LOMEM and HIMEM settings.

$3FFF
16383.

Boundary positions
are variable

$0800
2048.

Strings

Free space

Arrays

Simple
variables

Program

Start

HIM EM

Strings build from
HIMEM down

Variables build from the
end of the program up

- Start variables
- End of program

Fig. 0.1. ADC connections: DEV
is high when address lines
A 15 ... AO have $COAx, where x
can be any number. DATAO ... 7
is connected to the data buss
when R/W and DEVare high and
AO is low. EOC (End of
Conversion) is bit 0 of the data
when R/W and DEV and AO are
high.

Appendix D
Connections and logic
of the ADC

To use apparatus intelligently it helps to understand what is going on inside;
the discussion below focuses on giving some insight into what occurs when
you do an analog conversion. As with most things , such discussion has many
layers of increasing depth and detail. This discussion will go only one veneer
down.

The analog to digital conversion is done by an ADC 0817 IC which is
connected to the address and data busses and to the R/W (read/write) wire
of the APPLE computer (Figure 0.1). Addresses 49312-49319 are devoted
to doing analog to digital conversions for channels ~7 on the protoboard to
which you have attached your thermistor and potentiometers for measuring
voltages.

The BASIC instruction 'POKE address, data' which you used to actuate a
voltage conversion is an instruction which says: store the number 'data' in
location specified by the number 'address'. The 6502 will write the data to
memory by holding the R/W wire LO (Holding it at 0 V specifies a 'write '
operation to memory) , putting the specified address on the 16 wires of the
address buss , and then putting the data on the data buss . An ordinary RAM
location at the specified address would respond by storing the number which
appears on the data buss. The ADC is not ordinary memory; it is an 110
device connected to the computer. The 6502 uses a system of memory

To bit 0
of data
buss

D
A
T
A

Start

R/W and DEY------'
ADC

AO AI A2A3 and DEY and R/W

16: I Multiplexer (channel select)

ChO

Not
connected

132 Appendix D

mapped I/0 which means that all input and output are handled through
special memory locations .

When the ADC 'hears' one of its addresses called , with the R/W line LO
requesting it to store data , it disregards what is on the data buss . This makes
the number in the data field of the POKE instruction irrelevant. Instead of
storing data the ADC switches the analog channel specified by the lower four
address bits to its analog to digital conversion section and then starts
conversion . The conversion from analog to digital requires about 100 t-LS for
the ADC 0817 which is much less than the time required for a single BASIC
instruction . When the conversion is completed , the digital result is stored in
a memory register in the ADC. This is located at the base address 49312.

The BASIC instruction 'X=PEEK (address) , reads the number in the
memory locations specified by 'address ' and sets the variable X equal to the
data read . When the PEEK (49312) instruction is interpreted the 6502 CPU
puts the address 49312 on the address buss , sets the RIW line HI to indicate
a read and then takes the data off the data buss. By indicating a READ the
CPU requests the memory location at 'address ' to place the data on the buss .
Thus, in response to this request , ADC places on the data buss the data from
the last analog to digital conversion which was carried out.

Appendix E
VIA data sheets

Although cryptic, data sheets contain all of the detailed information about a
particular device. But, be warned!, they are sometimes inaccurate due to
typos, poor editing and even slight misrepresentation of the capabilities.
These following data sheets for the 6522 manufactured by Rockwell seem to
be accurate.

© ROCKWELL INTERNATIONAL CORPORATION
Semiconductor Products Division , 1984

134 R6522

R6522
VERSATILE INTERFACE

ADAPTER (VIA)

DESCRIPTION

The R6522 Versatile Interface Adapter (VIA) is a very flexible l/0
control device. In addition, this device contains a pair of very
powerful 16-bit interval timers, a serial-to-parallel/parallel-to
serial shift register and input data latching on the peripheral
ports . Expanded handshaking capability allows control of
bidirectional data transfers between VIA's in multiple processor
systems.

Control of peripheral devices is handled primarily through two
8-bit bidirectional ports. Each line can be programmed as either
an input or an output. Several per ipheral 1/0 lines can be
controlled directly from the interval timers for gP-nerating
programmable frequency square waves or for counting exter­
nally generated pulses. To facilitate control of the many powerful
features of this chip, an interrupt flag register, an interrupt enable
register and a pair of function control registers are provided.

ORDERING INFORMATION
..---- ----- - --- ---------- ---

Part Number:
R6S22

L Temperature Range
Blank = 0°C to + 70°C

R = - 40°C to +85°C

Package
C = Ceramic
P = Plastic

Frequency
No Letter = t MHz

A = 2 MHz

Document No. 29000D47

FEATURES

• Two 8-bit bidirectional 1/0 ports

• Two 16-bit programmable timer/counters

• Serial data port

• TIL compatible

• G~OS compatible peripheral control lines

• Expanded " handshake" capability allows positive control of
data transfers between processor and peripheral devices.

• Latched output and input registers

• 1 MHz and 2 MHz operation

• Single + SV power supply

Vss CAl
PAO CA2
PAl RSO
PA2 RSl
PA3 RS2
PA4 RS3
PAS RES
PA6 DO
PA7 01
PBO 02
PB1 03
PB2 04
PB3 OS
PB4 06
PBS 07
PB6 02
PB7 CSl
CBl CS2
CB2 RiW
Vee IRQ

R6S22 Pin Configuration

Data Sheet Order No. D47
Rev. 8, October 1984

R6522

INTERFACE SIGNALS

RESET (RES)

A low reset (RES) input clears all R6522 internal registers to logic
0 (except T1 and T21atches and counters and the Shift Register).
This places all peripheral interface lines in the input state, disa­
bles the timers , shift register, etc. and disables interrupting from
the chip.

INPUT CLOCK (PHASE 2)

The input clock is the system ~2 clock and triggers all data
transfers between processor bus and the R6522 .

READ/WRITE (R/W)

The direction of the data transfers between the R6522 and the
system processor is controlled by the RIW line in conjunction
with the CS1 and CS2 inputs. When RiW is low, (write operation)
and the R6522 is selected, data is transferred from the processor
bus into the selected R6522 register. When R/W is high , (read
operation) and the R6522 is selected, data is transferred from
the selected R6422 register to the processor bus .

DATA BUS (DO-D7)

The eight bidirectional data bus lines transfer data between the
R6522 and the system processor bus. During read cycles, the
contents of the selected R6522 register are placed on the data
bus lines. During write cycles, these lines are high-impedance
inputs and data is transferred from the processor bus into the
selected register. When the R6522 is not selected, the data bus
lines are high-impedance.

D0-07

02

R6500 RtW
MICROPROCESSOR
BUS CS1, CS2
INTERFACE

RSO-RS3

RES

IRQ

R6522
VIA

Versatile Interface Adapter (VIA)

CHIP SELECTS (CS1, CS2)

The two chip select inputs are normally connected to processor
address lines either directly or through decoding. The selected
R6522 register is accessed when CS1 is high and CS2 is low.

REGISTER SELECTS (RSO-RS3)

The coding of the four Register Select inputs select one of the 16
internal registers of the R6522 , as shown in Table 1.

INTERRUPT REQUEST (IRQ)

The Interrupt Request output goes low whenever an internal
interrupt flag is set and the corresponding interrupt enable bit is a
logic 1 . This output is open-drain to allow the interrupt request
signal to be wire-OR'ed with other equivalent signals in the
system.

PERIPHERAL PORT A (PAO-PA7)

Port A consists of eight lines which can be individuallly pro­
grammed to act as inputs or outputs under control of Data Direc­
tion Register A. The polarity of output pins is controlled by an
Output Register and input data may be latched into an internal
register under control of theCA 1 line. All of these modes of oper­
ation are controlled by the system processor through the internal
control registers. These lines represent one standard TIL load in
the input mode and will drive one standard TIL load in the output
mode. Figure 2 illustrates the output circuit.

PAO-PA7

CA1

CA2
PERIPHERAL

CB1 INTERFACE

CB2

PBO-PB7

Figure 1. R6522 VIA Interface Signals

135

136 R6522

PORT A CONTROL LINES (CA 1, CA2)

The two Port A control lines act as interrupt inputs or as hand­
shake outputs. Each line controls an internal interrupt flag with a
corresponding interrupt enable bit. In addition, CA1 controls the
latching of data on Port A input lines. CA 1 is a high-impedance
input only while CA2 represents one standard TIL load in the
input mode. CA2 will drive one standard TIL load in the output
mode.

PORT B (PBO- PB7)
Peripheral Port B consists of eight bidirectional lines which are
controlled by an output register and a data direction register in
much the same manner as the Port A. In addition, the polarity of
the PB7 output signal can be controlled by one of the interval tim­
ers while the second timer can be programmed to count pulses
on the PB6 pin. Port B lines represent one standard TIL load in

Versatile Interface Adapter (VIA)

the input mode and will drive one standard TIL load in the output
mode. In addition, they are capable of sourcing 1 .0 mA at 1.5 Vdc
in the output mode to allow the outputs to directly drive Darlington
transistor circuits. Figure 3 is the circuit schematic.

PORT B CONTROL LINES (CB1 , CB2)

The Port B control lines act as interrupt inputs or as handshake
outputs . As with CA1 and CA2, each line controls an interrupt
flag with a corresponding interrupt enable bit. In addition, these
lines act as a serial port under control of the Shift Register. These
lines represent one standard TIL load in the input mode and
will drive one standard TIL load in the output mode. CB2 can
also drive a Darlington transistor circuit; however, CB1 cannot.

Table 1. R6522 Register Addressing

Register RS Coding
Number R53 R52 RS1 RSO

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0
5 0 1 0 1

6 0 1 1 0
7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1

14 1 I 1 0
15 1 1 1 1

NOTE: 'Same as Register 1 except no handshake.

1/0 CONTROL~
OUTPUT DATA~ 1

I

+SV

INPUT DATA-----------'

PAO-PA7,
CA2

Figure 2. Port A Output Circuit

Register
Des I g.

ORB/IRB

ORA/IRA

DDRB

DORA

T1C-L

T1C-H

TIL-L

T1L-H

T2C-L

T2C-H

SR

ACR

PCR

IFR

IER

ORA/IRA

Register/Description

Write (RiW = L) Read (R/W - H)

Output Register B Input Register B

Output Register A Input Register A

Data Direction Register B

Data Direction Register A

T1 Low-Order Latches I T1 Low-Order Counter

T1 High-Order Counter

T1 Low-Order Latches

T1 High-Order Latches

T2 Low-Order Latches T2 Low-Order Counter

T2 High-Order Counter

Shift Register

Auxiliary Control Register

Peripheral Control Register

Interrupt Flag Register

Interrupt Enable Register

Output Register A· Input Register A·

+5V

INPUT
OUTPUT - ----..---\

CONTROL

INPUT DATA----------- _j

--

PBO-PB7,
CB1, CB2

'----- ----------------------·

Figure 3. Port B Output Circuit

R6522

FUNCTIONAL DESCRIPTION

The internal organization of the R6522 VIA is illustrated in Figure
4.

PORT A AND PORT B OPERATION

The R6522 VIA has two 8-bit bidirectional 1/0 ports (Port A and
Port B) and each port has two associated control lines.

Each 8-bit peripheral port has a Data Direction Register (DDRA,
DDRB) for specifying whether the peripheral pins are to act as
inputs or outputs. A 0 in a bit of the Data Direction Register
causes the corresponding peripheral pin to act as an input. A 1
causes the pin to act as an output.

Each peripheral pin is also controlled by a bit in the Output Regis­
ter (ORA, ORB) and the Input Register (IRA, IRS). When the pin is
programmed as an output, the voltage on the pin is controlled by
the corresponding bit of the Output Register. A 1 in the Output
Register causes the output to go high , and a "0" causes the out­
put to go low. Data may be written into Output Register bits corre­
sponding to pins which are programmed as inputs. In this case,
however, the output signal is unaffected.

Versatile Interface Adapter (VIA)

Reading a peripheral port causes the contents of the Input Regis­
ter (IRA, IRB) to be transferred onto the Data Bus. With input
latching disabled, IRA will always reflect the levels on the PA
pins. With input latching enabled , IRA will reflect the levels on the
PA pins at the time the latching occurred (via CA 1).

The tRB register operates similar to the IRA register. However,
for pins programmed as outputs there is a difference. When
reading IRA, the level on the pin determines whether a 0 or a 1 is
sensed. When reading IRB, however, the bit stored in the output
register, ORB, is the bit sensed . Thus, for outputs which have
large loading effects and which pull an output "1" down or which
pull an output " 0 " up, reading IRA may result in reading a " 0 "
when a " 1" was actually programmed, and reading a "1" when
a "0" was programmed. Reading IRB, on the other hand, will
read the " 1" or " 0" level actually programmed, no matter what
the loading on the pin.

Figures 5 through 8 illustrate the formats of the port registers.
In addition, the input latching modes are selected by the Auxiliary
Control Register (Figure 14).

INTERRUPT
CONTROL

r------------------------------------ IRQ

DATA
BUS

RES
R/W
</>2

DATA
BUS

BUFFERS

CS1 CHIP
CS2 ACCESS
RSO - CONTROL
RS1
RS2
RS3

PERIPHERAL
(PCR)

AuxiLIARY
(ACR)

FUNCTION
CONTROL

LATCH : LATCH
(T1L-H) : (T1L-L)

COUNTER i CO-UNT-ER
(T1C-H) : (T1C-L)

TIMER 1

INPUT LATCH
(IRA)

OUTPUT
(ORA)

DATA DtR
(DORA)

DATA DIR
(DDRB)

Figure 4. R6522 VIA Block Diagram

BUFFERS
(PA)

PORT A

I------------------ CA1
--------- CA2

BUFFERS
(PB) PORT B

137

138 R6522

HANDSHAKE CONTROL OF OAT A TRANSFERS

The R6522 allows positive control of data transfers between the
system processor and peripheral devices through the operation
of "handshake" lines. Port A lines (CA 1, CA2) handshake data
on both a read and a write operation while the Port B lines (CB1 ,
CB2) handshake on a write operation only.

Read Handshake

Positive control of data transfers from peripheral devices into the
system processor can be accomplished very eHectively using
Read Handshaking. In this case, the peripheral device must gen­
erate the equivalent of a "Data Ready" signal to the processor
signifying that valid data is present on the peripheral port. This
signal normally interrupts the processor, which then reads the

~-, REG 0-0RB/IRB

I
i
i

I
L_-----~84

OUTPUT REGISTER
" B" (ORB)OR
INPUT REGISTER
" B" (IRB) ~------- PB5

"" DATA DIHECTIQN
SElECTION

OORB a T' (0UiPl!T)

DOAB " "O' "(IN..-un

WAITE READ

VPU RITES OUTPUT LEVEL MPU READS OUTPUT REGISTER
:OF':B i BIT IN ORB PIN LEVEL HAS NO

AFFECT

MPU WAITI:.S :N"r0 ORB , BUT MPU READS INPUT LEVEL ON PB
(INPUT LATCHING :::liSABLEO) NC: EF~EST ON PIN .._fVEL

UI'Ofll ~UP.B CHANGED

DORB • ·o·· {INPUT) MPUREA0$1A8BIT. WHICH IS THE

(INPUT LATCHING ENABLE OJ LEVEL OF THE PBPIN AT THE TIME

OF Tl-tf LAST CBI ACTIVE
TRANSITION

Figure 5. Output Register B (ORB), Input Register B (IRB)

0" ASSOCIATED PB PIN IS AN INPUT
(HIGH IMPEDANCE)

. ,.. ASSOCIATED PB PIN IS AN OUTPUT
WHOSE LEVEl IS DETERMINED BY
ORB REGISTER BIT

Figure 7. Data Direction Register B (DDRB)

Versatile Interface Adapter (VIA)

data, causing generation of a "Data Taken" signal. The periph­
eral device responds by making new data available. Th1s process
continues until the data transfer is complete.

In the R6522 , automatic "Read" Handshaking is possible on the
Peripheral A port only. TheCA 1 interrupt input pin accepts the
"Data Ready" signal and CA2 generates the "Data Taken" sig­
nal. The "Data Ready" signal will set an internal flag which may
interrupt the processor or which may be polled under program
control. The "Data Taken" signal can either be a pulse or a level
which is set low by the system processor and is cleared by the
"Data Ready" signal. These options are shown in Figure 9 which
illustrates the normal Read Handshake sequence .

REG 1-0RA/IRA

I ' i•l•i'i ' i' 1·1'1
L PAO

PAl

PA2 OUTPUT REGISTER
PA) " A" (ORA)OR
PAO INPUT REGISTER

PA5 " A" (IRA)

,.,
PAl

.,,
DATA DIRECTION WAITE READ

SELECTION

DORA • ' 1 .. !OUTPUT] ~PU WRITES OUTPUT LEVEL ~PU READS LEVEL ON PA PIN
(INPUT LATCHING DISABLED! lORA)

DORA • \ (OUTPUT] MPU READS IRA BIT WHICI-IIS THE
(INPUT LATCHING ENABLEOl LEVEL OF THE PAPIN AT THE TIME

OF THE LAST CA \ ACTIVE
TRANSITION

DORA • 0 (INPvn MPU WRITES INTO ORA BUT MPU AEAOS LEVEL ON PA PIN
(INPUT LATCHING OISABLEOI NO EFFECT ON PIN LEVEL

UNTIL DORA CHANGED

DORA • o· (INPUT] ~PUAEAOSIRABIT WHICH IS THE
(INPUT LATCHING ENABLEOI LEVEL Of THE PAPIN AT THE TIME

OF THE LAST CA 1 ACTIVE
TRANSITION

Figure 6. Output Register A (ORA), Input Register A (IRA)

REG3-DDRA

I i'-----
iL.._ __ _

0' ASSOCIATED r>A PIN IS AN INPU1
(HIGH !MPEOANCf)

. 1" ASSOCIATED PA PIN IS AN OLITPUT

VIHOSE LEVEL. tS I")ETEHMII>IED BY
OAI\ REGISTER B IT L_________ ---------

DATA DIRECTION
REGISTER " A" (DORA)

Figure 8. Data Direction Register A (DORA)

I
I

i
I

R6522 Versatile Interface Adapter (VIA)

¢
2 ~~~~ll__f"L__fl__fl_

~c~~~ READY I f/Z?:ZX0/Zl I II II:

IRQ OUTPUT '1- _ '-------iL----

READ IRA OPERATION ==lll I
" DATA TAKEN " ----------~·------'
HANDSHAKE MODE
(CA2)

" DATA TAKEN "
PULSE MODE -----------(

11----+----

11'----J
11------

(CA2)

Figure 9. Read Handshake Timing (Port A Only)

Write Handshake

The sequence of operations which allows handshaking data from
the system processor to a peripheral device is very similar to lhat
described for Read Handshaking. However, lor Write Handshak­
ing, the R6522 generates the "Data Ready" signal and the
peripheral device must respond with the "Data Taken" signal.
This can be accomplished on both the PA port and the PB port on
the R6522. CA2 or CB2 act as a "Data Ready" output in either
the handshake mode or pulse mode and CA 1 or CB 1 accept the
" Data Taken" signal from the peripheral device, setting the inter­
rupt flag and clearing the " Data Ready" output. This sequence
is shown in Figure 10.

REG 12-PERIPHERAL CONTROL REGISTER

1>1•1'1 '1 3 1'1' ol

Selection of operating modes for CA 1, CA2, CB1 , and CB2 is
accomplished by the Peripheral Control Register (Figure 11)-

C81CONTROL ~
7 6 S OPERATION

0 0 0 INPUT NE G AT IVE AC TI V E [OGE -- - -
0 0 1 INOEPENOENT INTERR UPT

INPU]..NEG EOG~

~ ; ~ ~Z~~£8~~~~~rc/~~~p\ocE_
INPU TPOS~O~ -----

1 0 0 HANOSHAI((OU TPU T

1 0 1 PUL SE OUTPIJ!
1 1 0 LOW OU TPUT

1 1 1 HI GH OU TPUT

C81 INTERRUPT CO NTROL

1
0 , NEGATIVE AC TI VE EDGE I
I • POS ITIVE AC TI VE EDGE

·SEE NOT£ IN FIGURE 29

--
- -

U C AIINTERFIU PT CO NTR OL

0 "'l(GIHIV [ACTIVE EOGEJ
1 POSITIVE AC TIV[EDGE I

CAl CO NTROL

) 1 1 OP ERAT ION

~~ ~ ::6~:e~\~fN!f~~J~CAT~~~T£~~
IN PU T NEG EDGE.-

Figure 11. Peripheral Control Register (PCR)

-1>2~11~/I..IL.....J"LJ""
WRITE ORA, ORB ~ ~
OPERATION ----.J L---11 11-----l L...,.__

"DATA READY " ~~~
HANDSHAKE MODE l~'-----'

(CA
2, g~~A READY ~ ,....--! II I

PULSEMODE ~
(CA2, CB2) I

"DATA TAKEN ~ ~,~1..2222l I
(CA1 , CB1) «

IRQ OUTPUT ll______r-

Figure 10. Write Handshake Timing

139

140 R6522

COUNTER/TIMERS

There are two independent 16-bit counter/timers (called Timer 1
and Timer 2) in the R6522. Each timer is controlled by writing
bits into the Auxi liary Control Register (ACR) to select the mode
of operation (Figure 14.

Timer 1 Operation

Interval Timer T1 consists of two 8-bit latches (Figure 12) and
a 16-bit counter (Figure 13). The latches store data which is to
be loaded into the counter. After loading , the counter decrements
at 02 clock rate. Upon reaching zero , an interrupt flag is set,
and IRQ goes low if the T1 interrupt is enabled . Timer 1 then

REG 6-TIMER 1 LOW-ORDER LATCH

WRITE - 13 BITS LOADED !N"!O T1 i..OW-ORDEA
:...t.fCHES rHtS OPERATION 1$ NO
DIFFERENT rHAN A WAITE INTO
PEG t,

READ -8 BITS Fl=lOM T1 LOW-CRr1ER LATCHES
TRANSFE AREO TG .._,?U UNUKE REG 4
OPE.RATION THIS LOE ~ NOT CAUSE
RESET OF Tl lf'I<,[PRliPT F\.~\G

Versatile Interface Adapter (VIA)

disables any further interrupts. automatically transers the con­
tents of the latches into the counter and cont inues to decrement.
In addition , the timer may be programmed to invert the output
signal on peripheral pin PB7 each time it "times-out. " Each of
these modes is discussed separaely below.

Note that the processor does not write directly into the low-order
counter (T1 C-L). Instead, this half of the counter is loaded
automatical ly from the low order latch (T1 L-L) when the
processor writes into the high order counter (T1 C-H). In fact , it
may not be necessary to write to the low order counter in some
applications since the timing operation is triggered by writing
to the high order latch .

REG 7-TIMER 1 HIGH-ORDER LATCH~l
1,1·1 , I , I , I , I, I " I
I I I LL=::: I

l
l I~ ~

20
4

8 COUNT I
'------- 4096 VALU!::

'--------- 8192

'---- ----- 16384

'---------- 32768

WAITE- 8 BITS LOADED INTO T1 HIGH-ORDER
LATCHES UNLIKE REG 4 OPERATION
NO LATCH-TO-COUNTER TRANSFERS
TAKE PLACE

AE4.0 -8 BITS FROM T1 HIGH-ORDER LATCHES
TRANSFERRED TO MPU

_____________________________________ _j

Figure 12. Timer 1 (T1) Latch Registers

~-~~;·;--;_;-~~~;;;-~;~UNTER REG 5-TIMER 1 HIGH-ORDER COUNTER

I O+H+I·H
I I iII I I! L_,:

I II . I ' I ' ! 'I I~-; i
1 I I L___ 4 :

I I I l ' ' I L__ __ R ~ COUNT

,_1 L_- - ~ :] VAC"'

WAITE- 8 BITS LOADED INTO 11 LOW-ORDErl
LATCHES LATCH CONTENTS ARE
TRANSFERRED INTO LOW-ORDER
COUNTER AT THE TIME THE HIGH·
ORDER COUNTER IS LOADED {REG 5)

READ - 8 BITS FROM T1 LOW-ORDER COUNTER
TRANSFERR ED TO MPU IN ADDITION
T1 INTERRUPT FLAG IS RESET (BIT 6
IN INTERRUPT FLAG REGISTER)

\".-R ITE - 8 61TS LCCIF:.D r\'TO T · r1iGH-0ADt:P
LATCHES .G..t 50 .._,. THI S TiME 6(•TH
HIGH- AND LOW -Oh DI:.R LA ':"CHES
TRA~sSFEARE D 'r-<TO T~ :::-CU·'\iTF~
T1 • NTE~AUPT >'LA G n.;_SQ !S RESET

READ - 8 IBTS FF10M T 1 r~ r(.., H ORDER Cl,U rH[U
TPANSFERRF.C. TO rvi?U

Figure 13. Timer 1 (T1) Counter Registers

COUNT
VALUE

I

R6522 Versatile Interface Adapter (VIA)

REG 11-AUXILIARY CONTROL REGISTER

1,1• 1+ 1' 1'1'1°
Tl TIMER CONTR O L

~ L """""" "
7 6 OPERAT I ON '"' I 0 DISABLE ; \

1 ENABLE LATCHING
0 0 TI M ED INTERRUPT

EACH TIME T l IS
LOADED DISABLED

0 I CONTINUOUS
INTERRUPTS

1 0 TIM ED INTERRUPT ONE SHOT
EACH TIME Tl IS OUTPUT SHIFT REGISTER CONTROL

LOADED
-1 SOU ARE

4 J 2 OPERA TI ON

1 1 CONT IN UOU S 0 0 ~ ~~~~~~NDEA CONTROL QFT] - --INTERRUPTS WAVE
0 0

OUTPUT
0 1 0 S-HIFT IN UN~fl CQ.NTAOL OF tJ2

T2 TIMER CONTROL 0 1 ~ ~j ~U~-1~~~ ~~~:~~~ ~~ ~;:ACT\K
5 OPE RA TION

1 0

1 0 1 SH IFT OUT UNDER CONTROL OF T1
0 T IMED IN TERRUPT

1 1 0 SHIFT OUT UNDER CONTROL OF (J2
1 COU NT DOWN WIT H i

PULSES ON PB6 1 1 1 SHIFT0UTUN0ER- CON'TRoL OF EXT CLK

Figure 14. Auxiliary Control Register (ACR)

Timer 1 One-Shot Mode

The Timer 1 one-shor mode generates a single interrupt for each
timer load operation . As with any interval timer, the delay
between the " write T1C-H " operation and generation of the
processor interrupt is a direct function of the data loaded into
the timing counter. In addition to generating a single interrupt,
Timer 1 can be programmed to produce a single negative pulse
on the PB7 peripheral pin . With the output enabled (ACR7 = 1)
a " write T1C-H" operation will cause PB7 to go low. PB7 will
return high when Timer 1 times out . The result is a single
programmable width pulse .

Timing for the R6522 interval timer one-shot modes is shown
in Figure 15.

02

WRITE T1C-H

IRQ OUTPUT

PB7 OUTPUT

N N-1 N-2 I N-3 I

In the one-shot mode, writing into the T1 L-H has no effect on
the operation of Timer 1. However, it will be necessary to assure
that the low order latch contains the proper data before initiating
the count-down with a "write T1 C-H" operation . When the
processor writes into the high order counter (T1C-H), the T1 inter­
rupt flag will be cleared , the contents of the low order latch will
be transferred into the low order counter, and the timer will begin
to decrement at system clock rate . If the PB7 output is enabled ,
this signal will go low on the 02 following the write operation .
When the counter reaches zero , the T1 interrupt flag will be set,
the IRQ pin will go low (interrupt enabled), and the signal on
PB7 will go high. At this time the counter will continue to decre­
ment at system clock rate . This allows the system processor to
read the contents of the counter to determine the time since inter­
rupt. However, the T1 interrupt flag cannot be set again unless
it has been cleared as described in this specification .

N-1 N-2 I N-3 I

f-------~ N + 1.5 CYCLES --------1

Figure 15. Timer 1 One-Shot Mode Timing

141

142 R6522

Timer 1 Free-Run Mode

The most important advantage associated with the latches in
Tt is the ability to produce a continuous series of evenly spaced
interrupts and the ability toproduce a square wave on PB7 whose
frequency is not affected by variations in the processor inter­
rupt response time This is accomplished in the "free-running"
mode.

In the free-running mode, the interrupt flag is set and the signal
on PB7 is inverted each time the counter reaches zero , at which
time the timer automatically transfers the contents of the latch
into the counter (16 bits) and continues to decrement from there.
The interrupt flag can be cleared by writing Tt C-H, by reading
TtC-L, or by writing directly into the flag as described later.
However, it is not necessary to rewrite the timer to enable setting
the interrupt flag on the next time-out.

All interval timers in the R6522 are " re-triggerable." Rewriting
the counter will always re-initialize the time-out period. In fact,

~
I
I

OPERATION

IRQ OUTPUT

PB7 OUTPUT

Versatile Interface Adapter (VIA)

the time-out can be prevented completely if the processor con­
tinues to rewrite the timer before it reaches zero . Timer 1 will
operate in this manner if the processor writes into \he high order
counter (TIC-H). However . by loading the :atches only , the
processor can access the timer during each down-counting
operation without affecting the time-out in process. Instead, the
data loaded into the latches will determine the length of the next
time-out period . Th1s capability is particularly valuable in the free­
running mode with the output enabled. In this mode, the signal
on PB7 is inverted and the interrupt flag is set with each time­
out. By responding to the interrupts with new data for the latches,
the processor can determine the period of the next half cycle
during each half cycle of the output signal on PB7. In this
manner, very complex waveforms can be generated.

A precaution to take in the use of PB7 as the timer output con­
cerns the Data Direction Register contents for PB7. Both DDRB
bit 7 and ACR bit 7 must be 1 for PB7 to function as the timer
output. If one is 1 and the other is 0 , then PB7 functions as a
normal output pin, controlled by ORB bit 7.

~ N + 1.5 CYCLES - -+----- N + 2 CYCLES -----1

L..-------------------------------- -----------------------"

Figure 16. Timer 1 Free-Run Mode Timing

Timer 2 Operation

Timer 2 operates as an interval timer (in the "one-slot" mode
only), or as a counter for counting negative pulses on the PB6
peripheral pin A single control bit in the Auxiliary Con\rcl Register
selects between these two modes. This timer is r.ompri<;;ed of a
"write-only" lower-order latch (T2L-L), a "read-oniy' ' low-crder
counter (T2C-L) and a read/write high order counter (T2C-H).
The counter registers act as a 16-bit counter which decrements
at 02 rate. Figure 17 illustrates the T2 Latch/Counter Registers.

Timer 2 One-Shot Mode

As an interval timer, T2 operates in the " one-shot" mode similar
to Time 1. In this mode, T2 provides a single interrupt for each
" write T2C-H " operation. After timing out, the counter will con­
tinue to decrement. However, setting of the interrupt ilag is
disabled after initial timEHJut so that it will not be set by the counter

decrementing again through zero. The processor must rewrite
T2C-H to enable setting of the interrupt flag . The interrupt flag
is cleared by reading T2C-L or by writing T2C-H. Timing for this
operation is shown in Figure 18.

Timer 2 Pulse Counting Mode

In the pulse counting mode, T2 counts a predetermined number
of negative-going pulses on PBO. This is accomplished by first
loading a number into T2 . Writing into T2C·H clears the interrupt
flag and allows the counter to decrement each time a pulse is
applied to PB6. The interrupt tlag is set when T2 counts down
past zero. The counter will then continue to decrement with each
pulse on PB6. However, it is necessary to rewrite T2C-H to allow
the interrupt flag tc set on a subsequent time-out. Timing for
this mode is shown in Figure 19. The pulse must be low on the
leading edge of 02 .

R6522

02

REG 8- TIMER 2 LOW-ORDER LATCH/COUNTER

COUNT
VALUE

WAITE - 8 BITS LOADED INTO T1LOW ORDER
LATCH

READ 8 BITS FROM T2 LOW ORDER COUNTER
TRANSFERRED TOMPU T21NTEARUPT
FLAG IS RESET

Versatile Interface Adapter (VIA)

REG 9-TIMER 2 HIGH-ORDER LATCH/COUNTER

, ..
"'
1024

2048 COUNT

4096
VALUE

8192

16384

32768

WAITE - BBITSLOAO[OINTOT"! ttiGHOROER
COUNTER ALSO LOW VADER L,.).lCH
TRANSFERRED TO LOW ORDER
COUNTER IN ADDITION . T2 INTERRUPT
FLAG IS RESET

R EAD - 8 BITS FROM T2 H IGH ORDER COUNTER
TRANSFERRED TO MPU

Figure 17. Timer 2 (T2) Latch/Counter Registers

WRITE T2C-H ----1

IRQ OUTPUT

WRITE T2C-H
OPERATION

PB61NPUT

IRQ OUTPUT

I N I N-1 I N-2 N-3 0

1---- N + 1.5 CYCLES -------l

Figure 18. Timer 2 One-Shot Mode Timing

u u ;, u

N N-1 N-2 I I

Figure 19. Timer 2 Pulse Counting Mode

N-1 N-2 N-3

u

0 -1

143

144 R6522

SHIFT REGISTER OPERATION

The Shift Register (SR) performs serial data transfers into and
out of the CB2 pin under control of an internal modulo-8 counter.
Shift pulses can be applied to the CB1 pin from an external
source or, with the proper mode selection , shift pulses generated
internally will appear on the CB1 pin for controll ing external
devices.

The control bits which select the various shift register operating
modes are located in the Auxiliary Control Register. Figure 20
illustrates the configuration of the SR data bits and Figure 21
shows the SR control bits of the ACR.

SR Mode 0 - Disabled

Mode 0 disables the Shift Register. In this mode the micropro­
cessor can write or read the SR and the SR will shift on each CB1
positive edge shifting in the value on CB2. In this mode the SR
interrupt Flag is disabled (held to a logic 0) .

SR Mode 1 - Shift In Under Control of T2

In mode 1, the shifting rate is controlled by the low order 8 bits of
T2 (Figure 22). Shift pulses are generated on the CB1 pin to con­
trol shifting in external devices. The time between transitions of
this output clock IS a function of the system clock period and the
contents of the low order T2 latch (N).

~---------REG 10-SHIFT REGISTER

I [>[oJ+I+J 1 JoJ
II II I!. I I ___ -, II 'L ... - 1

I ~ ~------:
I ; \. _______ 1 SHIFT
1 ! I REGISTER

l ~-~-=---== i BITS

- - - ---- 1

-------J
N O": t:S
1 WHEN SH t FTir..IG OUT BIT 7 15 THE FIRST BIT

UU T AND SIMULTANE OUSLY 15 RO TATE <) BAC K
INTO BIT 0

2 WHEN SHIF rtNG ~- BITS INITIAL LY ENTEA
BIT 0 .AND ARE SH IFTED TO WAR::>S B!T 7

Figure 20. Shift Registers

WRITE OR READ
SHIFT REG

---~1

Versatile Interface Adapter (VIA)

The shifting operation is triggered by the read or write of the SR
if the SR flag is set in the I FR. Otherwise the first shift will occur
at the next time-out of T2 after a read or write of the SR. Data
is shifted first into the low order bit of SR and is then shifted into
the next higher order bit of the shift register on the negative-going
edge of each clock pulse . The input data should change before
the positive-going edge of the CB1 clock pulse. This data is shifted
into the shift register during the '/!2 clock cycle following the
positive-going edge of the CBi clock pulse. After 8 CBj.clock
pulses, the shift register interrupt flag will set and IRQ will go low.

SR Mode 2 - Shift In Under 02 Control

In mode 2, the shift rate is a direct function of the system clock
frequency (Figure 23). CB1 becomes an output which generates
shift pulses for controlling external devices. Timer 2 operates as
an independent interval timer and has no effect on SR. The shift­
ing operation is triggered by reading or writing the Shift Register.
Data is shifted , first into bit 0 and is then sh1fted into the next
higher order bit of the shift register on the trailing edge of each <i>2
clock pulse. After 8 clock pulses , the shift register interrupt flag
will be set, and the output clock pulses on CB1 will stop.

REG 11-AUXILIARY CONTROL REGISTER

I,I+I·H,I1H
Jj_L

L SHIFT REGISTER
MODE CONTROL

4 3 ' OPE RATION

0 0 0 DISABLED

0 0 1 SHIFT IN UNDER CONTROL OF T2

0 1 0 SHIFT IN UNDER CONTROL OF l ·1

0 1 1 SHIFT IN UNDER CONTROL OF EXT CLK

1 0 0 SHIFT OUT FREE RU NN ING AT 12 RATE

1 0 1 SHIFT OUT UNDER CON TROL O F 12

I
1 1 0 SHIFT OUT UNDER CONTR OL O F 1·2

1 1 1 SH I FT OUT UNDER CONTROL OF EX T c u(
J

Figure 21. Shift Register Modes

Figure 22. SR Mode 1 - Shift In Under T2 Control

R6522

SR Mode 3 - Shift In Under CB1 Control

In mode 3, external pin CB1 becomes an input (Figure 24) . This
allows an external device to load the shift register at its own pace.
The shift register counter will interrupt the processor each time
8 bits have been shifted in . The shift register stops after 8 counts
and must be reset to start again . Reading or writing the Shift
Register resets the lnterrrupt Flag and initializes the SR counter
to count another 8 pu lses .

Note that the data is shifted during the first system clock cycle
following the posiive going edge of the CB1 shift pulse. For this
reason, data must be held stable during the first full cycle follow­
ing CB1 going high .

SR Mode 4 - Shift Out Under T2 Control (Free-Run)

Mode 4 is very similar to mode 5 in which the shifting rate is
set by T2 . However, in mode 4 the SR counter does not stop

Versatile Interface Adapter (VIA)

the shifting operation (Figure 25) . Since the Shift Register bit
7 (SR7) is recirculated back into bit 0, the 8 bits loaded into the
shift register will be clocked onto CB2 repetitively . In this mode
the shift register counter is disabled .

SR Mode 5 - Shift Out Under T2 Control

In mode 5, the shift rate is controlled by T2 (as in mode 4) . The
shifting operation is triggerd by the read or write of the SR if
the SR flag is set in the IFR (Figure 26). Otherwise the first shift
will occur at the next time-out of T2 after a read or write of the
SR. However, with each read or write of the shift register the
SR Counter is reset and 8 bits are shifted onto CB2. At the same
time , 8 shift pulses are generated on CB1 to control shifting in
external devices. After the 8 shift pulses , the shifting is disabled,
the SR Interrupt Flag is set and CB2 remains at the last data
level.

02

READSR~~--~--------------------~~-----------------
CB1 OUTPUT

SHIFT CLOCK

CB21NPUT""-~~""'~~~~~~~~v-~,,-~(]C)C2:)C~~~~~~~~~~~~
DATA

Figure 23 . SR Mode 2 - Shift In Center 02 Control

Figure 24. SR Mode 3 - Shift In Under CB1 Control

02

WRITE SR

CB1 OUTPUT ------i
SHIFT CLOCK ~

2 x~--=3-~~

Figure 25. SR Mode 4 - Shift Our Under T2 Control (Free-Run)

145

146 R6522 Versatile Interface Adapter (VIA)

SR Mode 6 - Shift OUt Under 1/12 Control
Interrupt Flag each time it counts 8 pulses but it does not disable
the shifting function . Each time the microprocessor writes or
reads the shift register , the SR Interrupt Flag is reset and the
SR counter is initialized to begin counting the next 8 shift pulses
on pin CB1. After 8 shift pulses, the Interrupt Flag is set. The
microprocessor can then load the shift register with teh next by1e
of data.

In mode 6, the shift rate is controlled by the 02 system clock
(Figure 27).

SR Mode 7 - Shift Out Under CB1 Control

In mode 7, shifting is controlled by pulses applied to the CB1 pin
by an external device (Figure 28) . The SR counter sets the SR

fULJI.-lLil-
1 I I ~ I I

WRITE SR ___rlL-------!I-------+.--=-=::!-=-:::---.,__---11---......------
N + 2 CYCLES--- ~ _,. + 2 CYC~I-E-S---.L--,;.._....1~ ,'i,.._.....,,_' _ ___.r----

CB1 OUTPUT -------i._ __ _:--..... , 2 I 3 ! I ! 8
SHIFT CLOCK

02

r---=--'x..____-=-----x..____-=---jl: ~8 · g:~~UTPUT ~~~~~~W:<:'('*~\%~*:<:'('®:<:'('~~~~\i:<:'\'0;~~~~~\§~i)X __ ..;__ _ _,_- 2 . - 3 I , ____ j_!! __

L.

Figure 26. SR Mode 5 - Shift Out Under T2 Control

r-------02- ~

WRITE SR

CB1 OUTPUT
SHIFT CLOCK

CB2 OUTPUT
DATA

iRa

-__h----,'--+1--+--1 +-+1 1-+---1 +-+1 1-+--11-1-+---+1 ' 1-+---1. +---1 -

~~~~~~~~~~~ 7 X I 8 

_j 

L_ ________________________________________________________________________________ ~ 

Figure 27. SR Mode 6- Shift Out Under "2 Control 

~------------------ .. ---------------------------------------------------------------, 

02 

WRITE SA 

CB1 INPUT 
SHIFT CLOCK 

CB2 OUTPUT 
DATA 

Figure 28. SR Mode 7 - Shift Out Under CB1 Control 



R6522 

Interrupt Operation 

Controlling interrupts within the R6522 involves three principal 
operations. These are flagging the interrupts. enabling interrupts 
and signaling to the processor that an active interrupt exists 
within the chip. Interrupt flags are set in the Interrupt Flag Regis­
ter (IFR) by conditions detected within the R6522 or on inputs to 
the R6522. These flags normally remain set until the interrupt 
has been serviced. To determine the source of an interrupt, the 
microprocessor must examine these flags in order. from highest 
to lowest priority. 

Associated with each interrupt flag is an interrupt enable bit in 
the Interrupt Enable Register (I ER). This can be set or cleared 
by the processor to enable interrupting the processor from the 
corresponding interrupt flag. If an interrupt flag is set to a logic 1 
by an interrupting condition . and the corresponding interrupt 
enable bit is set to a 1, the Interrupt Request Output (I RQ) will 
go low. IRQ is an "open-collector" output which can be "wire­
OR'ed" with other devices in the system to interrupt the processor. 

Interrupt Flag Register (IFR) 

In the R6522 , all the interrupt flags are contained in one register. 
i.e .. the IFR (Figure 29). In addition, bit 7 of this register will be 
read as a logic 1 when an interrupt exists within the chip. This 
allows very convenient polling of several devices within a system 
to locate the source of an interrupt. 

The Interrupt Flag Register (IRF) may be read directly by the proc­
essor. In addition , individual flag bits may be cleared by writing 
a "1" into the appropriate bit of the IFR. When the proper chip 
select and register signals are appplied to the chip, the contents 
of this register are placed on the data bus. Bit ·; indicates the 

REG 13-INTERRUPT FLAG REGISTER 

r 7161 ~ 1·1 31 211 I 0 I SET BY CLEARED BY 

llcA
2 

r-C-A_2_A;_C_T 1-V-E -E-DG- E---,rR_E_A_D_O_R_W_R_IT- E---, 

REG l (ORA)• 
CAl- CAl ACTIVE EDGE READ OR WRITE 

REG 1 (ORA) 
SH IFT REG COMPLETE 8 SHIFTS READ OR WAITE 

SH IFT REG 
1 CB2 CB2 ACTIVE EDGE READ OR WAITE ORB• 

l
' C81 CB1 ACTIVE EDGE READ OR WRITE ORB 

TIMER 
2 
___ _, TIME OUT OF T2 READ T2 LOW OR 

~T~I~M7E~O~UT~OF~T1~~W~R:~~~~~·T~~27:~~W~GH~O~R--4 
TIME R 1 -----t;~.;;,:;.;;-.n---+~W~R~IT~E~T~1 ~H!SIG~H---~ 

ANY ENABLED CLEAR ALL 
IRQ -------jji~N~TE~R~R!.l!u~PTC _ _jl_;I~N£TE~R~R~U~PT~S~ _ __j 

·IF THE CA21CB2 CONTROL IN THE PCR IS SELECTED AS 
" INDEPENDENT" INTERRUPT INPUT . THEN READING OR 
WAITING THE OUTPUT REGISTER ORA/ORB WILL NOT 
CLEAR THE FLAG BIT INSTEAD. THE BIT MUST BE 
CLEARED BY WAITING INTO THE IFR , AS DESCRIBED 
PAEVIOUSL Y 

Figure 29. Interrupt Flag Register (IFR) 

Versatile Interface Adapter (VIA) 

status of the IRQ output. This bit corresponds to lhe logic func­
tion: IRO = IFR6 x IER6 + IFR5 x IER5 + IFR4 x IER4 + 
IFR3 x IER3 + IFR2 x IER2 + IFR1 x IER1 + IFRO x IERO. 

Note: 

x = logic AND. + = Logic OR. 

The IFR bit 7 is not a flag . Therefore. this bit is not directly cleared 
by writing a logic 1 into it. It can only be cleared by clearing all the 
flags in the register or by disabling all the active interrupts as dis­
cussed in the next section. 

Interrupt Enable Register (IER) 

For each interrupt flag in IFR, there is a corresponding bit in the 
Interrupt Enable Register (IER) (Figure 30). Individual bits in the 
IER can be set or cleared to facilitate controlling individual inter­
rupts without affecting others. This is accomplished by writing to 
the (IER) after bit 7 set or cleared to, in turn. set or clear selected 
enable bits. If bit 7 of the data placed on the system data bus 
during this write operation is a 0, each 1 in bits 6 through 0 clears 
the corresponding bit in the Interrupt Enable Register. For each 
zero in bits 6 through 0, the corresponding bit is unaffected. 

Selected bits in the IER can be set by writing to the IER with bil7 
in the data word set to a 1. In this case. each 1 in bits 6 through 0 
will set the corresponding bit . For each zero. the corresponding 
bit will be unaffected. This individual control of the setting and 
clearing operations allows very convenient control of the inter­
rupts during system operation . 

In addition to setting and clearing IER bits, the contents of this 
register can be read at any time. Bit 7 will be read as a logic 1, 
however. 

REG 14-INTERRUPT ENABLE REGISTER 

0 

L-------- TIMER 1 

L---------SET /CLEAR 

NOTES 

INTERRUPT 
DISABLED 

INTERRUPT 
ENABLED 

1. IF BIT 7 IS A .. o··. THEN EACH .. , ' IN BITS 0 - 6 DISABLES THE 
CORRESPONDING INTERRUPT 

2. IF BIT 7 IS A ' T ', THEN EACH ·· 1 ' IN BITS 0 - 6 ENABLES THE 
CORRESPONDING INTERRUPT . 

3 IF A READ OF THIS REGISTER IS DONE . BIT 7 WILL BE " 1" AND 
ALL OTHER BITS WILL REFLECT THEIR ENABLE / DISABLE STATE . 

Figure 30. Interrupt Enable Register (IER) 

147 



148 R6522 Versatile Interface Adapter (VIA) 

PERIPHERAL INTERFACE CHARACTERISTICS 

Symbol Characteristic Min. Max. Unit Figure 

t, , t, Rise and Fall Time for CA 1, CB1 , CA2 and CB2 Input Signals - 1.0 ~s -

tcA2 Delay Time, Clock Negative Transition to CA2 Negative Transition (read handshake or - 1.0 ~s 31a, 31b 
pulse mode) 

lAs t Delay Time, Clock Negative Transition to CA2 Positive Transition (pulse mode) - 1.0 ~ 31a 

tRS2 Delay Time, CA 1 Active Transition to CA2 Positive Transition (handshake mode) - 2.0 ~s 31b 

lwHS Delay Time, Clock Positive Transi tion to CA2 or CB2 Negative Transition 0.05 1.0 ~s 31c, 31d 
(write handshake) - · 

los Delay Time, Peripheral Data Valid to CB2 Negative Transition 0.20 1.5 ~s 31c, 31d 

1Rs3 Delay Time, Clock Positive Transition to CA2 or CB2 Positive Transition (pulse mode) - 1.0 ~s 31c 

IRS4 Delay Time, CAt or CBt Active Transition to CA2 or CB2 Positive Transition - - 2.0 ~s I 31d 
(handshake mode) 

-
n~ l 31d t21 Delay Time Required from CA2 Output to CA 1 Active Transition (handshake mode) 400 -

Ill Setup Time. Peripheral Data Valid to CA1 or CB1 Active Transition (input latching) 300 - I --;;-r-31~ 
tAL CA 1, CB 1 Setup Prior to Transition to Arm Latch 300 - ns 1 31e j 

tpoH Peripheral Data Hold After CA1 , CB1 Transition 150 - ns 3te J f---'sR~___._~hift-Out Delay Time - Time from <1>2 Falling Edge to CB2 Data Out - 300 ns 311 

, tsm Shift-In Setup Time - Time from CB2 Data In to <1>2 Rising Edge 300 - ns 31y I f-- .. 
tsRJ External Shift Clock (CB 1) Setup Time Relative to ¢ 2 Trailing Edge 100 Tcv ns 31g 

tiPW Pulse Width - PB6 Input Pulse 2 X Tcv - 31i 

t,cw Pulse Width --- CB 1 Input Clock 2 x Tcv - 31h 

t1ps ~lse Spacing - PB6 Input Pulse 2 x Tcv - 31i 

r~ _ Pulse Spacing - CBt . lnput Pulse 2 x Tcv - 3th 



R6522 Versatile Interface Adapter (VIA) 

PERIPHERAL INTERFACE WAVEFORMS 

02 

READ IRA 
OPERATION 

CA2 
" DATA TAKEN " 

READ IRA 
OPERATION 

CA2 
" DATA TAKEN " 

O.BV 

Figure 31a. CA2 Timing for Read Handshake, Pulse Mode 

~rr---f.ov O.BV 
/ 

,~'"" 
~~~TA READY " ----------------------1,: .... : ---~8: 

WRITE ORA, ORB
OPERATION

CA2, CB2
" DATA READY "

PA, PB
PERIPHERAL
DATA

Figure 31 b. CA2 Timing for Read Handshake, Handshake Mode

O.BV

1-- -- los---- 1

2.0V

O.BV

Figure 31c. CA2, CB2 Timing for Write Handshake, Pulse Mode

L ACTIVE
TRANSITION

2.0V

149

150 R6522

WRITE ORA, ORB
OPERATION

CA2, CB2
" DATA READY "

CA1 , CB1

Versatile Interface Adapter (VIA)

I ___ .. D_A_T_A_T_., •• _ .. ___ A_C_T_IV-E----------------------------~ L - TRANSITION

Figure 31d. CA2, CB2 Timing for Write Handshake, Handshake Mode

lll11poH
CA1 , CB1 ~ iov
INPUT LATCHING .

CONTROL ------- f--:_-:_-:_-:_-:_-:_-,-AL---_-_-_-_-_.J--+-1 ~·::liVE

02

CB2
SHIFT DATA
(OUTPUT)

CB1
SHIFT CLOCK
(INPUT OR
OUTPUT)

TRANSITION

Figure 31e. Peripheral Data Input Latching Timing

O.BV

f------ ts R1

Figure 31f. Timing for Shift Out with Internal or External Shift Clocking

R6522

02

CB2
SHIFT DATA
(INPUT)

CB1
SHIFT CLOCK
(INPUT OR
OUTPUT)

CB1
SHIFT CLOCK
INPUT

PB6
PULSE COUNT
INPUT

Versatile Interface Adapter (VIA)

r---- t lsR2 -~

,,. i
o.av

I

1.4V 1.4':
I

_ ,SR3 l
SET UP TIME MEASURED TO THE FIRST 0

~ RISING EDGE AFTER CB1 RISING EDGE. - -

Figure 31g. Timing for Shift in with Internal or External Shift Clocking

\ f[.ov 2.ov t
o.av o.av [I \ '-· ___ _

[_ ,lew --- j ~-- l1es ---
Figure 31h. External Shift Clock Timing

1 ~OV O.BV O.BV

~-llpw --·-_j --
1

COUNTER T2
DECREMENTS
HERE

Figure 31i. Pulse Count Input Timing

"l ,______
- ·1

2

151

152
R6522 Versatile Interface Adapter (VIA)

BUS TIMING CHARACTERISTICS

Parameter Symbol

READ TIMING

Cycle Time Tcv 1 10 0.5 10 J!S

Address Set-Up Time TACR 180 - 90 - ns

Address Hold Time TeAR 0 - 0 - ns

Peripheral Data Set-Up Time TPCR 300 - 150 - ns

Data Bus Delay Time TcoR - 365 - 190 ns

Data Bus Hold Time I THA 10 - 10 I - ns

WRITE TIMING

Cycle Time Tcv 1 10 0.50 ~~-t ;tS

02 Pu lse Width Tc 470 - 235 ns
-

1--· Address Set-Up Time TACW 180 - 90 - ns

Address Hold Time TcAw 0 - 0 - ns

R/W Set-Up Time Twcw 180 - 90 - ns

R/W Hold Time Tcww 0 - 0 - ns r- --
Data Bus Set-Up Time Tocw 200 - 90 - ns

Data Bus Hold Time THw 10 - 10 - ns
1--·

Peripheral Data Delay Time Tcpw - 1.0 - 0.5 J!S

~Peripheral Data Delay Time TcMos - 2.0 - 1.0 J!S
to CMOS Levels

! Note: tR ar,d IF = 10 to 30 ns.
-

R6522

BUS TIMING WAVEFORMS

02
CLOCK

CHIP SELECTS,
REGISTER SELECTS,
R/W

PERIPHERAL

DATA

~2

CLOCK

CHIP SELECTS,
REGISTER SELECTS

R/W

DATA

BUS

DERIPHERAL

DATA

Versatile Interface Adapter (VIA)
153

Read Timing Waveforms

f-------- T cv ------1

Write Timing Waveforms

154 R6522

ABSOLUTE MAXIMUM RATINGS*

Parameter Symbol Value

Supply Voltage Vee - 0.3 to + 7.0

Input Voltage VIN -0.3 to + 7.0

Operating Temperature
Commercial TA o to + 70
Industrial -40 to +85

Storage Temperature Tsm -55 to + 150

OPERATING CONDITIONS

Parameter Symbol Value

Supply Voltage Vee 5V ±5%

Temperature Range TA
Commercial o•c to 7o•c

DC CHARACTERISTICS

Unit

Vdc

Vdc

•c
•c

•c

Versatile Interface Adapter (VIA)

*NOTE: Stresses above those listed under ABSOLUTE MAX­
IMUM RATINGS may cause permanent damage to the device.
This is a stress rating only and functional operation of the device
at these or any other conditions above those indicated in the
other sections of this document is not implied. Exposure to abso­

lute maximum rating conditions for extended periods may affect

device reliability .

(Vee = 5.0 Vdc ±5%, Vss = 0 , TA TL to TH, unless otherwise noted)

Parameter Symbol Min. Typ.3 Max. Unit Test Conditions

Input High Voltage VIH 2.4 - Vee v
Input Low Voltage VIL -0 .3 - 0.4 v
Input Leakage Current I,N -- ±1 ±2.5 p.A V1N = OV to 5.25V

RAN, RES, RSO, RS1 , RS2, RS3, CS1, CS2, CA1,~2 Vee = OV

Input Leakage Current for Three-State Off lrs1 - ±2 ±10 p.A V1N = 0.4V to 2.4V
DO-D07 v ee = 5.25V

--
Input High Current l,y - tOO -200 - p.A VIN = 2.4V

PAO-PA7, CA2, PBO·PB7, CB1 , CBS ---1- Vee = 5.25V

Input Low Current I1L -· - 0.9 - 1.8 rnA VIL = 0.4V
PAO-PA7, CA2, PBO-PB7, CB1 , CB2 Vee = 5.25V

Output High Voltage I VoH - - Vee = 4.75V
All outputs 2.4 - - v ILOAD = -100 p.A
PBO·PB7, CB2 (Darlington Dnve) 1.5 - - v ILOAD = -1.0 rnA

Output Low Voltage ==Vm - - 0.4 v Vee = 4.75V

- --
ILOAD = 1.6 rnA

Output High Current (Sourcing) l loH
Logic -100 -1000 - p.A VoH = 2.4V
PBO-PB7, CB2 (Darlington Drive) -1 .0 -2.5 -10 rnA VoH = 1.5V

Output Low Current (Sinking) loL 1.6 - - rnA VoL = 0.4V

Output Leakage Current (Off State) I oFF - 4 ±10 p.A VoH = 2.4V
IRQ Vee = 5.25V

Power Dissipation Po - 450 700 mW

Input Capacitance CIN Vee = 5.0V
RAN, RES, RSO, RS1 , RS2, RS3, CSt , CS2, - - 7 pF VIN = OV
DO-D7, PAO-PA7, CAt , CA2, PBO-PB7
CB1 , CB2 - - 10 pF f = 1 MHz
~2 Input - - 20 pF TA = 25•c

1 Output Capacitance Cour - - 10 pF

! No1es:
I 1. All units are direct current (DC) except for capacitance.
I 2. Negative sign indicates outward current flow , positive indicates inward flow.

3. Typical values shown for Vee = 5.0V and TA = 25°C.

R6522 Versatile Interface Adapter (VIA)

PACKAGE DIMENSIONS

40-PIN CERAMIC DIP

[MILLIMETER3 INCHES

~ s~'~9 +-rAJ~ MIN MAX

A 1 980 2 020
B 14 86 IS 62 a sas a s1s

g 2 54 ' 19 0 100 0 165
D 0 38 0 53 0 015 0 021
F 0 76 I 40 0030 0 055
G 2 5• sse o 100 sse

~ ,_g.:s I 78 0 030_ 00?J'

J 0 20 ~--33 0 ..JOB 1---o--Q;J
~- 2 54 4 19 0100 0 165
L 14 60 15 37 0 575 0605
M 0 10' 0 10

'!._Q_? I I 52 0 0 20 0 060

40-PIN PLASTIC DIP

MilliMETERS INCHES

DIM MIN MAX MIN MAX

~ ~-28 52 32 2 040 2 060
B 13 72 14 22 0 540 0 560
c 3 55 5 08 0 140 0 200
D 0 36 0 51 0 014 c 020
F I 02 I 52 0 040 0 060
G 2 54 BSC 0 100 sse

H I 65 2 16 0 065 0085
J 0 20 0 30 0 008 0 012
K 3 05 3 56 0 120 0 140

L 15 24 BSC 0 600 BSe

M 7 IQ• T 10

N 0 51 1 02 0 020 0 040

Information furnished by Rockwell International Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Rockwell
International tor its use, nor any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication
or otherwise under any patent or patent rights of Rockwell International other than for circuitry embodied in a Rockwell product. Rockwell International
reserves the right to change circuitry at any time without notice. This document is subject to change without notice_

:S: Rockwell International Corporation 1984
All Rights Reserved

SEMICONDUCTOR PRODUCTS DIVISION REGIONAL ROCKWELL SALES OFFICES

HOME OFFICE
Sem1conductor Products D•"•s•on
Rockwell International
431 1 Jamboree Road
P 0 Box C. MS 501-300
Newport Beach. Cahforn•a
92658-8902
(71 4) 833-4700
TWX · 910 591-1698

UNITED STATES
Sem•conductor Products DIVISIOn

Rockwell International
1842 Reynolds
IMne, Cahlorn•? 92714
(714) 833-4655
TWX 910 595-251e

SemiCOnductor Prod l•cts D1vts1on
Rockwell lnterna!IOnal
3375 Scan Blvd . Sutle 410
Santa Clara. Ca1110rn1a 95054
(408) 980-1900
TLX 756560

Sem•conduclor Products Divis1on
Rockwell lnternal1onal
2001 N Colltns Blvd , Suite 103
Richardson, Texas 75080
(214) 996-6500
TLX · 73-307

Semiconductor Products D1v1s1on
Rockwell lnlernatiOnal
10700 West Htgg.ns Ad , Su1te 102
Rosemont. lllino•s 60018
(312) 297-8862
TWX 910 233-0179 (AI MED ROSM)

Semtconductor Products D1vis1on
Rockwell International
5001 B Green tree
Execu ttve Campus. At 73
Marlton, New Jersey 08053
(609) 596-0090
TWX 710 940·1377

FAR EAST
SemicOnductor Products DtVISIOn
Rockwell lnternateonal Overseas Corp.
ltohp1a H1rakawa-cho Bldg
7-6 . 2-chome. H1rakawa-cho
Ch•yoda -ku. Tokyo 102. Japan
(03) 265-8806
TLX J22198

Rockwell Collins Internat ional
Ta1 Sang Commerc1a l Bldg., 11th Floor
24-34 Hennessy Ad
Hong Kong
(5) 274-321
TLX 74071 HK

EUROPE
Semtconductor Products Division
Rockwell International GmbH
Fraunhoferstrasse 118
D-8033 Munchen-Martinsried
West Germany
(089) 857-6016
TLX: 0521 /2650 rimd d

Semiconductor Products Division
Rockwell International limited
Heathrow House. Bath Ad
Cranford. Hounslow.
M1ddlesex. TW5 90W England
(01) 759-2366
TLX- 851-25463

Semiconductor Products
Rockwell Collins llaliana S.P.A.
Via Boccaccio , 23
20123 Milano. Italy
(02) 498 .74 79
TLX 316562 Re tMIL 1

Printed in U.S.A.

YOUR LOCAL REPRESENTATIVE

7/84

155

Appendix F
Solution for heat flow
in one dimension

The problem at hand is to solve the differential equation for heat flow in one

dimension , vis

aT!cJt = a 2(a 2Tiaz2
) (F.l)

where a = k/s and where the rod extends to infinity on both sides. The initial

condition is that the temperature at t = 0 is given, ie, T(z , I = 0) = f(z)
wheref(z) is the given initial temperature distribution along the bar.

To proceed , we try the method of separation of variables by writing

T(z, t) = F(z)G(t). Equation (F.l) then becomes

aG!a t a2Fiaz 2

a 2G - F (F.2)

Since the variables t and zvary independently , each side of Equation (F.2)

must be equal to a constant , say q, giving two ordinary differential equations.

dG /d t = qa2G

d 2Fidz2 = qF

The solution for the first is

G(t) = K exp(qa2t)

} (F.3)

(F.4)

where K is a constant. If q is positive, this so lut ion grows without limit and

thus is not a physically realizable solution. So q :::::; 0 and we can write it as
q = -p2 to force this condition. Equation (F.4) becomes

G(t) = K exp(-p2 a 2t) (F.5)

The second of equations (F.3) can now be recognized as a simple wave

eq uation

(d 2Fidz2
) + p2F = 0 (F.6)

with the solution

F(z) =A cos(pz) + B sin(pz) (F.7)

So, the so lution to the differential equation has the form

T(z , t ; p) = FG
= [A cos(pz) + B sin(pz)] exp(-p2 a 2t) (F.8)

where the constant K has been absorbed into A and B. Equation (F.8) is true

for any p and any linear combination of solutions with differe nt p will also be

a solution . In particular , a general solution is

T(z, t) = r [A(p) cos(pz) + B(p) sin(pz)] exp(-p2a2r)dp

(F.9)

Fig. F.1.1nitial temperature
distribution on the infinite rod.

Heat flow in one dimension 157

Using the initial condition that T(z , 0) = f(z), gives for Equation (F. 9)

T(z, 0) = I"' [A(p) cos(pz) + B(p) sin(pz)]dp (F.lO)
()

The Fourier integral theorem gives the following expressions for A and B

A(p) = (1!1r) !:1(~) cos(p~)d~

B(p) = (1!1r) I:!(~) sin(p~)d~ I (F.ll)

Using these expressions, Equation (F.9) becomes

T(z, t) = (ll1r) r {J:, f(~)[cos(pg) cos(pz) + sin(p~) sin(p~)]

X exp(-p2a2t)d~}dp

= (117T) I"'
()

{f:oo /(~) cos(pz - p~) exp(-p2a2t)d~}dp
(F.l2)

Exchanging the order of integration gives

T(z, t) = (1/7T) J:, f(~){f~ cos(pz- p~) exp(-p2a 2t)dp }d~
The inner integral can be found in a table of integrals and is equal to

7Tl/2 [(z - ~)2]
2at112 exp - 4a2t

Therefore

T(z, t) = 2a(~t)I I2 r oo f(~) exp[_(z4~2;)2Jd~ (F.13)

In the physical situation of a very quick impulse of heat given to a rod at

z = 0, the initial temperature distribution will be (Figure F .l)

{

0 z < -.!lz
f(z) = lim Tmax -.!lz < z < LlZ

t.z~ 0 0 LlZ < Z

Temperature, T

T max .---+---,

- f.z 0 t.z Distance, z

158 Appendix F

Equation (F.13) becomes

1 J~z [(z - {;f]
T(z, t) = 2a(7T!)112 - llz f({;) exp - 4a2t d{; (F.14)

If llz is small , the exponential in the integral will not vary much across the

interval - Llz to Llz and so may be evaluated at {; = 0 and be removed from
the integral.

1 (
2

2) J"'z T(z , t) = 2a(7Tl)l /2 exp - 4a3t - ll z f({;)d{; (F.I5)

The remaining integral is just a constant so

B (
2

2

) T(z, t) = (112 exp -
4

a 2t (F .16)

where B has absorbed all the constants. Also any constant value, say A, is a
solution to the differential equation, so

T(z, t) = A + 172 exp --2-B (
2 2

) t 4a t
(F.17)

as is stated as Equation (5.1.5) .
That's all folks.

Fig. G.1. Heat input pu lse with
finite duration.

Appendix G
Finite impulse heat flow
in a rod

The Equation (5.1.9) describes the flow of heat in a rod when the heat is
applied very quickly at one point. The term very quickly means that the ratio
of the time that the heater is on (call it T) to the characteristic time of the
system, t 1, is much less than one.

Tltl «; 1 (G.1)

Physically , this means that the heat was put into the rod much faster than it
flowed away from the point where it was added.

In doing the experiment, equation (G .1) does not always strictly hold. An
impulse of0.5 s gives a T!t 1 of about 0.4. In that case, the input of heat can be
considered to be made up of a series of heat impulses. each of which has a
width 11T such that

11Titl «; I

See Figure G .1 .
Thus for each of these smaller intervals 11T, Equation (5.1. 9) will hold but

must be rewritten with a change of origin:

T, = r:(-'1-\ 112

cxp(-=!.!_)
1+1) I+T

(G .2)

where

TJ = 2q/AZS7T112

and q = PD.T is the heat put in during one interval and P is the power
(assumed to be constant). The total temperature change will be given by the
sum of the individual Ti:

Power of ~-,.,rr.-ro•
heat
input

0
T

Time, I

160 Appendix G

and the total heat input is

If !:::.T goes to 0 then the sum goes to an integral:

T(t) = JT T;(-t-1)'
12

exp(----=!J_)dT
0 t+T t + T

(G.3)

with T; = 2PIAzs7T 112
•

By a suitable change in variable and integration by parts, this integral can

be evaluated giving

where

T = 2T1 ; [(x + y)"
2

exp(x ~\) - x
112 exp(-"~n

+ 7Tl/2 erf(x ~ y r2

_ 7r
112

erfG) J

T, = __1_Q_
Azs7T112

as in Equation (5.1.9)

y = Tit,

X = tlt 1

and

erf('YI) = ~ J11

exp(-g2)dg
7T ()

(G.4)

is the error function which can be evaluated using a table or a computer
program.

Figure G.2 is a plot of TIT1 vs. tlt1 for y = 0.01-1.5 and shows the error

Fig. G.2. Heat f low fo r a f inite 0.500
heat pu lse of length y= T!t1 w ith
t = 0 at th e end ofthe pul se .

0.417

"'::: 0.333
h

B
" 3
~ 0.250
....
" 0.
E

~ 0.167

0.083

0.000 '--""'- ----'------'----'-----'----.1...,_-----'- - ---'-----'

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
Time (tlt 1)

Finite impulse heat flow in a rod 161

which is made when modeling an experiment with the impulse solution

(Equation (5.1.9) when Equation (G.4) is actually more correct. The curve

withy= 0.01 is essentially equal to the impulse solution Equation (5.1.9).
For ratios of y > 0.1 an appreciable error is made.

If t = 0 is measured from the center of the finite input pulse , a better fit is
obtained. Equation (G.4) can be translated to this new origin by the
substitution t ~ t - Tl2 giving

T = 2T1 ~ [(x + y/2)
112

exp(x ~ \ 12)

- (x - y/2) 112 exp(-l)
X- y/2

+ 1r
112

erf(
1

) - 1r
112

erf(
1

)] (G.5)
X + y/2 X - y/2

A plot of Equation (G .5) is given in Figure G.3 . Ratios of up toy= 1 can
be tolerated without appreciable error with this time origin.

Fig. G.3. As in Figure G.2 but with 0.500
t = 0 in the middle of the pulse.

0.417

~ 0.333
~

B
~
E 0.250
e
" a.
E
" ,... 0.167

v0.1

0.083 ~0·0

0.000 L.....<'------'-------'-----'---...L.---.__-----'-------'----'

0.00 0.50 1.00 1.50 2.00

Time (t / t 1)

2.50 3.00 3.50 4.00

Appendix H
Bootstrap sequence

A whole series of programs is run automatically when the APPLE computer

is turned on. This is called the 'bootstrap' since the computer begins in a state
where it is not usable and pulls itself up by its own bootstraps (programs) to
a state where it can be programmed or operated via commands from the
keyboard.

After the power is turned ON, the RESET sequence begins. The CPU
looks in $FFFC, $FFFD (the RESET vector) for an address and begins
executing the program at that address. In the APPLE the address in the
RESET vector is $FF62 which is in the monitor ROM. Among other
housekeeping chores, the monitor program looks for an installed disk drive
controller card in slot 6. (If it does not find it, the monitor jumps to
APPLES OFT BASIC in ROM.) If it finds it, the drive is turned on (red light
on) and the disk is searched for the DOS file. This program file is loaded into
RAM (see the memory map of Appendix C) and control is transferred to the
DOS program . The DOS program (1) links itself to APPLESOFT BASIC so
that disk commands can be used , (2) checks the size of RAM and sets
HIMEM to an initial value, and (3) looks for an APPLESOFT program file
on the disk called 'HELLO'. If it finds this file, it is loaded and run. On the
SYSTEM START disk used in the laboratory, there is a HELLO program
which does the following: (1) loads INTEGER BASIC/MINIASSEMBLER
into the RAM of the language card. (2) Loads and runs AMPERGRAPH
LOADER which links AMPERGRAPH to APPLESOFT BASIC (see
memory map, Appendix C). (3) Returns to APPLESOFT BASIC. At this
time the APPLE is waiting with the cursor blinking for you to type a
command or program line.

The following HELLO Program is used on the SYSTEM START disk so
that AMPERGRAPH is automatically linked to BASIC when the computer
is turned on. It requires the following files to be on the disk as well:

INT BASIC From DOS3.3
LOADER .OBJO From APPLE DOS3.3
RENUMB ER
CHAIN
AMPERGRAPH LOADER
AMPERGRAPH

From APPLE DOS3.3
From APPLE DOS3.3
From AMPERGRAPH disk
From AMPERGRAPH disk

Bootstrap sequence 163

10 TEXT : HOME
20 D$ = CHR$ (4): REM CTRL-D
30 VTAB 2:A$ = "APPLE II": GOSUB 1000
40 VTAB 4:A$ = "DOS VERSION 3.3 SYSTEM

MASTER": GOSUB 1000
50 VTAB 7:A$ = "JANUARY 1, 1983" : GOSUB 1000
60 PRINT D$;"BLOAD LOADER.OBJO"
70 CALL 4096: REM FAST LOAD IN INTEGER BASIC
80 VTAB 10: CALL - 958:A$ = "COPYRIGHT

APPLE COMPUTER, INC. 1980,1982":
GOSUB 1000

90 C = (- 1101): IF C = 6 THEN PRINT
INVERSE :A$ = "BE SURE CAPS LOCK IS
DOWN": GOSUB 1000: NORMAL

95
100
1000
1010

PRINT CHR" (4);"RUN AMPERGRAPH
PRINT CHR$ (4);"FP"

REM CENTER STRING A$
B = !NT (20- (LEN (A$) /2)):
IF B = < 0 THEN B = 1

1020 HTAB B: PRINT A$: RETURN

LOADER"

Fig. 1.1. Block diagram of the
6502 microprocessor (from MCS
6500 Microcomputer
Programming Manual, MOS
Technology, Norristown, PA,
1976).

Appendix I
Machine language
instructions

This appendix contains information about several aspects of machine
language programming. Figure I.l shows a bird's-eye-view of the internal
architecture of the 6502 microprocessor chip . T he next few pages describe
the details of what the 6502 does at each clock cycle for various address
modes and instructions and is taken from the MOS Technology Micro­
computer Programming Manual (used with permission). Then follows a
summary of the 6502 instruction set. For more information about individual
instructions , refer to Leventhal's 6502 Assembly Language Programming or
the MOS Technology 6502 Programming Manual.

Some MINIASSEMBLER tips:
Remember to use the # sign to designate immediate mode addressing.

Without it the instruction is translated as an absolute address mode calling
an ac'dress on the first page of memory (in the firs t 256 bytes).

You can BLOAD a machine language program from APPLESOFT
BASIC as well as from the MINIASSEMBLER. It is sometimes convenient
to include it as a program statement eg, PRINT CHR$(4) ; "BLOAD . .. "

Machine language instructions 165

MCS6501-l\IC36505 MICROPROCESSOR INSTRUCTION SET - \LPHABETIC SEQUENCE

ADC Add Memory to Accumulator with Carry JSR Jump to New Location Saving Return Address

AND "AND" Memory with Accumulator

ASL Shift Left One Bit (Memory or Accumulator) LOA Load Accumulator with Memory

LOX Load Index X with Memory

BCC Branch on Carry Clear LOY Load Index Y with Memory

BCS Branch on Carry SPt LSR Shift Right One Bit (Memory or Accumul3tor)

BEO Branch on Result Zero

BIT Test Bits in Memory 1uith Accumulator NOP No Operation

BMI Branch on Result Minus ORA "O R" Memory with .A.cc•Jr,.,lator·
BNE Branch Jn Resuit r.ot Zero

BPL Branch on Result Plus PHA Push Accumulator on Stack
BRK Force Break PHP Push Processor St<Jtus on Stack
BVC Bran-:h on Overflow Clear PLA Pull Accumulator from Stack
BVS Branch on Overflow Set PLP Pull Processor Status from Stack

CLC Clear Carry Flag ROL Rotate One Bit Leh (Memory or Accumulator)

CLD Clear Decimal Mode ROR Rotate One Bit Right (Memory or Accumulator)

CLI Clear Interrupt Disable Bit RTI Return from Interrupt

CLV Clear Overflow Flag RTS Return from Subrout ine

CMP Compare Memory and Accumulator

CPX Compare Memory and Index X SBC Subtract Memory from Accumulator with Borrow

CPY Compare Memory and Index Y SEC Set Carry Flag

SED Set Decimal Mode

DEC Decrer1!'nt M~mory by One SEI Set Interrupt Disable Statu s

DEX Decrement Index X by One STA Store Accumulator in Memory

DEY Decrement Index Y by One STX Store Index X in Memory

STY Store Index Yin Memory

EOR " Excl usive :J r " Merrory with AccumcJiat or
TAX Transfer A ccumulator to Index X

INC Increment Memory by One TAY Transfer Accumulator to Index Y

INX Increment Index X by One TSX Transfer Stack Purrr,er to l •1dex X

trw Increment Index Y by One TXA Transfer Index X to Accumulator

TXS Transfer Index X to Stack Pointer

JMP Jwnp to New Location TYA Transfer Index Y to Accumul atcr

166 Appendix I

PROGRAMMING MODEL MCS650X

15 7 0
r-- - -------- ,--------------,
L ___________ L __________ j 1/0 REGISTERS

15 7 0

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r~----A--------, ACCUMULATOR

15 7 0

INDEX REGISTER Y

0

INDEX REGISTER X

15 7 0

PCH PCL PROGRAM COUNTER

15 7 0

~ ~ ~ ~ ~ ~ ~ ~ ~~ ._ _o_1__J~ ___ s ____ ---;} STACK POINTER

PROCESSOR STATUS REGISTER. "P"

...__ __ CARRY
..__ ____ ZERO

..__ _____ INTERRUPT DISABLE
.._ ______ DECIMAL MODE

.._ ________ BREAK COMMAND
.___ ________ FORTHCOMING FEATURE

L------------ OVERFLOW
.___ ___________ NEGATIVE

• Solid line indicates currently available features
Dashed line indicates forthcoming members of family

Machine language instructions

The following notation applies to this summary:

A

X, y

M

p

s
I

+
A

v

PC

PCH

PCL

OPER

II

Accumulator

Index Registers

Memory

Processor Status Register

Stack Pointer

Change

No Change

Add

Logical AND

Subtract

Logical Exclusive Or

Transfer from Stack

Transfer to Stack

Transfer to

Transfer to

Logical OR

Program Counter

Program Counter High

Program Counter Low

OPERAND

IMMEDIATE ADDRESSING MODE

Note: At the top of each table is located in parentheses a

reference number (Ref: XX) which directs the user to

that Section in the MCS6500 Microcomputer Family

Programming Manual in which the instruction is defined

and discussed.

167

168 Appendix I

ADC
Operation:

Add memory to accumulator with carry

A + M + C ~ A, C

(Ref: 2.2.1)

Addressing Assembly Language OP
Mode Form CODE

Immediate ADC II Oper 69

Zero Page ADC Oper 65

Zero Page, X ADC Oper, X 75

Absolute ADC Oper 6D

Absolute, X ADC Oper, X 7D

Absolute, y ADC Oper, y 79

(Indirect, X) ADC (Oper, X) 61

(Indirect), Y ADC (Oper), Y 71

* Add 1 if page boundary is crossed.

AND "AND" memory with accumulator

Logical AND to the accumulator

Operation : A AM~ A

(Ref: 2.2.3.0)

Addressing Assembly Language
Mode Form

Immediate AND II Oper

Zero Page AND Oper

Zero Page, X AND Oper, X

Absolute AND Oper

Absolute, X AND Oper, X

Absolute, y AND Oper, y

(Indirect, X) AND (Oper, X)

(Indirect), Y AND (Oper), Y

* Add 1 if page boundary is crossed.

OP
CODE

29

25

35

2D

3D

39

21

31

ADC
Ni!:-CIDV

III - -I

No. No.
Bytes Cycles

2 2

2 3

2 4

3 4

3 4*

3 4*

2 6

2 5*

AND

N c C I D V

1 1 - - --

No. No.
Bytes Cycles

2 2

2 3

2 4

3 4

3 4*

3 4*

2 6

2 5

Machine language instructions

ASL ASL Shift Left One Bit (Memory or Accumulator)

(Ref: 10.2)

Addressing Assembly Language
Mode Form

Accumulator ASL A

Zero Page AS L Oper

Ze r o Page, X ASL Oper, X

Absolute ASL Oper

Absolute, X ASL Oper, X

BCC BCC Branch on Carry Clear

Operation: Bran ch on C 0

(Ref: 4.1.1.3)

Addressing Assembly Language
Mode Form

Relative BCC Oper

* Add 1 if branch occurs to sa~e page.

* Add 2 if branch o~curs to diffe rent page.

BCS BCS Branch on carry set

Operation: Branch on C 1

(Ref: 4.1.1.4)

Addressing Assembly Language
Mode Form

Relative BCS Oper

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to nex t page.

N.OC IDV

!//---

OP No.
Ct)J ,E Bytes

IJA 1

06 2

16 2

0E 3

lE 3

N l- C I D V

OP No.
CODE Bytes

90 2

N t. C I D V

OP No.
CODE Bytes

B0 2

169

ASL

No .
Cycles

2

5

6

6

7

BCC

No.
Cycles

2*

BCS

No.
Cycles

2*

170 Appendix I

BEQ BEQ Branch on result zero

Operation: Branch on ~ = 1
(Ref : 4.1.1.5)

Addressing Assembly Language
Mode Form

Relative BEQ Oper

* Add 1 if branch occurs to same page .

* Add 2 if branch occurs to next page .

N~CIDV

OP No.
CODE Bytes

F0 2

BIT BIT Test bits in memory with accumulator

Operation: A (\ M, M
7

-> N, M,, > V

BiL 6 and 7 are transfern ·d to the sta tus register.

lf 'ne result of A(\ M is zero then Z = 1, otherwise

z 0 (Ref: 4 . 2 .1. 1)

Addressing Assembly Language
Mode Form

Zero Page BIT Oper

Absolute BIT Oper

BMI BMI Branch on result minus

Operation : Branch on N 1

(Ref: 4 .1.1.1)

Addressing Assembly Language
Mode Form

Relative ilHI O:>er 1
Add 1 if branch occurs tc same page.

* Add 2 if hranch occurs to different page.

Ni!CIDV

M/--- M
6

OP No.
CODE By tes

24 2

2C 3

Ni!CIDV

OP No.
CODE Bytes

3i.l 2

BEQ

No.
Cycles

2*

BIT

No.
Cycles

3

4

BMI

No.
Cycles

2*

Machine language instructions

INE BNE Branch on result not zero

Operation: Branch on Z 0

(Ref: 4.1.1.6)

Addressing Assembly Language
Mode Form

Relative BNE Oper

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

IPL BPL Branch on result plus

Operation: Branch on N 0

(Ref: 4 .1.1.2)

Addressing Assembly Language
Mode Form

Relative BPL Oper

* Add 1 if branch occurs to same page.

* Add 2 if branch occurs to different page.

IRK
Operation: Forced Interrupt

BRK Force Break

PC + 2 t P t

(Ref: 9.11)

Addressing Assembly Language
Mode Form

Implied BRK

1. A BRK command cannot be masked by setting I.

N 1!- C I D V

OP No.
CODE Bytes

D0 2

N T. C I D V

OP No.
CODE Bytes

10 2

N ;?. C I D V

1--

OP No.
CODE Bytes

00 1

171

INE

No.
Cycles

2*

IPL

No.
Cycles

2*

IRK

No.
Cycles

7

172 Appendix I

BVC BVC Branch on overflow clear BVC
Ope r a tion : Branch on V 0 Nl! CIDV

(Ref: 4.1. 1. 8)

Addressing As s embly Language OP No. No.
Mode Form CODE By t es Cyc l es

Re l ative BVC Ope r 50 2 2*

* Add 1 i f branch occurs to s ame page.

* Add 2 i f branch oc cu r s to diff e r en t page.

BVS BVS Branch on overflow set BVS
Opera tion: Branch on V l Nl! C IDV

(Ref : 4 . 1. 1. 7)

Addres s ing Assembly Language OP No. No .
Mode Form CODE Bytes Cycles

Re l a t ive BVS Oper 70 2 2*

* Add if br anch occurs t o same page .

* Add 2 i f bran ch occurs t o different page.

CLC CLC Clear carry flag CLC
Operation : 0 ~ C N~CIDV

(Ref : 3.0 .2) --0-- -

Addressing Assembly Language OP No . No.
Mode Form CODE Bytes Cycles

Implied CLC 18 l 2

Machine language instructions

CLD C LD Clear decimal m ode

Operation : 0 ~ D

(Ref : 3 . 3 . 2)

Address ing Assembly Language
Mo de Form

Implied CLD

CLI CLI Clear interrup t disable bit

Operation : 0 + I

(Ref: 3.2 . 2)

Addressing Assembly Language
Mode Form

I mplied CLI

CLV CL V Clear overflow flag

Ope ration: 0 ~ V

(Ref: 3 .6.1)

Addressing Assemhly Language
Mode Form

Implied CLV

N i': C I D V

- - --0-

OP No.
CODE By t es

::>8 l

Ni!CI D V

---0

OP No.
CODE By t es

58 l

N i':-CIDV

-- ---0

OP No .
CODE Bytes

88 1

173

CLD

No .
Cyc l es

2

CLI

No.
Cyc l es

2

CLV

No.
Cyc les

2

174

•

Appendix I

CMP CMP Compare memory and accumulator

Operation: A- M

(Ref: 4.2.1)

Addressing Assembly Language
Mode Form

Immediate CMP *Oper

Zero Page CMP Oper

Zero Page, X CMP Oper, X

Absolute CMP Oper

Absolute, X CMP Oper, X

Absolute, y CMP Oper, y

(Indirect, X) CMP (Oper, X)

(Indirect), Y CMP (Oper), Y

* Add 1 if page boundary is crossed.

CPX CPX Compare Memory and Index X

Ope rat ion, X - M

(Ref: 7 .8)

Addressing I Assembly Language
Mode Form

Immediate CPX #Oper

Zero Page CPX Oper

Absolute CPX Oper

CPY CPY Compare memory and index Y

Operation: Y - M

(Ref: 7. 9)

Addressing Assembly Language
Mode Form

Immediate CPY *Oper

Zero Page CPY Oper

Absolute CPY Oper

NeCIDV

Ill---

OP No.
CODE Bytes

C9 2

cs 2

DS 2

CD 3

DD 3

D9 3

Cl 2

Dl 2

Ni!CIDV

Ill---

OP No.
CODE Bytes

E0 2

E4 2

EC 3

Ni!CIDV

Ill---

OP No.
CODE Bytes

C0 2

C4 2

cc 3

CMP

No.
Cycles

2

3

4

4

4*

4*

6

s•

CPX

No.
Cycles

2

3

4

CPY

No.
Cycles

2

3

4

Machine language instructions

DEC DEC Decrement memory by one

Operation: M- 1 + M

(Ref: 10. 7)

Addressing Assembly Language
Mode Form

Zero Page DEC Oper

Zero Page, X DEC Oper, X

Absolute DEC Oper

Absolute, X DEC Oper, X

DEX DEX Decrement index X by one

Operation: X - 1 +X

(Ref: 7.6)

Addressing Assembly Language
Mode Form

Implied DEX

DEY DEY Decrement index Y by one

Operation: Y - 1 + Y

(Ref: 7. 7)

Addrt>ssing Assembly Language
Mode Form

Implied DEY

N I! C I D V

11----

OP No.
CODE Bytes

C6 2

D6 2

CE 3

DE 3

N I! C I D V

11----

OP No.
CODE Bytes

CA 1

N e C I D V

11----

OP No.
CODE Bytes

88 1

175

DEC

No.
Cycles

5

6

6

7

DEX

No.
Cycles

2

DEY

No.
Cycles

2

176 Appendix I

EOR EOR "Exclusive - Or" memory with accumulator

Operation: A¥ M ~ A

(Ref: 2.2.3.2)

Addressing Assembly Language
Mode Form

Immediate EOR #Oper

Zero Page EOR Oper

Zero Page, X EOR Oper, X

Absolute EOR Oper

Absolute, X EOR Oper, X

Absolute, y EOR Oper, y

(Indirect, X) EOR (Oper, X)

(Indirect) , Y EOR (Oper), Y

* Add 1 if page boundary is crossed.

INC INC Increment memory by one

Operation: M + 1 ~ M

(Ref: 10.6)

Addressing Assembly Language
Mode Form

Zero Page INC Oper

Zero Page, X INC Oper, X

Absolute INC Oper

Absolute, X INC Oper, X

INX INX Increment Index X by one

Operation: X+ 1 ~X

(Ref: 7.4)

Addressing Assembly Language
Mode Form

Implied INX

N i! C I D V

11----

OP No.
CODE Bytes

49 2

45 2

55 2

4D 3

5D 3

59 3

41 2

51 2

N i! C I D V

11----

OP No.
CODE Bytes

E6 2

F6 2

EE 3

FE 3

Ni!CIDV

11----

OP No.
CODE Bytes

E8 1

EOR

No.
Cycles

2

3

4

4

4*

4*

6

5*

INC

No.
Cycles

5

6

6

7

INX

No.
Cycles

2

Machine language instructions

INY
Op e ratinn:Y + J > Y

Addres s in g
Mode

I mpli ed

JMP
Ope rat i on : (PC + 1) -+ PCL

(PC + 2) -+ PCH

Add ressing
Mo de

Absolut e

I ndi rec t

INY ill crcmellt Index Y b.v one

(Ref: 7 . 5)

As sembly Language
Form

I NY

JMP Jump to new location

(Ref :
(Ref:

4 . 0. 2)
9. 8 . l)

Assembly Language
Fo rm

JMP Oper

JMP (Op e r)

177

INY
N i!ClDV

//- -- -

OP No. No.
CODE Bytes Cyc les

C8 1 2

JMP
N i! C I D V

OP No. No.
CODE Bytes Cy c les

4C 3 3

6C 3 5

JSR JSR Jump to new location saving return address JSR
Operation: PC+ 2 ~. (PC+ 1) -+ PCL N Z C I D V

(PC + 2) -+ PCH
(Ref: 8.1)

Addressing Assembly Language OP No . No.
Mode Form CODE Bytes Cycles

Absolute JSR Oper 20 3 6

178 Appendix I

LDA LDA Load accumulator with memory

Operation: M +A

(Ref: 2.1.1)

Addressing Assembly Language
Mode Form

Immediate LDA #Qper

Zero Page LDA Oper

Zero Page, X LDA Oper, X

Absolute LDA Oper

Absolute, X LDA Oper, X

Absolute, y LDA Oper, y

(Indirect, X) LDA (Oper, X)

(Indirect), Y LDA {Oper), Y

* Add 1 if page boundary is crossed.

LDX LOX Load iwle.\· X with memurv
Operation: M ~ X

(Ref: 7.0)

Addressing Assembly Language
Mode Form

Immedi.Jte LDX II Oper

Zero Page LDX Oper

Zero Page, y LDX Oper, y

Absolute LDX Oper

Absulute, y LDX Oper, y

* Add 1 when page boundary is crossed.

Ni!CIDV

11----

OP No.
CODE Bytes

A9 2

A5 2

BS 2

AD 3

BD 3

B9 3

Al 2

Bl 2

N !! C 1 lJ V

11----

OP No.
CODE Bytes

A2 2

A6 2

Il6 2

AE 3

BE 3

LDA

No.
Cycles

2

3

4

4

4*

4*

6

5*

LDX

No.
Cycles

2

3

4

4

4*

Machine language instructions 179

LDY LOY Load index Y with memory LDY
Operation: M ~ Y N ;! C I D V

1/----
(Ref: 7.1)

Addressing Assembly Language OP No.
Mode Form CODE Bytes

Immediate LDY #Oper A0 2

Zero Page LDY Oper A4 2

Zero Page, X LDY Oper, X B4 2

Absolute LDY Oper AC 3

Absolute, X LDY Oper, X BC 3

* Add 1 when page boundary is crossed.

LSR LSR Shift right one bit (memory or accumulator)

(Ref: 10 .1)

Addressing Assembly Language
Mode Form

Accumulator LSR A

Zero Page LSR Oper

Zero Page, X LSR Oper, X

Absolute LSR Oper

Absolute, X LSR Oper, X

NOP NOP No operation

Operation: No Operation (2 cycles)

Addressing Assembly Language
Mode Form

Implied NOP

N i! C I D V

011---

OP No .
CODE Bytes

4A 1

46 2

56 2

4E 3

SE 3

N i! C I D V

OP No.
CODE Bytes

EA 1

No.
Cycles

2

3

4

4

4*

LSR

No.
Cycles

2

5

6

6

7

NOP

No.
Cycles

2

180 Appendix I

ORA ORA "OR·· 111cmory with accumulator ORA
Operati on: A V M- A N i! C I D V

(Ref: 2 . 2.3 .1) 11-- - -

Addressing Asse mbly Language OP No . No.
Mode Form CODE Bytes Cycles

Immediat e ORA #Oper 09 2 2

Zero Page ORA Ope r 05 2 3

Zero Page, X ORA Oper, X 15 2 4

Absolute ORA Oper 0D 3 4

Absolute, X ORA Oper , X lD 3 4*

Absolute, y ORA Oper, y 19 3 4*

(Indirect, X) ORA (Oper, X) 01 2 6

(Indirect), y ORA (Oper), y ll 2 5

* Add 1 on page c r ossing

PHA PHA Push accwnulatur on stack PHA
Operati on: A .f Ni! CIDV

(Ref: 8 . 5)

Add r essing Assembly Language OP No. No.
Me de Form CODE Bytes Cycles

Implied PHA 48 1 3

PHP PHP Push processor status on stack PHP
Operation: P.f N I! C I D V

(Ref: 8.11)

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied PHP 08 1 3

Machine language instructions

PLA PLA Pull accumulator from stack

Operation: At

(Ref: 8.6)

Addressing Assembly Language
Mode Form

Implied PLA

PLP PLP Pull processor status from stack

Op erat i on: P l

(Ref: 8.12)

Addressing Assembly Language
Mode Form

Implied PLP

N ;1; C I D V

11----

OP No.
CODE Bytes

68 1

N i! C I D V

From Stack

OP No.
CODE Bytes

28 1

ROL ROL Rotate one bit left (memory or accumulator)

Operation :

(Ref : 10. 3)

Addressing Assembly Language
Mode Form

Accumulator ROL A

Zero Page ROL Oper

Zero Page, X ROL Oper, X

Absolute ROL Oper

Absolute, X ROL Oper, X

Ni!CIDV

Ill---

OP No.
CODE Bytes

2A 1

26 2

36 2

2E 3

3E 3

181

PLA

No.
Cycles

4

PLP

No.
Cycles

4

ROL

No.
Cycles

2

5

6

6

7

182 Appendix I

ROR

Operation:

ROR Rotate one bit right (memory or accumulator)

Addressing Assembly Language
Mode Form

Accumulator ROR A

Zero Page ROR Oper

Zero Page,X ROR Oper,X

Absolute ROR Oper

Absolute,X ROR Oper,X

OP

N i'i C I D V

II I-

No .
CODE Bytes

6A 1

66 2

76 2

6E 3

7E 3

ROR

No.
Cycles

2

5

6

6

7

Note: ROR instruction will be available on MCS650X micro­
processors after June, 1976.

RTI RTI Return from interrupt RTI
Operation: Pt PCt N i! C I D V

(Ref: 9.6)
From Stack

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied RTI 40 1 6

RTS RTS Return from subroutine RTS
Operation: PCt , PC + 1--+ PC N i'i C I D V

(Ref: 8.2)

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied RTS 60 1 6

Machine language instructions

SBC SBC Subtract memory from accumulator with burrow

Operation: A- M- C ~A

Note: C = Borrow

Addressing
Mode

Immediate

Zero Page

Zero Page, X

Absolute

Absolute, X

Absolute, y

(Indirect, X)

(Indirect), Y

(Ref : 2. 2. 2)

Assembly Language
Form

SBC # Oper

SBC Oper

SBC Oper, X

SBC Oper

SBC Oper, X

SBC Clper, y

SBC (Oper, X)

SBC (Oper), Y

* Add l when page boundary is crossed.

SEC SEC Set carry flag

Ope rat ion: 1 -> C

(Ref: 3.0.1)

Addr~s sing Assembly Language
Hade Form

Implied SEC

SED SED Set decimal mode

Operation: 1 ~ D

(Ref: 3.3.1)

Addressing Assembly Language
Mode Form

Implied SED

N i! C I D V

III--I

OP No.
CODE Bytes

E9 2

E5 2

F5 2

ED 3

FD 3

F9 3

El 2

Fl 2

N e C I D V

1---

OP No.
CODE Bytes

38 l

N i! C I D V

----1-

OP No.
CODE Bytes

F8 1

183

SBC

No.
Cycles

2

3

4

4

4*

4*

6

5*

SEC

No.
Cycles

2

SED

No.
Cycles

2

184 Appendix I

SEI SEI Set interrupt disable status SEI
Operation : 1 + I N g C I D V

-- -1 - -
(Ref: 3 .2 .1)

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied SEI 78 1 2

ST A ST A Store accumulator in memory STA
Ope r ation: A+ M N g C I D V

(Ref: 2. 1. 2)

Addr essing Assembly Language OP No. No.
Mode Form CODE Bytes Cyc l es

Ze r o Page STA Oper 85 2 3

Zero Page, X STA Oper, X 95 2 4

Absolute STA Oper 8D 3 4

Abso l ut e, X STA Oper, X 9D 3 5

Absolute, y STA Oper, y 99 3 5

(Indi r ec t , X) STA (0-,>e r, X) 81 2 6

(Ind i rec t), Y STA (Oper), Y 91 2 6

STX STX Store index X in memory STX
Ope rat ion: X+ M N i! CIDV

(Ref: 7.2)

Addressing Assemb l y Language OP No. No.
Mo de Form CODE Bytes Cyc l es

Ze r o Page STX Ope r 86 2 3

Zero Pa ge , y STX Ope r, y 96 2 4

Absolute STX Ope r BE 3 4

Machine language instructions

STY STY Store index Y in memory

Operation: Y ~ M N i! C I D V

(Ref: 7 .3)

Addressing Assembly Language OP No.
Mode Form CODE Bytes

Zero Page STY Oper 84 2

Zero Page, X STY Oper, X 94 2

Absolute STY Oper 8C 3

TAX TAX Transfer accumulator to index X

Operation: A~ X

Addressing
Mode

Implied

JAY
Operation:

Addressing
Mode

Implied

(Ref : 7 .11)

Assembly Language
Form

TAX

TA Y Transfer accumu/atur to index Y

(Ref: 7 .13)

Assembly Language

N i! C I D V

11----

OP No.
CODE Bytes

AA 1

N l C I D V

11 ----

OP No .
Form CODE Bytes

TAY AS 1

185

STY

No.
Cycles

3

4

4

TAX

No.
Cycles

2

JAY

No.
Cyc les

2

JY A TY A Transfer index Y to accumulator JY A
Operation: Y ~ A N i! C I D V

(Ref: 7 .14)
1 1 - -- -

Addressing Assembly Language OP No. No.
Mode Form CODE Bytes Cycles

Implied TYA 98 1 2

186 Appendix I

TSX TSX Transfer stack pointer to index X TSX
Operation: S + X N ~ C I D V

(Ref: 8.9)

Addressing Assembly Language
Mode Form

Implied TSX

TXA TXA Transfer index X to accumulator

Opera tion : X + A

(Ref: 7.12)

Addressing Assembly Language
Mode Form

Implie d TXA

11----

OP No.
CODE Bytes

BA 1

N~CIDV

11----

OP No.
CODE By t es

8A 1

No.
Cycles

2

TXA

No.
Cycle~

2

TXS TXS Transfer index X :o stack pointer TXS
Operation: X+ S N ~ C I D V

(Ref: 8.8)

Addressing Assembly Language OP No. No.
Mode Form CODE By t es Cycles

Implied TXS 9A 1 2

Machine language instructions 187

5.5 ABSOLUTE ADDRESSING

Absolute addressing is a 3-byte instruction.

The first byte contains the OP CODE for specifying the operation and

address mode. The second byte contains the low order byte of the effective

address (that address which contains the data), whil~ the third byte con­

tains the high order byte of the effective address. Thus the programmer

specifies the full 16-bit address and, since any memory location can be

specified, this is considered the most normal mode for addressing. Other

modes may be considered special subsets of this 16-bit add ressing mode.

Example 5.5: Illustration of absolute addressing

Clock
Cycle Address Bus Program Counter Data Bus

1 PC PC + 1 OP CODE

2 PC + 1 PC + 2 ADL

3 PC + 2 PC + 3 ADH

4 ADH, ADL PC + 3 Data

5 PC + 3 PC + 4 New
OP CODE

Comments

Fetch OP CODE

Fetch ADL,
Decode OP CODE

Fetch ADH,
Hold ADL

Fetch Data

Fetch New
OP CODE,
Execute Old
OP CODE

The basic operation of the microprocessor in an Absolute address mode

is to read the OP CODE in the first cycle while finishing the previous

operation. In the second cycle, the microprocessor automatically reads

the first byte after the OP CODE (in this case the address low) while

interpreting the operation code. At the end of this cycle, the microproces­

sor knows that it needs a second byte for program sequence; therefore, 1

more byte will be accessed using the program counter while temporarily

stori.ng the address low. This occurs during the third cyc le. In the

fourth cycle, the operation is one of taking the address low and address

high that were read during cycles 2 and 3 to address the operand. For ex­

ample, in load A, the effective address is used to fetch. from memory the

data which is going to be loaded in the accumulator. In the case of stor­

ing, data is transferred from the accumulator to the addressed memory.

As was illustrated in the review of pipelining, depending on the in­

struction, it is possible for the microprocessor to s tart the next instruc­

ti on fetci' cycle after the effective address operation and independent of

how many more internal cycles it may take to complete the OP CODE . The

only exception to this is t he case of "Jump Absolute" in which the address

l ow and address high that are fetched in cycle 2 and cycle 3 are used as

the 16-bit addresa for t!.e next OP CODE. The jump absolute therefore only

requires 3 cycles. In all other cases, absolute addressing takes 4 cycles,

3 to fetch the full i nstruction including the effe~tive address, the fourth

to perform the memory transfer called for in the instru~tion.

188 Appendix I

5.4 !MMt.DIA TE ADDR ESSING

Immedi ate addressing is a 2-byte instruction.

The first byte contains the OP CODE specifying the operation and ad­

dress mode. The second byte conta i ns a constant value known to the pro­

gramme r . It is often necessary to compare load a nd /o r test against ce r­

tain known values. Rather than requiring the user to define and load con­

stants into some auxiliary RAM, the microprocessor allows the user to

specify values which are known to him by the immediate addressing mode.

Example 5.4 : Illustration of immediate addressing

Clock
Cycle Address Bus Program Counter Data Bus Comments

l PC PC + 1 . OP CODE Fetch OP CODE

2 PC + PC + 2 Data Fetch Data,
Decode OP CODE

3 PC + PC + 3 New Fetch New
OP CODE OP CODE,

Execute Old
OP CODE

6.1 ABSOLUTE JNDEXED

Absolute indexed add ~ess i s absolute addressing with an index

register added to the absolute address. The sequences that occur for

indexed absolute addressing without page crossing are as follows:

Example 6.6: Absolute Indexed; With No Page Crossing

Address
Cycle Bus

1 0100

2 0101

3 0102

Data
Bus

OP CODE

BAL

BAH

4 BAH,BAL+X OPERAND

5 103 Next OP
CODE

External
Operation

Fetch OP CODE

Fetch BAL

Fetch BAH

Put Out
Effective
Address

Fetch Next
OP CODE

Internal
Operation

Increment PC to 101,
Finish Previous
Instruction

Increment PC to 102,
Interpret In­
struction

Incr~ment PC to 103,
Calculate BAL + X

Finish Operations

BAL and BAH refer to the low and high order bytes of the base address,

respectively. While the index X was used in Example 6.7, the index Y

is equally appl icable.

Machine language instructions 189

Address Bus Data Bus

1 0100 OP CODE

0101 New ADL

3 OlFF

4 OlFF PCH

5 OlFE PCL

6 0102 ADH

ADH, ADL New
OP CODE

* 5 denotes "Sta .:. k Pointer. 11

External
Operations

Fetch
Instruction

Fet c h
New ADL

Store PCH

Store PCL

Fetch ADH

Fetch New
OP CODE

Internal
Operations

Finish Previous
Operation; [ncre­
ment PC to 0101

Decode JSR;
Increment PC to 0102

Store ADL

Hold ADL, Decre­
ment S to OlFE

Hold ADL, Decre­
ment S to OlFD

Store Stack Pointer

ADL
ADH

PCL
PCH

In this example, it can be seen that during the first cycle the micro­

processor fetches the JSR instruction. During the second cycle, address

low for new program counter low is fetched. At the end of cycle 2, the

microprocessor has decoded the JSR instruction and holds the address low

in the microprocessor until the stack operations are complete.

NOTE : The stack is always stored in Page 1 (Hex address 0100-0lFF) .

The operation of the stack in the MCS650X microprocessor is such that

the stack pointer is always left pointing at the next memory location into

which data can be stored .

Return from Subroutine (Example)

External Internal
Cycle Address Bus Data Bus Operations Qperations

1 0300 OP CODE Fetch Finish Previous
OP CODE Operation, 0301

2 0301 Discarded Fetch Dis- Decode RTS
Data carded Data

3 OlFD Discarded Fetch Dis- Increment Stack
Data carded Data Pointer to OlFE

4 OlFE 02 Fetch PCL Increment Stack
Pointer to OlFF

5 OlFF 01 Fetch PCH

+ PC

6 0102 Dis carded Put Out PC Increment PC by 1
Data to 0101

0103 Nex~ Fetch Next
OP CODE OP CODE

As we can see, the RTS instruction effectively unwinds what was done

to the stack in the JSR instruction.

190 Appendix I

The action and events are as follows: The microprocessor user

pushes the panic button; the panic switch sensor causes an external

device to indicate to the microprocessor an interrupt is desired ; the

microprocessor checks the status of the internal interrupt inhibit

signal; if the internal inhibit is set, then the interrupt is ignored.

However, if it is reset or when it becomes reset through some program

reaction, the following set of operations occur:

Example 9.2: Interrupt Sequence

Cycles Address Bus Data Bus External OEeration Internal 0Eeration

1 PC OP CODE Fetch OP CODE Hold Program Counter,
Finish Previous
Operation

2 PC OP CODE Fetch OP CODE Force a BRK
Instruction, Hold
P-Counter

3 OlFF PCH Store PCH on Stack Decrement Stack
Pointer to OlFE

4 OlFE PCL Store PCL on Stack Decrement Stack
Pointer to OlFD

5 OlFD p Store P on Stack Decrement Stack
Pointer to OlFC

6 FFFE New PCL Fetch Vector Low Put Away Stack
FFFF New PCH Fetch Vector High Vector Low -+

PCL and Set I
8 Vector OP CODE Fetch Interrupt Increment PC to

PCH PCL Program PC + 1

As can be seen in Example 9.2, the microprocessor uses the stack to

save the reentrant or recovery code and then uses the interrupt vectors

FFFE and FFFF, (or FFFA and FFFB), depending on whether or not an interrupt

request or a non maskable interrupt request had occurred. It should be

noted that the interrupt disable is turned on at this point by the micro­

processor automatically.

ExamEle 9.3: Return from InterruEt

Cycles Address Bus Data Bus External O~e rati on Internal Oeeration
1 0300 RTI Fetch OP CODE Finish Pre vious

Operati on,Increment
PC t o 0301

0301 Fetch Next OP CODE Decode RTI
3 01FC Discarded Stack Increment Stack

Fetch Pointer to OlFD
4 01FD p Fetch p Register Increment Stack

Pointer to OlFE
s OlFE PCL Fetch PCL Increment Stack Point-

er to OlFF, Hold
6 OlFF PCH Fetch PCH M-+PCL, Store

Stack Pointer
PCH PCL or CODE Fetch OP CODE Increment :-lew PC

Note the effects of the extra cycle (3) necessary to read data from

stack which causes the RTI to take six cycles. The RTI has restored the

stack, program counter and sta tus register to the point they were at

before the inter rupt was acknowledged.

PCL

Appendix J
EPROM blaster program

This listing is here so that you might get some tips from it on how to write
BASIC and assembly language programs.

JPR#O
]LIST

10

30
40
50
60
100
105
110

120
130
132
135
140

150

160
200
210
220

Basic program for EPROM blaster

:-. EM EPROM.BLASTER
REM A PROGRAM TO PROGRAM 2716 EPROMS
REM USING A J.BELL PROGRAMMER
REM B. THOMPSON
REM 15 NOV 83
REM
REM MACHINE PROG ENTRY
ON ERR GOTO 9000
BA = 28672: REM $7000

RE = BA + 3 j
WR = BA + 6
CL = BA + 9
ER = BA + 13
BU = 24576: REM BUFFER
AT $6000
PRINT CHR$ (4);"BLOAD
EPR.ASS"

CALL BA
HOME
VTAB 3: HTAB 10
PRINT "EPROM BLASTER
PROGRAM"

ADDRESSES
This sets up error trap (see 9000)

Position of EPROM machine
language program in memory

Entry locations

Buffer for your program

Load EPROM machine language
program
Run initialization part
Clear screen
Position cursor

230 VTAB 6: HTAB 10
240 PRINT "FOR TYPE 2716 EPROM'S"

192 Appendix J

250 GOSUB 6100)
260 GOSUB 6200 Print menu
270 GOSUB 6300
280 GOSUB 6400
330 INVERSE Reverse video!
340 VTAB 20: HTAB 10
350 PRINT " SELECT A NUMBER;
355 NORMAL
360 GET S Get a character from keyboard
370 IF (S > 0 AND s < 5) Checkforoutofrange

GOTO 400
380 VTAB 22: HTAB 10
390 PRINT CHR$ (7); "SELECTION

OUT OF RANGE"
395 PRINT TAB(10) ; "TRY AGAIN":

GOTO 330
400 ON S GOTO 2000,3000,

4000,420
420 HOME
430 VTAB 10: HTAB 19
439 FLASH
440 PRINT "BYE"
441 NORMA L
445 VTAB 24: HTAB 1
450 END
2000 REM CHECK ERASED EPROM
2100 GOSUB 6020

} 2110 GOSUB 6100
2130 GOSUB 6700
2165 PRINT
2170 INVERSE
2180 PRINT : PRINT

"NOW PRESS CR
EPROM ";

2185 NORMAL
2190 INPUT II ";D$
2200 CALL RE
2210 GOSUB 6020
2220 GOSUB 6100

TAB(5);
TO CHECK

2225 VTAB 13: HTAB 10
< > 255

Go to selected part of program

If selection#, say goodbye

Start erased check

Set up screen

Call read program

If CL location= 255 then EPROM
is cleared

2230 IF PEEK (CL)
GOTO 2300

2240 PRINT "EPROM
2250 GOSUB 6500

FULLY ERASED"

EPROM blaster program

2270 GOTO 200
2300 PRINT CHR$ (7); II EPROM";
2310 FLASH
2320 PRINT "NOT";: NORMAL
2330 PRINT "FULLY ERASED";

CHR$(7)
2335 PRINT
2340 GOSUB 6500
2350 GOTO 200

3000 REM BLAST EPROM
3100 GOSUB }
3110 GOSUB 6200
3120 GOSUB 6600
3130 INVERSE
3130 PRINT "HAVE YOU CHECKED

THAT YOUR"
3144 HTAB 10
3145 PRINT "EPROM IS FULLY

ERASED?
3150 GET A$
3160 IF A$ = "Y" GOTO 3200
3165 GOSUB 6020
3170 VTAB 12: HTAB 15
3175 FLASH
3180 PRINT "YOU SHOULD":

NORMAL
3185 PRINT : PRINT ; PRINT

PRINT
3190 GOSUB 6500
3195 GOTO 200

l

3200 GOSUB 6600
3210 INVERSE
3220 PRINT "IS YOUR

THE HOLDER?"
3230 NORMAL

EPROM IN I
3240 GET A$: IF A$

GOTO 3200
3250 GOSUB 6600
3260 INVERSE

< > "Y"

3270 PRINT "ENTER THE FILENAME
OF THE"

Go back to menu

If CL not 255 then EPROM not
erased

Back to menu

W rite EPROM

Set up screen

Check up on operator

Check up agai n

Wait unti l "Y"

193

194 Appendix J

3275 HTAB 10
3276 PRINr 1"PROGRAM YOU WISH TO

RECORD"
3277 HTAB 15
3280 NORMAL
3290 INPUT " " ;F$ Getfilenameofyourprogram

3300 VTAB 14: HTAB 10: GOSUB
6000

3305 GOSUB 6600
3310 PRINT "LOADING"
3320 PRINT CHR$ (4);"BLOAD"; Goget fil e(iffi lenotfounderror

F $; ", A$6000" occurs here, control switches to

9000)
3400 GOSUB 6600
3410 PRINT " PRESS CR TO BLAST

EPROM";
3420 INPUT " ";D$
3430 GOSUB 6600
3440 FLASH : PRINT "BLASTING":

NORMAL
3500 CALL WR
3510 GOSUB 6600
3520 E = PEEK CER) + PEEK

CER +1)*256
3530 IF E < > 0 GOTO 3600
3540 PRINT CHR$ (7);"A

SUCCESSFUL BLAST"
3550 GOSUB 6500
3560 GOTO 200
3600 PRINT CHR$ (7); "THE

BLAST WAS";
3610 FLASH:PRINT"NOT";:

NORMAL
3620 PRINT " SUCCESSFUL";

CHR$ (7)
3630 PRINT
3640 PRINT TAB(5);"DO YOU

WANT TO TRY AGAIN?";
3650 GET A$
3660 IF A$ = "Y" GOTO 3400
3670 GOTO 200
4100 GOSUB 6020
4110 GOSUB 6300
4120 GOSUB 6700

Call blasting routine

Check that it was succcessful

Report success

Read EPROM

EPROM blaster program

4210 GOSUB 6500
4215 CALL RE
4220 GOSUB 6600
4225 HTAB 1
4230 PRINT "DATA AVAILABLE IN

MEMORY $6800 TO $6FFF"
4240 GOSUB 6500
4250 GOTO 200

6000 CALL - 958: RETURN

6010 CALL - 868: RETURN
6020 VTAB 10: HTAB 10
6030 GOSUB 6000
6040 RETURN
6100 VTAB 10: HTAB 10
6110 PRINT "1 CHECK ERASED

EPROM"
6120 RETURN
6200 VTAB 12 : HTAB 10
6210 PRINT "2 WRITE TO EPROM

(BLAST) II

195

Return to menu

This wil l clear screen from cursor

to end of screen

Clear to end of li ne

Posit ion cursor to V1 O,H 10 and

clear

6220 RETURN
6300 VTAB 14: HTAB 10
6310 PRINT "3 READ FROM
6320 RETURN
6400 VTAB 16: HTAB 10
6410 PRINT "4 EXIT TO

EPROM"~ Etc

APPLESOFT BASIC"
6420 RETURN
6500 HTAB 10: INVERSE
6510 PRINT "CR TO CONTINUE";
6515 NORMAL
6520 INPUT II ";D$
6530 RETURN
6600 VTAB 16: HTAB 10: GOSUB

6000
6610 RETURN

} Etc

1 Position and print M SG, wa it for

J CR

196 Appendix J

6700 VTAB 16: HTAB 5
6710 PRINT "PLACE THE EPROM

IN THE HOLDER AND"
6720 PRINT TAB(5) ;"LOCK THE

LEVER" Position and print

6730 PRINT TAB(5);"BE SURE
THAT THE NOTCH"

6740 PRINT TAB();"IS
ORIENTED CORRECTLY!"

6750 RETURN
9000 POKE 216,0
9010 EC = PEEK (222)
9020 IF EC < > 6 THEN 9100
9030 VTAB 14: HTAB 10: FLASH
9039 PR I NT CHR$ (7);
9040 PRINT "FILE "F$;" NOT

FOUND"
9041 PRINT CHR$ (7);
9045 NORMAL
9050 CALL - 3288
9060 ONERR GOTO 9000
9070 GOTO 3250
9100 RESUME

This routine checks for " fi le not

found" error (no 6) . If th is error

occu rs control is returned to the

program else if a different error stop

program

EPROM blaster program 197

Assembly language program EPR.ASS
0010 , Eprom Blaster for 2716s
0020 , Using the John Bell eprom blaster and memory-mate

, interface.
0030 ,
0040 ; This version is for the Apple IIe with a 6522
0050 . interface in slot 5 ,
0060 ,
0070 VIA addresses:

0080 PORT1 .DE $C500
0090 PORT2 .DE $C580
0100 J 1 .DE PORT1+1
0110 J1DD .DE PORT1+3
0120 J2 .DE PORT1+0
0130 J2DD .DE PORT1+2
0140 J3 .DE PORT2+1
0150 J3DD .DE PORT2+3
0160 J4 .DE PORT2+0
0170 J4DD .DE PORT2+2
0180 ,
0190 ECONTROL .DE J2
0200 EDATA .DE J 1
0210 EADDL .DE J3
0220 EADDH .DE J4
0230 ,
0240 Control bits for 2716s (information only)

0250 PGM .DE %0001 Pin 18, % indicates binary

0260 \OE .DE %0010 Pin 20, \ indicates negative (bar).

0270 \POWER .DE %0100 Pin 24

0280 \V24 .DE %1000 Pin 21

0290 . ,
0300 Parameters .

0310 PROGDATA .DE $6000
0320 EPROMDATA .DE $6800
0330 ;
0340 Zero page.

0350 ADDR .DE $06
0360 ADDS .DE $08
0370 ,
0380 ,
0390 .BA $7000
0400 ;

7000- 4C OF 70 0410 JMP I NIT
7003- 4C 42 70 0420 JM P READ

198 Appendix J

7006- 4C 91 70 0430 JMP WRITE
0440 ;

7009- 0450 CLEAR .DS 2
7008- 0460 TIME .DS 2
7000- 0470 ERROR .DS 2

0480 ,
700F- A9 60 0490 !NIT LOA #H,PROGDATA I nit indirect pointer
7011- 80 07 DO 0500 STA ADDR+1
7014- A9 00 0510 LDA #L,PROGDATA
7016- 80 06 00 0520 STA ADDR

0530 ;
7019- A2 DO 0540 LOX #0 Put FF in all of program buffer.
7018- AD DO 0550 LDY #0
701D- A9 FF 0560 LOA #$FF
701F- 91 06 0570 A STA (ADDR),Y
7021- C8 0580 INY
7022- DO F8 0590 8NE A
7024- EE 07 DO 0600 INC ADDR+1
7027- E8 0610 INX
7028- EO 08 0620 CPX #$08
702A- DO F3 0630 8NE A

0640 . ,
702C- A9 FF 0650 LOA #$FF Set up VIAs.
702E- 80 02 C5 0660 STA J2DD
7031- 80 83 C5 0670 STA J3DD
7034- 80 82 C5 0680 STA J4DD
7037- A9 00 0690 LOA #0
7039- 80 03 C5 0700 STA J1DD Input for now.
703C- A9 OF 0710 LOA #%1111
703E- 80 00 C5 0720 STA ECONTROL Turn EPROM off.

0730 ,
7041- 60 0740 RTS

0750 ;
0760 ;
0770 READ

7042- A9 FF 0780 LDA #$FF I nit clear flag.
7044- 80 09 70 0790 STA CLEAR
7047- A9 68 0800 LOA #H,EPROMDATA I nit indirect pointer.
7049- 80 07 DO 0810 STA ADDR+1
704C- A9 00 0802 LOA #L,EPROMDATA
704E- 80 06 00 0830 STA ADDR

0840 . ,
0850 Set up VIAs for read.

7051- A9 00 0860 LOA #$00

EPROM blaster program 199

7053- 8D 81 cs 0870 STA EADDL
7056- 8D 80 cs 0880 STA EADDH
7059- 8D 03 cs 0890 STA J1DD
705C- A9 08 0900 LDA #%1000 +24off, +5on.
705E- 8D 00 cs 0910 STA ECONTROL

0920 ;
7061- AD 01 cs 0930 RLOOP LDA EDATA Set data from EPROM.
7064- C9 FF 0940 CMP #$FF Check if EPROM data cleared.
7066- FO 03 0950 8EQ OKFF
7068- 8D 09 70 0960 STA CLEAR
7068 AO 00 0970 OKFF LDY #$00 Store EPROM data in memory pointed

to by ADDR.
706D- 91 06 0980 STA (ADDR),Y
706F- EE 06 DO 0990 INC ADDR
7072- AD 06 DO 1000 LDA ADDR
7075- 8D 81 cs 1010 STA EADDL
7078- C9 00 1020 CMP #$00 Test end of page.
707A- DO ES 1030 8NE RLOOP
707C- EE 07 DO 1040 INC ADDR+1 Go to next page.
707F- AD 07 DO 1050 LDA ADDR+1
7082- 29 07 1060 AND #$07 Strip high bits.
7084- 8D 80 cs 1070 STA EADDH
7087- EA 1080 NOP
7088- EA 1081 NOP
7089- DO D6 1090 8NE RLOOP

1100 ;
1110 Done.

7088- A9 OF 1120 LDA #%1111 Turn off EPROM .
708D- 8D DO cs 1130 STA ECONTROL
7090- 50 1140 RTS

1150 . ,
1160 ;
1170 ,
1180 ;
1190 WRITE

7091- A9 60 1200 LDA #H,PROGDATA I nit indirect pointer.
7093- 8D 07 00 1210 STA ADDR+1
7096- A9 00 1220 LDA #L,PROGDATA
7098- 8D 06 00 1230 STA ADDR

1240 ;
1250 Set up ports

7098- A9 00 1260 LDA #$00
709D- 8D 80 cs 1270 STA EADDH
70AO- 8D 81 cs 1280 STA EADDL

200 Appendix J

70A3- A9 02 1290 LDA #%0010
70A5- 8D DO C5 1300 STA ECONTROL
70A8- A9 FF 1310 LDA #$FF All outputs
70AA- 8D 03 cs 1320 STA J1DD

1330 . ,
1340 ;

?DAD- AD DO 1350 WLOOP LDY #$00 Set data from memory.
?OAF- 81 06 1360 LDA (ADDR) ,Y
7081 :.. C9 FF 1370 CMP #$FF No need to do FFs.
7083- FO 27 1380 8EQ NEXT ADD
70B5- 8D 01 cs 1390 STA EDATA

1400 Start hot blast.
7088- A9 03 1410 LDA #%0011
708A- 8D 00 cs 1420 STA ECONTROL

1430 Start timer, 50 ms.
70BD- A9 80 1440 LDA #$80
70BF- 8D DB 70 1450 STA TIME
70C2- A9 FO 1460 LDA #$FO
70C4- 8D OC 70 1470 STA TIME+1
70C7- EE 08 70 1480 TLOOP INC TIME
?DCA- AD DB 70 1490 LDA TIME
70CD- DO FB 1500 BNE TLOOP
70CF- EE oc 70 1510 INC TIME+1
70D2- AD oc 70 1520 LDA TIME+1
70D5- DO FO 1530 8NE TLOOP

1540 End timer.
70D7- A9 02 1550 LDA #%0010 Stop hot blast.
70D9- 8D 00 cs 1560 STA ECONTROL

1570 ,
70DC- EE 06 00 1580 NEXT ADD I NC ADDR Next data .
70DF- AD 06 00 1590 LDA ADDR
70E2- 8D 81 C5 1600 STA EADDL
?DES- DO C6 1610 BNE WLOOP
70E7- EE 07 00 1620 INC ADDR+1
70EA- AD 07 00 1630 LDA ADDR+1
?OED- 29 07 1640 AND #$07 Strip high bits.
70EF- 8D 80 C5 1650 STA EADDH
70F2- EA 1660 NOP
70F3- EA 1661 NOP
70F4- DO 87 1670 8NE WLOOP

1680 ;
1690 Done.

70F6- A9 OF 1700 LDA #%1111 Turn off EPROM .
70F8- 8D 00 C5 1710 STA ECONTROL

EPROM blaster program 201

70FB- A9 00 1720 LDA #$00
70FD- 8D 03 C5 1730 STA J1DD
7100- 20 42 70 1740 JSR READ

1750 ;
1760 Memory compare.

7103- A9 60 1770 LDA #H,PROGDATA
7105- 8D 07 00 1771 STA ADDR+1
7108- A9 00 1772 LDA #L,PROGDATA
710A- 8D 06 00 1773 STA ADDR
710D- A9 68 1780 LDA #H,EPROMDATA
710F- 8D 09 00 1781 STA ADDS+1
7112- A9 00 1782 LDA #L,EPROMDATA
7114- 8D 08 00 1783 STA ADDS
7117- A9 00 1790 LDA #0
7119- 8D OE 70 1791 STA ERROR+1
711C- 8D OD 70 1792 STA ERROR
711F- A2 00 1800 LDX #$00
7121- AO 00 1810 LDY #$00
7123- 81 06 1820 CLOOP LDA (ADDR),Y
7125- D1 08 1830 CMP (ADDS),Y
7127- FO 08 1840 BEQ OKDATA
7129- EE OD 70 1850 INC ERROR
712C- DO 03 1860 BNE OKDATA
712E- EE OE 70 1870 INC ERROR+1
7131- C8 1880 OKDATA !NY
7132- DO EF 1890 BNE CLOOP
7134- E8 1900 INX Next page .

7135- EE 07 00 1910 INC ADDR+1
7138- EE 09 00 1920 INC ADDS+1
7138- EO 08 1930 CPX #$08 End for 2716s.

713D- DO E4 1940 BNE CLOOP
713F- 60 1950 RTS

1960 .EN

LABEL FILE: [I =EXTERNAL J

/PORT1=C500 /PORT2=C580 /J1=C501
/J1DD=C503 /J2=C500 /J2DD=C502
/J3=C581 /J3DD=C583 /J4=C580
/J4DD=C582 /ECONTROL=C500 /EDATA=C501
/EADDL=C581 /EADDH=C580 /PGM=0001
/\OE=0002 /\POWER=0004 /\V24=0008
/PROGDATA=6000 /EPROMDATA=6800 /ADDR=0006
/ADDS=0008 CLEAR=7009 TIME=7008

202

ERROR=700D
READ=7042
WRITE=7091
NEXTADD=70DC

//0000,7140,7140
>

Appendix J

INIT=700F
RLOOP=7061
WLOOP=70AD
CLOOP=7123

A=701F
OKFF=7068
TLOOP=70C7
OKDATA=7131

Appendix K
Bibliography and sources

General APPLE and 6502 programming
Apple 1/e Reference manuals , Apple Computer.

These are quite good and contain the fine detai ls and all APPLE hardware and
software.

Poole, L. , McNiff, M. & Cook , S., Apple If User's Guide, Osborne/McGraw-Hi ll ,
Berkeley, 2nd edn ., 1983.
Good general reference on BASIC programming and the use of the
MINIASSEMBLER.

SYNERTEK 6502 Programming Manual, Publication No. 6500-50, Santa Clara ,
CA 95051
Details of op-codes and their uses.

Leventhal , L. , 6502 Assembly Language Programming , Osborne/McGraw-Hill ,
Berkeley , 1979.
Easier to find than the SYNERTEK book.

General computing
BYTE Magazine.

Good genera l overview of microcomputing with frequent references to laboratory
applications .

General numerical analysis
Press , W. , Flannery, B ., Tenkolsky , S. & Vetterl ing , W. Numerical Recipes, The Art

of Scientific Computing, Cambridge Univ . Press, New York, 1986.

General electronics
Horowitz , P. & Hill , W. , The Art of Electronics , Cambridge Univ. Press, New York

1980.
The best reference for design ing laboratory electron ics.

Physical data
Handbook of Chemistry and Physics, ed. R. Weast , 52nd edn, Chemica l Rubber Co,

Cleveland , OH , 197 1.

A merican Institute of Physics Handbook , ed . D . E. Gray, McGraw-Hi ll , New York,
1957.

Mark 's Standard handbook for Mechanical Engin eers , eds. T. Beaume iste r, E. A.
Abalone & T. Baird, 8th edn , McGraw-Hill , New York, 1978

Physics
Any general introductory physics text will provide a good background.

Sensors and transducers
Doebelin , E. 0. , Measurement Systems, McGraw-Hill , New York , 1983.

A thorough overview of general design and specific devices.

204 Appendix K

Specific hardware
Witten , I. H., Welcome to the Standards Jungle, BYTE, pp . 146--78, February, 1983.

This a close look at se ri al data communication.

Leibson , S., The Input/Output Primer , Part 3: The Paralle l and HPIB (IEEE-488)
Interfaces, BYTE, pp . 186--208, April , 1982.

Clune, T. R. , Interfacing for Data Acquisition , BYTE, pp. 269-82, February , l985.
These two articles provide a good background in how the IEEE-488 works.

Hallgreen , R . C., Putting the Apple II to Work , Part l: The Hardware, BYTE, pp.
152-64 , April , 1984.
This and a succeeding article in BYTE in May 1984 describe a particular data
acquisition system.

General signal analysis
Bendat , J. S. & Piersol , A. G., Random Data , Wiley, New York , 1971.

Otnes , R. K. & Enochson, L. ,Applied Time Series Analysis, Wiley , New York , 1978 .

Papoulis , A . , Signal Analysis, McGraw-Hill , New York , 1977.

Specific signal analysis
Monforte , J ., The Digital Reproduction of Sound, Scientific American , pp. 78-84,

December , 1984.
A good description of the sampling problem and di gitization.

Cacerci , M.S. & Cacheris, W. P. , Fitting Curves to Data, BYTE, pp. 340-62, May,
1984.
A description of the Simplex algorithm.

Report writing
Porawn, J. F., A Student Guide to Engineering Report Writing , United Western

Press, Saloma Beach , 1985.

Hofstaedter , D ., Default Assumptions in Metamathecal Themas , Scientific
American , November , 1983.
For those interested in exo rcising the spectre of maleness from their writing.

Sources
John Bell Engineering , Inc. , 400 Oxford Way , Belmont , CA 94002

ADC board
6522 interface board
EPROM programmer.

MAD WEST Software, P .O. Box 9822, Madison , WI 53715
AMPERGRAPH, for drawing graphs
AMPERDUMP , for printing graphs.

E lectronic chips , stepping motors , etc.
Look in the back of BYTE mgazine for numerous sources for these items.

Index

absolute addressing 68
accumulator , CPU 64
ACR (auxiliary control register) 48
ADC 11ff, 17ff, 13lff
address lines 63
address storage 67
addressing

absolute 68
index 71 , 72
indirect 83

AMPERGRAPH 6
amplifier 57ff
analog to digital conversion 11
AND operation 74
APPLE architecture 62
APPLESOFr BASIC 6
arrays 23
ASCII 110, 111 , 113
assembly language programming 65, 164ff

base address 6522 48
BEEP 50
binary number system 46, 47
Boltzmann factor 18
Boolean algebra 74
bootstrap 162, 163
branching instructions 72 , 77
BRK instruction 93
buss 63

CA3140 amplifier 58
calibration of ADC 13
calling machine language programs from

BASIC 72
carry 96
CATALOG 6
clock 63
clock registers 93
coefficient of drag 86
coefficient of viscosity 84
control C 13
control character 24
control lines 63
correcting programs 6
CPU 11 , 62

DAC 69ff
data errors 31ff
data lines 63
data modeling 29ff

data smoothing 33
digital to analog converters (DAC) 69ff
DIM 24
DIP connector 11
double precision arithmetic 95
drag 86
ORA, ORB 35

EPROM. BLASTER 100, 183ff
EPROMS 100

files 23ff
fi les

reading 25
writing 23, 24

fluids forces 84

graphics viewing 8

heat capacity 52
heat flow 52ff
heat flow equation 53, 54, 156ff, 159ff
hexadecimal number system 44
HEXFET 36 , 57
HGR2 7
HIM EM: 16383 7

IC 2716 100
IC 6502 75 , 81 , 102
IC 6522 48 , 49, 70, 93 , 147
IC 74LS04 45
IC LM339 89 , 90
IEEE--488 114ff
index addressing 71, 72
indirect addressing 83
initializing disks 8
INPUT 21
INTEGER BASIC 65
interrupt enable register (IER) 105
interrupt flag register (IFR) 105
interrupts 102ff
IRQ (interrupt request) 102
ISR (interrupt service routine) 104

JMP 68

Kelvin temperature 18
kinetic fluid pressure 86

latching 90

206 Index

least squares fit 27ff
LED 44 , 45 , 88
LIST 7
LOAD9
logarithm scale 26
LOW-ORDER/HIGH-ORDER registers 49

machine language programming 67, 164ff
memory, types 62
memory map 129
merging programs 9, 125ff
MICROBUFFER 8
Microprocessor 6502 62
microprocessor execution 64
MINIASSEMBLER 65
monitor 65
mother board 62

negative numbers 46
NEW6
NOP93
Nyquist frequency 16

operational amplifier 58
OR exclusive (EOR) 76
ORA operation 76
oscilloscope trigger 12
output generation 34
overflow 46

PA (PORT A) 35
parallel data 114ff
PB (PORT B) 35, 44
PEEK 11 , 36
photoresistor 88
plotting 6
POKE 11,36
potentiometer 12ff
PR#1, PR#O 8
pressure 86
printer 8
printing graphics 8
process status register 64
program counter 64
prompts 65
proto board 11 , 12

RAM 100
read/write line 63
reading binary files 69
REM7
RENUMBER 9, 123
resetting registers 77
Reynolds number 10
ROM , 10, 100

RTI (return from interrupt) 104
RTS 73
RUN 8

sample rate 15
saving machine language 68, 69
scaling, computer generated 94
Schmidt trigger 90
SED instruction 106
serial data 114ff
smoothing 33
specific heat 20
stack 79
stack memory 64
stack pointer 64, 80
stepping motors 40, 42
Stokes law 85
stop program loop 13, 67
storing programs 8
string variables 7
subroutines 79
system start disk 6

temperature control 37ff
TEXTS
thermal conductivity 52
thermal diffusion 52ff
thermistor 11 , 118ff
timing 48ff
timing loop (BASIC) 39
timing loops, machine language 81
transducer

first-order 20
second-order 21
zero-order 13

triple precision 83
truth table 74
turbulence 84

UART 113

vco 15
ve locity gradient 85
VIA (versatile interface adapter) 35 , 48, 49,

93 , 145
VIA timers 48
viscosity 84
voltage divider 19, 23

WAJT91
wire color codes 19

X, Y registers 64
X-Y plotting 73

